Abstract

We report on a newly designed and fabricated ytterbium-doped large mode area fiber with an extremely low NA (~0.04) and related systematic investigations on fiber parameters that crucially influence the mode instability threshold. The fiber is used to demonstrate a narrow linewidth, continuous wave, single mode fiber laser amplifier emitting a maximum output power of 3 kW at a wavelength of 1070 nm without reaching the mode-instability threshold. A high slope efficiency of 90 %, excellent beam quality, high temporal stability, and an ASE suppression of 70 dB could be reached with a signal linewidth of only 170 pm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann
Opt. Express 25(13) 14892-14899 (2017)

1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities

Rumao Tao, Pengfei Ma, Xiaolin Wang, Pu Zhou, and Zejin Liu
Photon. Res. 3(3) 86-93 (2015)

1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality

Pengfei Ma, Rumao Tao, Rongtao Su, Xiaolin Wang, Pu Zhou, and Zejin Liu
Opt. Express 24(4) 4187-4195 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36(16), 3118–3120 (2011).
    [Crossref] [PubMed]
  2. S. McNaught, C. Asman, H. Injeyan, A. Jankevics, A. Johnson, G. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. Valley, M. Weber, and S. Weiss, “100-kW Coherently Combined Nd:YAG MOPA Laser Array,” OSA Technical Digest Series (CD) (2009), paper FThD2.
    [Crossref]
  3. Y. Xiao, F. Brunet, M. Kanskar, M. Faucher, A. Wetter, and N. Holehouse, “1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks,” Opt. Express 20(3), 3296–3301 (2012).
    [Crossref] [PubMed]
  4. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  5. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron.  20(5), 219–241 (2014).
  6. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref] [PubMed]
  7. C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
    [Crossref] [PubMed]
  8. L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. A. Cheng, “Experimental investigation on evolution of the beam quality in a 2 kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
    [Crossref]
  9. J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow Linewidth Single Mode Fiber Amplifier With 2.3 kW Average Power,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (2015), paper CJ_11_4.
  10. Q. Fang, W. Shi, Y. Qin, X. Meng, and Q. Zhang, “2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm,” Laser Phys. Lett. 11(10), 105102 (2014).
    [Crossref]
  11. G. Overton, “IPG Photonics offers world’s first 10 kW single-mode production laser,” http://www.laserfocusworld.com/articles/2009/06/ipg-photonics-offers-worlds-first-10-kw-single-mode-production-laser.html , Laser Focus World (Published 06/17/2009), 12/09/2015.
  12. M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power Scaling of SM Fiber Lasers toward 10kW,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (2009), paper CThA3.
    [Crossref]
  13. V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” Proc. SPIE 8961, 89610 (2014).
  14. H. Yu, H. Zhang, H. Lv, X. Wang, J. Leng, H. Xiao, S. Guo, P. Zhou, X. Xu, and J. Chen, “3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser,” Appl. Opt. 54(14), 4556–4560 (2015).
    [Crossref] [PubMed]
  15. H. J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
    [Crossref] [PubMed]
  16. Z. Huang, X. Liang, C. Li, H. Lin, Q. Li, J. Wang, and F. Jing, “Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators,” Appl. Opt. 55(2), 297–302 (2016).
    [Crossref] [PubMed]
  17. N. Haarlammert, B. Sattler, A. Liem, M. Strecker, J. Nold, T. Schreiber, R. Eberhardt, A. Tünnermann, K. Ludewigt, and M. Jung, “Optimizing mode instability in low-NA fibers by passive strategies,” Opt. Lett. 40(10), 2317–2320 (2015).
    [Crossref] [PubMed]
  18. H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
    [Crossref] [PubMed]
  19. H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, S. Desmoulins, M. Zervas, J. Kirchhof, S. Unger, S. Jetschke, T. Peschel, T. Schreiber, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
  20. A. Dhar, A. Pal, M. Ch. Paul, P. Ray, H. S. Maiti, and R. Sen, “The mechanism of rare earth incorporation in solution doping process,” Opt. Express 16(17), 12835–12846 (2008).
    [Crossref] [PubMed]
  21. D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
    [Crossref]
  22. O. Arnould and F. Hild, “EPMA Measurements of Diffusion Proles at the Submicrometre Scale,” Mikrochim. Acta 139(1-4), 3–10 (2002).
    [Crossref]
  23. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [Crossref] [PubMed]
  24. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1 (2010).
    [Crossref]
  25. ISO 11146 “Lasers and laser-related equipment– Test methods for laser beam parameters– Beam width, divergence, angle and beam propagation factor” (2005).

2016 (1)

2015 (4)

2014 (3)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron.  20(5), 219–241 (2014).

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. A. Cheng, “Experimental investigation on evolution of the beam quality in a 2 kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

Q. Fang, W. Shi, Y. Qin, X. Meng, and Q. Zhang, “2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm,” Laser Phys. Lett. 11(10), 105102 (2014).
[Crossref]

2013 (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

2012 (2)

2011 (2)

2010 (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1 (2010).
[Crossref]

2008 (2)

2002 (1)

O. Arnould and F. Hild, “EPMA Measurements of Diffusion Proles at the Submicrometre Scale,” Mikrochim. Acta 139(1-4), 3–10 (2002).
[Crossref]

1989 (1)

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
[Crossref]

Arnould, O.

O. Arnould and F. Hild, “EPMA Measurements of Diffusion Proles at the Submicrometre Scale,” Mikrochim. Acta 139(1-4), 3–10 (2002).
[Crossref]

Brunet, F.

Chen, J.

Cheng, X. A.

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. A. Cheng, “Experimental investigation on evolution of the beam quality in a 2 kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1 (2010).
[Crossref]

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron.  20(5), 219–241 (2014).

Dhar, A.

DiGiovanni, D. J.

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
[Crossref]

Eberhardt, R.

Eidam, T.

Fang, Q.

Q. Fang, W. Shi, Y. Qin, X. Meng, and Q. Zhang, “2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm,” Laser Phys. Lett. 11(10), 105102 (2014).
[Crossref]

Faucher, M.

Ghalmi, S.

Gowin, M.

Guo, S.

H. Yu, H. Zhang, H. Lv, X. Wang, J. Leng, H. Xiao, S. Guo, P. Zhou, X. Xu, and J. Chen, “3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser,” Appl. Opt. 54(14), 4556–4560 (2015).
[Crossref] [PubMed]

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. A. Cheng, “Experimental investigation on evolution of the beam quality in a 2 kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

Haarlammert, N.

Hild, F.

O. Arnould and F. Hild, “EPMA Measurements of Diffusion Proles at the Submicrometre Scale,” Mikrochim. Acta 139(1-4), 3–10 (2002).
[Crossref]

Holehouse, N.

Huang, L.

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. A. Cheng, “Experimental investigation on evolution of the beam quality in a 2 kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

Huang, Z.

Jansen, F.

Jauregui, C.

Jing, F.

Jung, M.

Kanskar, M.

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1 (2010).
[Crossref]

Kometani, T. Y.

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
[Crossref]

Leng, J.

H. Yu, H. Zhang, H. Lv, X. Wang, J. Leng, H. Xiao, S. Guo, P. Zhou, X. Xu, and J. Chen, “3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser,” Appl. Opt. 54(14), 4556–4560 (2015).
[Crossref] [PubMed]

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. A. Cheng, “Experimental investigation on evolution of the beam quality in a 2 kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

Li, C.

Li, Q.

Liang, X.

Liem, A.

Limpert, J.

Lin, H.

Ludewigt, K.

Lv, H.

MacChesney, J. B.

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
[Crossref]

Maiti, H. S.

Meng, X.

Q. Fang, W. Shi, Y. Qin, X. Meng, and Q. Zhang, “2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm,” Laser Phys. Lett. 11(10), 105102 (2014).
[Crossref]

Modsching, N.

Nicholson, J. W.

Nold, J.

Otto, H. J.

Otto, H.-J.

Pal, A.

Paul, M. Ch.

Qin, Y.

Q. Fang, W. Shi, Y. Qin, X. Meng, and Q. Zhang, “2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm,” Laser Phys. Lett. 11(10), 105102 (2014).
[Crossref]

Ramachandran, S.

Ray, P.

Sattler, B.

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1 (2010).
[Crossref]

Schmidt, O.

Schreiber, T.

Sen, R.

Shi, W.

Q. Fang, W. Shi, Y. Qin, X. Meng, and Q. Zhang, “2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm,” Laser Phys. Lett. 11(10), 105102 (2014).
[Crossref]

Strecker, M.

Stutzki, F.

ten Have, E.

Tsybin, I.

Tünnermann, A.

N. Haarlammert, B. Sattler, A. Liem, M. Strecker, J. Nold, T. Schreiber, R. Eberhardt, A. Tünnermann, K. Ludewigt, and M. Jung, “Optimizing mode instability in low-NA fibers by passive strategies,” Opt. Lett. 40(10), 2317–2320 (2015).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

H. J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36(16), 3118–3120 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Wang, J.

Wang, W.

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. A. Cheng, “Experimental investigation on evolution of the beam quality in a 2 kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

Wang, X.

Wetter, A.

Wirth, C.

Xiao, H.

Xiao, Y.

Xu, X.

H. Yu, H. Zhang, H. Lv, X. Wang, J. Leng, H. Xiao, S. Guo, P. Zhou, X. Xu, and J. Chen, “3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser,” Appl. Opt. 54(14), 4556–4560 (2015).
[Crossref] [PubMed]

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. A. Cheng, “Experimental investigation on evolution of the beam quality in a 2 kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

Yablon, A. D.

Yu, H.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron.  20(5), 219–241 (2014).

Zhang, H.

Zhang, Q.

Q. Fang, W. Shi, Y. Qin, X. Meng, and Q. Zhang, “2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm,” Laser Phys. Lett. 11(10), 105102 (2014).
[Crossref]

Zhou, P.

Adv. Opt. Photonics (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1 (2010).
[Crossref]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron (1)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron.  20(5), 219–241 (2014).

IEEE Photonics Technol. Lett. (1)

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. A. Cheng, “Experimental investigation on evolution of the beam quality in a 2 kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

J. Non-Cryst. Solids (1)

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
[Crossref]

Laser Phys. Lett. (1)

Q. Fang, W. Shi, Y. Qin, X. Meng, and Q. Zhang, “2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm,” Laser Phys. Lett. 11(10), 105102 (2014).
[Crossref]

Mikrochim. Acta (1)

O. Arnould and F. Hild, “EPMA Measurements of Diffusion Proles at the Submicrometre Scale,” Mikrochim. Acta 139(1-4), 3–10 (2002).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (7)

H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

Y. Xiao, F. Brunet, M. Kanskar, M. Faucher, A. Wetter, and N. Holehouse, “1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks,” Opt. Express 20(3), 3296–3301 (2012).
[Crossref] [PubMed]

H. J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[Crossref] [PubMed]

A. Dhar, A. Pal, M. Ch. Paul, P. Ray, H. S. Maiti, and R. Sen, “The mechanism of rare earth incorporation in solution doping process,” Opt. Express 16(17), 12835–12846 (2008).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (7)

ISO 11146 “Lasers and laser-related equipment– Test methods for laser beam parameters– Beam width, divergence, angle and beam propagation factor” (2005).

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow Linewidth Single Mode Fiber Amplifier With 2.3 kW Average Power,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (2015), paper CJ_11_4.

G. Overton, “IPG Photonics offers world’s first 10 kW single-mode production laser,” http://www.laserfocusworld.com/articles/2009/06/ipg-photonics-offers-worlds-first-10-kw-single-mode-production-laser.html , Laser Focus World (Published 06/17/2009), 12/09/2015.

M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power Scaling of SM Fiber Lasers toward 10kW,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (2009), paper CThA3.
[Crossref]

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” Proc. SPIE 8961, 89610 (2014).

S. McNaught, C. Asman, H. Injeyan, A. Jankevics, A. Johnson, G. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. Valley, M. Weber, and S. Weiss, “100-kW Coherently Combined Nd:YAG MOPA Laser Array,” OSA Technical Digest Series (CD) (2009), paper FThD2.
[Crossref]

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, S. Desmoulins, M. Zervas, J. Kirchhof, S. Unger, S. Jetschke, T. Peschel, T. Schreiber, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental high power amplifier setup for fiber characterization. The amplifier was driven in counter-propagational direction. The spectral and temporal behavior, beam quality and output power were analyzed. (PM: Power Meter, DC: Dichroic Mirror).

Fig. 2
Fig. 2

(a) Results of the EPMA measurement for preform I (cP2O5 ~1 mol%, cAl2O3 ~0.8 mol%, and cYb2O3 ~0.09 mol%. (b): Standard deviation of the temporal signal behavior in dependence on the output power for Fiber I in different configurations.

Fig. 3
Fig. 3

Schematic representation of designing single mode fibers starting with Fiber I by reducing the core diameter (Fiber II) and reducing the core NA (Fiber III).

Fig. 4
Fig. 4

(a): Refractive index profile for the three produced fibers following the presented approaches. The lower average refractive index of fiber 3 in comparison to fiber 2 indicates the reduced NA, whereby the reduced core diameter of fiber 2 is presented. (b): S2 measurement for Fiber I-III under investigation. The reduced NA leads to a reduced mode content.

Fig. 5
Fig. 5

Amplifier output signal results for Fiber III. (a) a very high slope efficiency of 90 % and maximum output power of 3 kW were reached. (b) The optical spectrum shows no hint for stimulated Raman scattering. 99.5 % of the signal light was measured to be within a narrow linewidth of 170pm at a central wavelength of 1067 nm up to the maximum output power of 3 kW.

Fig. 6
Fig. 6

Standard deviation of the temporal output signal for several output powers for Fiber II and Fiber III. Both fibers under investigation did not show any indication of MI.

Tables (2)

Tables Icon

Table 1 Overview of the relevant fiber parameters, maximum output power, and limitations, for the fibers under test. MFA: mode field area, FD: fiber destruction, PPL: pump power limited.

Tables Icon

Table 2 Overview of actions that were taken to realize NLE and MI free fiber designs and their consequences.

Metrics