Abstract

We report the fabrication of the first extruded hollow core optical fiber with a single ring of cladding holes, and its use in a chemical sensing application. These single suspended ring structures show antiresonance reflection optical waveguiding (ARROW) features in the visible part of the spectrum. The impact of preform pressurization on the geometry of these fibers is determined by the size of the different hole types in the preform. The fibers are used to perform Raman sensing of methanol, demonstrating their potential for future fiber sensing applications.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  2. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  3. A. Urich, R. R. J. Maier, B. J. Mangan, S. Renshaw, J. C. Knight, D. P. Hand, and J. D. Shephard, “Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre,” Opt. Express 20(6), 6677–6684 (2012).
    [Crossref] [PubMed]
  4. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
    [Crossref] [PubMed]
  5. J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
    [Crossref] [PubMed]
  6. K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances inintegrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16(22), 17935–17951 (2008).
    [Crossref] [PubMed]
  7. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
    [Crossref] [PubMed]
  8. A. Dutt, S. Mahapatra, and S. K. Varshney, “Capillary optical fibers: design and applications for attaining a large effective mode area,” J. Opt. Soc. Am. B 28(6), 1431–1438 (2011).
    [Crossref]
  9. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  10. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [Crossref] [PubMed]
  11. A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
    [Crossref]
  12. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for Microstructured Optical Fiberfabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
    [Crossref]
  13. M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).
    [Crossref]
  14. M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. C. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
    [Crossref]
  15. F. Poletti, N. Petrovich Marco, and J. Richardson David, “Hollow-core photonic bandgap fibers: technology and applications,” in Nanophotonics (2013), p. 315.
  16. J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
    [Crossref] [PubMed]
  17. P. Rugeland, C. Sterner, and W. Margulis, “Visible light guidance in silica capillaries by antiresonant reflection,” Opt. Express 21(24), 29217–29222 (2013).
    [Crossref] [PubMed]
  18. W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
    [Crossref] [PubMed]
  19. L. Robinet, A. Bouquillon, and J. Hartwig, “Correlations between Raman parameters and elemental composition in lead and lead alkali silicate glasses,” J. Raman Spectrosc. 39(5), 618–626 (2008).
    [Crossref]
  20. J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
    [Crossref]
  21. T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
    [Crossref]
  22. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).
[Crossref]

2014 (2)

2013 (2)

2012 (2)

2011 (2)

2010 (1)

2009 (1)

2008 (2)

K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances inintegrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16(22), 17935–17951 (2008).
[Crossref] [PubMed]

L. Robinet, A. Bouquillon, and J. Hartwig, “Correlations between Raman parameters and elemental composition in lead and lead alkali silicate glasses,” J. Raman Spectrosc. 39(5), 618–626 (2008).
[Crossref]

2005 (2)

2002 (1)

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

1980 (1)

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

1978 (1)

T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
[Crossref]

Abokhamis, M. S.

Afshar V, S.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Auguste, J. L.

Baddela, N. K.

Beaudou, B.

Biriukov, A. S.

Birks, T. A.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Blondy, J. M.

Bouquillon, A.

L. Robinet, A. Bouquillon, and J. Hartwig, “Correlations between Raman parameters and elemental composition in lead and lead alkali silicate glasses,” J. Raman Spectrosc. 39(5), 618–626 (2008).
[Crossref]

Brawer, S. A.

T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
[Crossref]

Buchak, P.

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. C. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).
[Crossref]

Chen, M. J.

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. C. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).
[Crossref]

Chinaud, J.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Crowdy, D. G.

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. C. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).
[Crossref]

Delaye, P.

Desantolo, A.

Dianov, E. M.

DiMarcello, F. V.

Ding, W.

Dowler, A.

Dutt, A.

Ebendorff-Heidepriem, H.

Farr, L.

Février, S.

Fini, J. M.

Fitt, A. D.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Foo, H. T. C.

Frey, R.

Frosz, M.

Furukawa, T.

T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
[Crossref]

Furusawa, K.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Ghenuche, P.

Hand, D. P.

Hartwig, J.

L. Robinet, A. Bouquillon, and J. Hartwig, “Correlations between Raman parameters and elemental composition in lead and lead alkali silicate glasses,” J. Raman Spectrosc. 39(5), 618–626 (2008).
[Crossref]

Hayes, J. R.

Joly, N. Y.

Knight, J. C.

Kosolapov, A. F.

Kostecki, R.

Mahapatra, S.

Maier, R. R. J.

Mammone, J. F.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

Mangan, B.

Mangan, B. J.

Margulis, W.

Mason, M. W.

Meng, L.

Monberg, E. M.

Monro, T. M.

Nicholson, J. W.

Nicol, M.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

Please, C. P.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Plotnichenko, V. G.

Poletti, F.

Pryamikov, A. D.

Rammler, S.

Renshaw, S.

Richardson, D. J.

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Rigneault, H.

Roberts, P. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Robinet, L.

L. Robinet, A. Bouquillon, and J. Hartwig, “Correlations between Raman parameters and elemental composition in lead and lead alkali silicate glasses,” J. Raman Spectrosc. 39(5), 618–626 (2008).
[Crossref]

Roosen, G.

Rouvie, A.

Rowland, K. J.

Roy, P.

Rugeland, P.

Russell, P. S. J.

P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Sabert, H.

Scharrer, M.

Semjonov, S. L.

Sharma, S. K.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

Shephard, J. D.

St. J. Russell, P.

Sterner, C.

Stokes, Y. M.

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. C. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).
[Crossref]

Tomlinson, A.

Urich, A.

Varshney, S. K.

Viale, P.

Wang, Y.

Warren-Smith, S. C.

Wenger, J.

Wheeler, N. V.

White, W. B.

T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
[Crossref]

Williams, D. P.

Windeler, R. S.

Yiou, S.

J. Eng. Math. (1)

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

J. Fluid Mech. (1)

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).
[Crossref]

J. Mater. Sci. (1)

T. Furukawa, S. A. Brawer, and W. B. White, “The structure of lead silicate glasses determined by vibrational spectroscopy,” J. Mater. Sci. 13(2), 268–282 (1978).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

J. Raman Spectrosc. (1)

L. Robinet, A. Bouquillon, and J. Hartwig, “Correlations between Raman parameters and elemental composition in lead and lead alkali silicate glasses,” J. Raman Spectrosc. 39(5), 618–626 (2008).
[Crossref]

Opt. Express (11)

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

P. Rugeland, C. Sterner, and W. Margulis, “Visible light guidance in silica capillaries by antiresonant reflection,” Opt. Express 21(24), 29217–29222 (2013).
[Crossref] [PubMed]

W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

A. Urich, R. R. J. Maier, B. J. Mangan, S. Renshaw, J. C. Knight, D. P. Hand, and J. D. Shephard, “Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre,” Opt. Express 20(6), 6677–6684 (2012).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances inintegrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16(22), 17935–17951 (2008).
[Crossref] [PubMed]

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (2)

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Other (1)

F. Poletti, N. Petrovich Marco, and J. Richardson David, “Hollow-core photonic bandgap fibers: technology and applications,” in Nanophotonics (2013), p. 315.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Photograph of the extruded single ring hollow core glass preform. The scale bar shown is 2 mm. (b-e) Scanning electron microscope (SEM) images of the extruded single ring hollow core optical fibers fabricated for a range of applied pressure values. b) 0 mbar c) 4 mbar d) 10 mbar e) 20 mbar. The scale bar in all fiber SEM images is 50 μm.

Fig. 2
Fig. 2

Geometry change, defined as the feature size (core hole diameter, square, or outer hole diameter, circles) divided by the outer diameter (OD) for the preform and fibers fabricated in this work as a function of pressurization. The error bars show the standard deviation from the mean value for a number (n = 3) of measurements along the length of the fiber. The lines are guides for the eye.

Fig. 3
Fig. 3

Measured loss spectrum of the single ring hollow core fiber made using 10 mbar preform pressure (solid line). The optical loss for a thick wall capillary of the same diameter as the fiber core is also shown (dashed line).

Fig. 4
Fig. 4

Experimental setup used in Raman sensing experiments with an extruded hollow core optical fiber.

Fig. 5
Fig. 5

(a) A close up of the different focusing locations used in the Raman sensing experiments. (b)Raman spectra collected using an extruded single ring hollow core fiber for 488 nm excitation. The top axis shows wavelength in nanometers while the bottom axis shows the corresponding Raman scattering energy in wavenumbers.

Tables (1)

Tables Icon

Table 1 Dimensions of geometrical features for single ring hollow core extruded preform and optical fibers for different preform pressure values.

Metrics