Abstract

Gratings with stray light of 4.99 × 10−7-5.67 × 10−7 and efficiency of 93%-95% in a wavelength range of 1592 nm-1632 nm on Si-surface-modification SiC, fused silica and BK7 have been fabricated by the method of ICP etching-polishing. The CHF3 and SF6 plasma were used to etch a preliminary grating profile. Ar and O2 plasma with low energy were then used to polish the grating to acquire low surface roughness and groove profiles closer to the ideal profiles. The morphologies of the gratings were characterized by AFM. The efficiencies and stray light were measured quantitatively by self-developed equipment. These results show that the ICP etching-polishing method is a promising candidate for production of good quality gratings into common optical materials.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology

Shunquan Wang, Changhe Zhou, Huayi Ru, and Yanyan Zhang
Appl. Opt. 44(21) 4429-4434 (2005)

Transfer of continuous-relief diffractive structures into diamond by use of inductively coupled plasma dry etching

Mikael Karlsson, Klas Hjort, and Fredrik Nikolajeff
Opt. Lett. 26(22) 1752-1754 (2001)

Refractive sapphire microlenses fabricated by chlorine-based inductively coupled plasma etching

Si-Hyun Park, Heonsu Jeon, Youn-Joon Sung, and Geun-Young Yeom
Appl. Opt. 40(22) 3698-3702 (2001)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Collin, “Electromagnetic scattering from perfectly conducting rough surfaces,” IEEE Trans. Antenn. Propag. 40(12), 1466–1477 (1992).
    [Crossref]
  2. R. D. Kodis, “A note on the theory of scattering from an irregular surface,” IEEE Trans. Antennas Propagat. AP 14(1), 77–82 (1966).
    [Crossref]
  3. D. P. Nichoils, “Shape deformation in rough surface scattering improved algorithms,” Opt. Soc. Am. A 21(4), 606–621 (2004).
    [Crossref]
  4. L. X. Guo, Y. H. Wang, and H. S. Wu, “Study on the shadowing effect for optical wave scattering from randomly rough surface,” Chin. Opt. Lett. 2(7), 431 (2004).
  5. W. R. Hunter, M. P. Kowalski, J. C. Rife, and R. G. Cruddace, “Investigation of the properties of an ion-etched plane laminar holographic grating,” Appl. Opt. 40(34), 6157–6165 (2001).
    [Crossref] [PubMed]
  6. H. Lin, L. Zhang, L. Li, C. Jin, H. Zhou, and T. Huo, “High-efficiency multilayer-coated ion-beam-etched blazed grating in the extreme-ultraviolet wavelength region,” Opt. Lett. 33(5), 485–487 (2008).
    [Crossref] [PubMed]
  7. B. Sheng, X. Xu, Y. Liu, Y. Hong, H. Zhou, T. Huo, and S. Fu, “Vacuum-ultraviolet blazed silicon grating anisotropically etched by native-oxide mask,” Opt. Lett. 34(8), 1147–1149 (2009).
    [Crossref] [PubMed]
  8. E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
    [Crossref]
  9. S. P. Neck and M. Volz, “NASA’s earth science missions overview,” SPIE 7474OB, 7474OB (2009).
  10. R. Mager, W. Fricke, J. P. Burrows, J. Frerick, and H. Bovensmann, “Sciamachy: a new-generation of hyper spectral remote sensing instrument,” Proc. SPIE 3106, 84–94 (1997).
    [Crossref]
  11. H. H. Aumann, M. T. Chanine, C. Cautier, and M. D. Goldberg, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE T. Geosci., Remote 41(2), 253–264 (2003).
    [Crossref]
  12. B. Q. Wu, A. Kumar, C. Cautier, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys. 108(5), 051101 (2010).
    [Crossref]
  13. F. Gaboriau, M. C. Fernandez-Peignon, G. Cartry, and C. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: Correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23(2), 226–233 (2005).
    [Crossref]
  14. International Intellectual Group, Inc., “Accurate electromagnetic theories,” http://www.pcgrate.com/etestlab .
  15. Shimadzu Corporation, “Low Stray Light Diffraction Gratings,” http://www.shimadzu.com/opt/products/dif/o-k25cur0000007dvj.html .
  16. M. P. Kowalski, T. W. Barbee, and W. R. Hunter, “Replication of a holographic ion-etched spherical blazed grating for use at extreme-ultraviolet wavelengths: efficiency,” Appl. Opt. 45(2), 322–334 (2006).
    [Crossref] [PubMed]

2010 (1)

B. Q. Wu, A. Kumar, C. Cautier, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys. 108(5), 051101 (2010).
[Crossref]

2009 (1)

2008 (1)

2006 (1)

2005 (1)

F. Gaboriau, M. C. Fernandez-Peignon, G. Cartry, and C. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: Correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23(2), 226–233 (2005).
[Crossref]

2004 (2)

D. P. Nichoils, “Shape deformation in rough surface scattering improved algorithms,” Opt. Soc. Am. A 21(4), 606–621 (2004).
[Crossref]

L. X. Guo, Y. H. Wang, and H. S. Wu, “Study on the shadowing effect for optical wave scattering from randomly rough surface,” Chin. Opt. Lett. 2(7), 431 (2004).

2003 (1)

H. H. Aumann, M. T. Chanine, C. Cautier, and M. D. Goldberg, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE T. Geosci., Remote 41(2), 253–264 (2003).
[Crossref]

2001 (1)

1997 (1)

R. Mager, W. Fricke, J. P. Burrows, J. Frerick, and H. Bovensmann, “Sciamachy: a new-generation of hyper spectral remote sensing instrument,” Proc. SPIE 3106, 84–94 (1997).
[Crossref]

1992 (2)

E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
[Crossref]

R. E. Collin, “Electromagnetic scattering from perfectly conducting rough surfaces,” IEEE Trans. Antenn. Propag. 40(12), 1466–1477 (1992).
[Crossref]

1966 (1)

R. D. Kodis, “A note on the theory of scattering from an irregular surface,” IEEE Trans. Antennas Propagat. AP 14(1), 77–82 (1966).
[Crossref]

Aita, O.

E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
[Crossref]

Aumann, H. H.

H. H. Aumann, M. T. Chanine, C. Cautier, and M. D. Goldberg, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE T. Geosci., Remote 41(2), 253–264 (2003).
[Crossref]

Barbee, T. W.

Bovensmann, H.

R. Mager, W. Fricke, J. P. Burrows, J. Frerick, and H. Bovensmann, “Sciamachy: a new-generation of hyper spectral remote sensing instrument,” Proc. SPIE 3106, 84–94 (1997).
[Crossref]

Burrows, J. P.

R. Mager, W. Fricke, J. P. Burrows, J. Frerick, and H. Bovensmann, “Sciamachy: a new-generation of hyper spectral remote sensing instrument,” Proc. SPIE 3106, 84–94 (1997).
[Crossref]

Cardinaud, C.

F. Gaboriau, M. C. Fernandez-Peignon, G. Cartry, and C. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: Correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23(2), 226–233 (2005).
[Crossref]

Cartry, G.

F. Gaboriau, M. C. Fernandez-Peignon, G. Cartry, and C. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: Correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23(2), 226–233 (2005).
[Crossref]

Cautier, C.

B. Q. Wu, A. Kumar, C. Cautier, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys. 108(5), 051101 (2010).
[Crossref]

H. H. Aumann, M. T. Chanine, C. Cautier, and M. D. Goldberg, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE T. Geosci., Remote 41(2), 253–264 (2003).
[Crossref]

Chanine, M. T.

H. H. Aumann, M. T. Chanine, C. Cautier, and M. D. Goldberg, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE T. Geosci., Remote 41(2), 253–264 (2003).
[Crossref]

Collin, R. E.

R. E. Collin, “Electromagnetic scattering from perfectly conducting rough surfaces,” IEEE Trans. Antenn. Propag. 40(12), 1466–1477 (1992).
[Crossref]

Cruddace, R. G.

Fernandez-Peignon, M. C.

F. Gaboriau, M. C. Fernandez-Peignon, G. Cartry, and C. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: Correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23(2), 226–233 (2005).
[Crossref]

Frerick, J.

R. Mager, W. Fricke, J. P. Burrows, J. Frerick, and H. Bovensmann, “Sciamachy: a new-generation of hyper spectral remote sensing instrument,” Proc. SPIE 3106, 84–94 (1997).
[Crossref]

Fricke, W.

R. Mager, W. Fricke, J. P. Burrows, J. Frerick, and H. Bovensmann, “Sciamachy: a new-generation of hyper spectral remote sensing instrument,” Proc. SPIE 3106, 84–94 (1997).
[Crossref]

Fu, S.

Gaboriau, F.

F. Gaboriau, M. C. Fernandez-Peignon, G. Cartry, and C. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: Correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23(2), 226–233 (2005).
[Crossref]

Goldberg, M. D.

H. H. Aumann, M. T. Chanine, C. Cautier, and M. D. Goldberg, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE T. Geosci., Remote 41(2), 253–264 (2003).
[Crossref]

Guo, L. X.

Hong, Y.

Hunter, W. R.

Huo, T.

Ishiguro, E.

E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
[Crossref]

Jin, C.

Kodis, R. D.

R. D. Kodis, “A note on the theory of scattering from an irregular surface,” IEEE Trans. Antennas Propagat. AP 14(1), 77–82 (1966).
[Crossref]

Koeda, M.

E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
[Crossref]

Kowalski, M. P.

Kumar, A.

B. Q. Wu, A. Kumar, C. Cautier, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys. 108(5), 051101 (2010).
[Crossref]

Li, L.

Lin, H.

Liu, Y.

Mager, R.

R. Mager, W. Fricke, J. P. Burrows, J. Frerick, and H. Bovensmann, “Sciamachy: a new-generation of hyper spectral remote sensing instrument,” Proc. SPIE 3106, 84–94 (1997).
[Crossref]

Nagano, T.

E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
[Crossref]

Nichoils, D. P.

D. P. Nichoils, “Shape deformation in rough surface scattering improved algorithms,” Opt. Soc. Am. A 21(4), 606–621 (2004).
[Crossref]

Ohashi, H.

E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
[Crossref]

Pamarthy, S.

B. Q. Wu, A. Kumar, C. Cautier, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys. 108(5), 051101 (2010).
[Crossref]

Rife, J. C.

Sakurai, M.

E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
[Crossref]

Sano, K.

E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
[Crossref]

Sheng, B.

Wang, Y. H.

Watanabe, M.

E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
[Crossref]

Wu, B. Q.

B. Q. Wu, A. Kumar, C. Cautier, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys. 108(5), 051101 (2010).
[Crossref]

Wu, H. S.

Xu, X.

Yamashita, K.

E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
[Crossref]

Zhang, L.

Zhou, H.

Appl. Opt. (2)

Chin. Opt. Lett. (1)

IEEE T. Geosci., Remote (1)

H. H. Aumann, M. T. Chanine, C. Cautier, and M. D. Goldberg, “AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems,” IEEE T. Geosci., Remote 41(2), 253–264 (2003).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

R. E. Collin, “Electromagnetic scattering from perfectly conducting rough surfaces,” IEEE Trans. Antenn. Propag. 40(12), 1466–1477 (1992).
[Crossref]

IEEE Trans. Antennas Propagat. AP (1)

R. D. Kodis, “A note on the theory of scattering from an irregular surface,” IEEE Trans. Antennas Propagat. AP 14(1), 77–82 (1966).
[Crossref]

J. Appl. Phys. (1)

B. Q. Wu, A. Kumar, C. Cautier, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys. 108(5), 051101 (2010).
[Crossref]

J. Vac. Sci. Technol. A (1)

F. Gaboriau, M. C. Fernandez-Peignon, G. Cartry, and C. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: Correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23(2), 226–233 (2005).
[Crossref]

Opt. Lett. (2)

Opt. Soc. Am. A (1)

D. P. Nichoils, “Shape deformation in rough surface scattering improved algorithms,” Opt. Soc. Am. A 21(4), 606–621 (2004).
[Crossref]

Proc. SPIE (1)

R. Mager, W. Fricke, J. P. Burrows, J. Frerick, and H. Bovensmann, “Sciamachy: a new-generation of hyper spectral remote sensing instrument,” Proc. SPIE 3106, 84–94 (1997).
[Crossref]

Rev. Sci. Instrum. (1)

E. Ishiguro, K. Yamashita, H. Ohashi, M. Sakurai, O. Aita, M. Watanabe, K. Sano, M. Koeda, and T. Nagano, “Fabrication and characterization of reactive ion beam etched SiC gratings,” Rev. Sci. Instrum. 63(1), 1439–1442 (1992).
[Crossref]

Other (3)

S. P. Neck and M. Volz, “NASA’s earth science missions overview,” SPIE 7474OB, 7474OB (2009).

International Intellectual Group, Inc., “Accurate electromagnetic theories,” http://www.pcgrate.com/etestlab .

Shimadzu Corporation, “Low Stray Light Diffraction Gratings,” http://www.shimadzu.com/opt/products/dif/o-k25cur0000007dvj.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

The relation of the optimum efficiencies and the duty cycle and the groove depth with sidewall angle 73°.

Fig. 2
Fig. 2

The relation of the optimum efficiencies and the grating sidewall angle.

Fig. 3
Fig. 3

AFM images of the modified SiC grating groove profiles before polishing.

Fig. 4
Fig. 4

AFM images of the modified SiC grating groove profiles after polishing.

Fig. 5
Fig. 5

AFM images of the fused silica grating groove profiles before polishing.

Fig. 6
Fig. 6

AFM images of the fused silica grating groove profiles after polishing.

Fig. 7
Fig. 7

AFM images of the BK7 grating groove profiles before polishing.

Fig. 8
Fig. 8

AFM images of the BK7 grating groove profiles after polishing.

Fig. 9
Fig. 9

AFM image of the modified SiC grating groove roughness before polishing.

Fig. 10
Fig. 10

AFM image of the modified SiC grating groove roughness after polishing.

Fig. 11
Fig. 11

AFM image of the fused silica grating groove roughness before polishing.

Fig. 12
Fig. 12

AFM image of the fused silica grating groove roughness after polishing.

Fig. 13
Fig. 13

AFM image of the BK7 grating groove roughness before polishing.

Fig. 14
Fig. 14

AFM image of the BK7 grating groove roughness after polishing.

Fig. 15
Fig. 15

Measured and calculated grating TM polarization efficiencies of the modified SiC grating. The solid curves and the short dash dot curves are fitted by polynomial fitness method.

Fig. 16
Fig. 16

Measured and calculated grating TM polarization efficiencies of the fused silica grating. The solid curves and the short dash dot curves are fitted by polynomial fitness method.

Fig. 17
Fig. 17

Measured and calculated grating TM polarization efficiencies of the BK7 grating. The solid curves and the short dash dot curves are fitted by polynomial fitness method.

Fig. 18
Fig. 18

Measured stray light of the modified SiC grating versus wavelength.

Fig. 19
Fig. 19

Measured stray light of the fused silica grating versus wavelength.

Fig. 20
Fig. 20

Measured stray light of the BK7 grating versus wavelength.

Tables (5)

Tables Icon

Table 1 Target Grating Groove Profile Parameters

Tables Icon

Table 2 ICP Etching Parameters

Tables Icon

Table 3 ICP Polishing Parameters

Tables Icon

Table 4 Designed and Measured Grating Parameters of modified SiC, fused silica and BK7 substrates

Tables Icon

Table 5 Arithmetic average analysis of the stray light

Metrics