Abstract

We outline the design for a photonic crystal resonator made in a hybrid Silicon/Lithium Niobate material system. Using the index contrast between silicon and lithium niobate, it is possible to guide and confine photonic resonances in a thin film of silicon bonded on top of lithium niobate. Quality factors greater than 106 at optical wavelength scale mode volumes are achievable. We show that patterning electrodes on such a system can yield an electro-optic coupling rate of 0.6 GHz/V (4 pm/V).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth

Peter O. Weigel, Jie Zhao, Kelvin Fang, Hasan Al-Rubaye, Douglas Trotter, Dana Hood, John Mudrick, Christina Dallo, Andrew T. Pomerene, Andrew L. Starbuck, Christopher T. DeRose, Anthony L. Lentine, Gabriel Rebeiz, and Shayan Mookherjea
Opt. Express 26(18) 23728-23739 (2018)

12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes

Li Chen, Michael G. Wood, and Ronald M. Reano
Opt. Express 21(22) 27003-27010 (2013)

Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon

Li Chen, Jonathan Nagy, and Ronald M. Reano
Opt. Mater. Express 6(7) 2460-2467 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vučković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express 18(12), 12176–12184 (2010).
    [Crossref] [PubMed]
  2. C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Letters 12(7), 3562–3568 (2012).
    [Crossref] [PubMed]
  3. S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 006402 (2014).
    [Crossref]
  4. K. C. Balram, M. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” (2015). arXiv:1508.01486.
  5. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Applied Physics Letters 85(20), 004603 (2004).
    [Crossref]
  6. F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
    [Crossref] [PubMed]
  7. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photonics Reviews 6(4), 488–503 (2012).
    [Crossref]
  8. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
    [Crossref] [PubMed]
  9. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  10. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
    [Crossref]
  11. L. Chen, M. G. Wood, and R. M. Reano, “125 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
    [Crossref] [PubMed]
  12. Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second harmonic generation via nonlinear-overlap optimization,” (2015). arXiv:1505.02880v2.
  13. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
    [Crossref]
  14. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
    [Crossref] [PubMed]
  15. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optical 1(5), 350–355 (2014).
  16. P. O. Weigel, M. Savanier, C. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Hybrid Lithium Niobate and Silicon Photonic Waveguides,” p. 12 (2015). arXiv:1510.01777.
  17. D. Tulli, D. Janner, and V. Pruneri, “Room Temperature Direct Bonding of LiNbO3 Crystal Layers and Its Application To High-Voltage Optical Sensing,” J. Micromechanics Microengineering 21(8), 085025 (2011).
    [Crossref]
  18. H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromechanics Microengineering 11, 348–352 (2001).
    [Crossref]
  19. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science+Business Media, 2005).
  20. Y. Akahane, T. Asano, and B.-s. Song, “High- Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(October), 002063 (2003).
    [Crossref]
  21. H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
    [Crossref] [PubMed]
  22. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
    [Crossref]
  23. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(March), 207–210 (2005).
    [Crossref]
  24. A. R. MdZain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
    [Crossref]
  25. S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Nonlinear frequency conversion using high quality modes in GaAs nanobeam cavities,” Opt. Lett. 39(19), 5673–5676 (2014).
    [Crossref] [PubMed]
  26. M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
    [Crossref]
  27. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a ”zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009). 0812.4683.
    [Crossref] [PubMed]
  28. M. Davanco, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20(22), 24394–24410 (2012).
    [Crossref] [PubMed]
  29. Y. Li, C. Wang, and M. Lončar, “Design of nano-groove photonic crystal cavities in lithium niobate,” Opt. Lett. 40(12), 2902–2905 (2015).
    [Crossref] [PubMed]
  30. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65(1), 016608 (2002).
    [Crossref]
  31. M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).
    [Crossref]
  32. R. Weis and T. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys. A Mater. Sci. Process. 37(4), 191–203 (1985).
    [Crossref]
  33. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]
  34. Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 39–42 (2010).
    [Crossref]
  35. L. Chen, Q. Xu, M. Wood, and R. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
    [Crossref]
  36. L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20(4), 4032–4038 (2012).
    [Crossref] [PubMed]
  37. A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
    [Crossref] [PubMed]
  38. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University, 2008).
  39. D. McAuslan, J. Longdell, and M. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator,” Physical Review A 80(6), 062307 (2009).
    [Crossref]
  40. T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6, 009206 (2015).
    [Crossref]

2015 (4)

2014 (7)

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

L. Chen, Q. Xu, M. Wood, and R. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
[Crossref]

S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Nonlinear frequency conversion using high quality modes in GaAs nanobeam cavities,” Opt. Lett. 39(19), 5673–5676 (2014).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 006402 (2014).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optical 1(5), 350–355 (2014).

2013 (3)

2012 (5)

2011 (1)

D. Tulli, D. Janner, and V. Pruneri, “Room Temperature Direct Bonding of LiNbO3 Crystal Layers and Its Application To High-Voltage Optical Sensing,” J. Micromechanics Microengineering 21(8), 085025 (2011).
[Crossref]

2010 (2)

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 39–42 (2010).
[Crossref]

G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vučković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express 18(12), 12176–12184 (2010).
[Crossref] [PubMed]

2009 (4)

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a ”zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009). 0812.4683.
[Crossref] [PubMed]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[Crossref] [PubMed]

D. McAuslan, J. Longdell, and M. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator,” Physical Review A 80(6), 062307 (2009).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

2008 (1)

2005 (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(March), 207–210 (2005).
[Crossref]

2004 (1)

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Applied Physics Letters 85(20), 004603 (2004).
[Crossref]

2003 (1)

Y. Akahane, T. Asano, and B.-s. Song, “High- Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(October), 002063 (2003).
[Crossref]

2002 (1)

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65(1), 016608 (2002).
[Crossref]

2001 (1)

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromechanics Microengineering 11, 348–352 (2001).
[Crossref]

1998 (1)

1985 (1)

R. Weis and T. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys. A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(March), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, and B.-s. Song, “High- Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(October), 002063 (2003).
[Crossref]

Asano, T.

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(March), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, and B.-s. Song, “High- Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(October), 002063 (2003).
[Crossref]

Atikian, H. A.

Baida, F. I.

Balram, K. C.

K. C. Balram, M. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” (2015). arXiv:1508.01486.

Bernal, M.-P.

Biermann, K.

Bo, F.

Buckley, S.

Burek, M. J.

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

Camacho, R.

Chan, J.

Chen, L.

Chiles, J.

Chu, Y.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

Collet, M.

Courjal, N.

Davanco, M.

M. Davanco, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20(22), 24394–24410 (2012).
[Crossref] [PubMed]

K. C. Balram, M. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” (2015). arXiv:1508.01486.

De La Rue, R. M.

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 39–42 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

DeRose, C.

P. O. Weigel, M. Savanier, C. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Hybrid Lithium Niobate and Silicon Photonic Waveguides,” p. 12 (2015). arXiv:1510.01777.

Diziain, S.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Djurisic, A. B.

Eichenfield, M.

Elazar, J. M.

Faraon, A.

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6, 009206 (2015).
[Crossref]

Fathpour, S.

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Gao, F.

Gaylord, T.

R. Weis and T. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys. A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Geiss, R.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Gunter, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Applied Physics Letters 85(20), 004603 (2004).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photonics Reviews 6(4), 488–503 (2012).
[Crossref]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[Crossref] [PubMed]

Hatami, F.

Hong, W.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

Hu, H.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photonics Reviews 6(4), 488–503 (2012).
[Crossref]

Huang, I.-C.

Janner, D.

D. Tulli, D. Janner, and V. Pruneri, “Room Temperature Direct Bonding of LiNbO3 Crystal Layers and Its Application To High-Voltage Optical Sensing,” J. Micromechanics Microengineering 21(8), 085025 (2011).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University, 2008).

Johnson, N. P.

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University, 2008).

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second harmonic generation via nonlinear-overlap optimization,” (2015). arXiv:1505.02880v2.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Khan, S.

Kindem, J. M.

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6, 009206 (2015).
[Crossref]

Kley, E. B.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Koechlin, M.

Lentine, A. L.

P. O. Weigel, M. Savanier, C. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Hybrid Lithium Niobate and Silicon Photonic Waveguides,” p. 12 (2015). arXiv:1510.01777.

Li, J.

Li, M.

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 006402 (2014).
[Crossref]

Li, W.

Li, Y.

Liang, X.

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second harmonic generation via nonlinear-overlap optimization,” (2015). arXiv:1505.02880v2.

Liddy, M. S. Z.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

Lin, Z.

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second harmonic generation via nonlinear-overlap optimization,” (2015). arXiv:1505.02880v2.

Loncar, M.

Y. Li, C. Wang, and M. Lončar, “Design of nano-groove photonic crystal cavities in lithium niobate,” Opt. Lett. 40(12), 2902–2905 (2015).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 39–42 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65(1), 016608 (2002).
[Crossref]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second harmonic generation via nonlinear-overlap optimization,” (2015). arXiv:1505.02880v2.

Longdell, J.

D. McAuslan, J. Longdell, and M. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator,” Physical Review A 80(6), 062307 (2009).
[Crossref]

Lu, H.

Lu, J.

Lukin, M. D.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

Ma, J.

Mabuchi, H.

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65(1), 016608 (2002).
[Crossref]

Maeda, R.

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromechanics Microengineering 11, 348–352 (2001).
[Crossref]

Majewski, M. L.

Malinowski, M.

McAuslan, D.

D. McAuslan, J. Longdell, and M. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator,” Physical Review A 80(6), 062307 (2009).
[Crossref]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

MdZain, A. R.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University, 2008).

Meesala, S.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

Miyazono, E.

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6, 009206 (2015).
[Crossref]

Mookherjea, S.

P. O. Weigel, M. Savanier, C. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Hybrid Lithium Niobate and Silicon Photonic Waveguides,” p. 12 (2015). arXiv:1510.01777.

Nikogosyan, D.

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science+Business Media, 2005).

Noda, S.

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(March), 207–210 (2005).
[Crossref]

Novak, S.

Painter, O.

Patel, P.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

Patil, A.

Pernice, W. H. P.

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Letters 12(7), 3562–3568 (2012).
[Crossref] [PubMed]

Pertsch, T.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Petykiewicz, J.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photonics Reviews 6(4), 488–503 (2012).
[Crossref]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[Crossref] [PubMed]

Pomerene, A. T.

P. O. Weigel, M. Savanier, C. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Hybrid Lithium Niobate and Silicon Photonic Waveguides,” p. 12 (2015). arXiv:1510.01777.

Pruneri, V.

D. Tulli, D. Janner, and V. Pruneri, “Room Temperature Direct Bonding of LiNbO3 Crystal Layers and Its Application To High-Voltage Optical Sensing,” J. Micromechanics Microengineering 21(8), 085025 (2011).
[Crossref]

Quan, Q.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 39–42 (2010).
[Crossref]

Rabiei, P.

Radulaski, M.

Rakic, A. D.

Rao, A.

Reano, R.

Reano, R. M.

Richardson, K.

Rivoire, K.

Rochman, J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

Rodriguez, A. W.

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second harmonic generation via nonlinear-overlap optimization,” (2015). arXiv:1505.02880v2.

Sadani, B.

Safavi-Naeini, A. H.

Savanier, M.

P. O. Weigel, M. Savanier, C. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Hybrid Lithium Niobate and Silicon Photonic Waveguides,” p. 12 (2015). arXiv:1510.01777.

Scherer, A.

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65(1), 016608 (2002).
[Crossref]

Schrempel, F.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Sekoguchi, H.

Sellars, M.

D. McAuslan, J. Longdell, and M. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator,” Physical Review A 80(6), 062307 (2009).
[Crossref]

Shambat, G.

Smith, N.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photonics Reviews 6(4), 488–503 (2012).
[Crossref]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(March), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, and B.-s. Song, “High- Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(October), 002063 (2003).
[Crossref]

Song, J. D.

K. C. Balram, M. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” (2015). arXiv:1508.01486.

Sorel, M.

Srinivasan, K.

M. Davanco, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20(22), 24394–24410 (2012).
[Crossref] [PubMed]

K. C. Balram, M. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” (2015). arXiv:1508.01486.

Starbuck, A. L.

P. O. Weigel, M. Savanier, C. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Hybrid Lithium Niobate and Silicon Photonic Waveguides,” p. 12 (2015). arXiv:1510.01777.

Stark, P.

Stenger, V.

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

P. O. Weigel, M. Savanier, C. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Hybrid Lithium Niobate and Silicon Photonic Waveguides,” p. 12 (2015). arXiv:1510.01777.

Suga, T.

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromechanics Microengineering 11, 348–352 (2001).
[Crossref]

Sulser, F.

Tadesse, S. A.

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 006402 (2014).
[Crossref]

Takagi, H.

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromechanics Microengineering 11, 348–352 (2001).
[Crossref]

Takahashi, Y.

Tang, H. X.

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Letters 12(7), 3562–3568 (2012).
[Crossref] [PubMed]

Tulli, D.

D. Tulli, D. Janner, and V. Pruneri, “Room Temperature Direct Bonding of LiNbO3 Crystal Layers and Its Application To High-Voltage Optical Sensing,” J. Micromechanics Microengineering 21(8), 085025 (2011).
[Crossref]

Tünnermann, A.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Ulliac, G.

Venkataraman, V.

Vuckovic, J.

Wan, S.

Wang, C.

Wang, J.

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).
[Crossref]

Weigel, P. O.

P. O. Weigel, M. Savanier, C. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Hybrid Lithium Niobate and Silicon Photonic Waveguides,” p. 12 (2015). arXiv:1510.01777.

Weis, R.

R. Weis and T. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys. A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University, 2008).

Wood, M.

Wood, M. G.

Xiong, C.

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Letters 12(7), 3562–3568 (2012).
[Crossref] [PubMed]

Xu, J.

Xu, Q.

Zhang, G.

Zhang, J. L.

Zhong, T.

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6, 009206 (2015).
[Crossref]

Zilk, M.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A Mater. Sci. Process. (1)

R. Weis and T. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys. A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Appl. Phys. Lett. (3)

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 39–42 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Applied Physics Letters (1)

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Applied Physics Letters 85(20), 004603 (2004).
[Crossref]

J. Micromechanics Microengineering (2)

D. Tulli, D. Janner, and V. Pruneri, “Room Temperature Direct Bonding of LiNbO3 Crystal Layers and Its Application To High-Voltage Optical Sensing,” J. Micromechanics Microengineering 21(8), 085025 (2011).
[Crossref]

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromechanics Microengineering 11, 348–352 (2001).
[Crossref]

Laser & Photonics Reviews (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photonics Reviews 6(4), 488–503 (2012).
[Crossref]

Nano Letters (1)

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Letters 12(7), 3562–3568 (2012).
[Crossref] [PubMed]

Nat. Commun. (3)

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 006402 (2014).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 006718 (2014).
[Crossref]

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6, 009206 (2015).
[Crossref]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(March), 207–210 (2005).
[Crossref]

Nature (1)

Y. Akahane, T. Asano, and B.-s. Song, “High- Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(October), 002063 (2003).
[Crossref]

Opt. Express (13)

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref] [PubMed]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[Crossref] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

L. Chen, M. G. Wood, and R. M. Reano, “125 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
[Crossref] [PubMed]

A. R. MdZain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
[Crossref]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a ”zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009). 0812.4683.
[Crossref] [PubMed]

M. Davanco, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20(22), 24394–24410 (2012).
[Crossref] [PubMed]

L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20(4), 4032–4038 (2012).
[Crossref] [PubMed]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref] [PubMed]

G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vučković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express 18(12), 12176–12184 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (1)

Optical (1)

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optical 1(5), 350–355 (2014).

Phys. Rev. E (1)

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65(1), 016608 (2002).
[Crossref]

Physical Review A (1)

D. McAuslan, J. Longdell, and M. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator,” Physical Review A 80(6), 062307 (2009).
[Crossref]

Other (6)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University, 2008).

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).
[Crossref]

P. O. Weigel, M. Savanier, C. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Hybrid Lithium Niobate and Silicon Photonic Waveguides,” p. 12 (2015). arXiv:1510.01777.

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science+Business Media, 2005).

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second harmonic generation via nonlinear-overlap optimization,” (2015). arXiv:1505.02880v2.

K. C. Balram, M. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” (2015). arXiv:1508.01486.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) An SEM image of a fabricated nanobeam cavity in silicon-on-insulator bonded to LN. An enlarged image (b) shows the elliptical holes which generate the photonic band gap. (c) shows the fabrication steps for creating Si/LN platform. First, the crystalline Si device layer can be patterned using standard electron beam lithography techniques and silicon etching. The second step is room temperature bonding of the SOI wafer to the LN substrate, enabled by a surface-activating plasma treatment. Finally, the Si backside is removed (using a combination of mechanical polishing and wet or dry etching), followed by an HF dip to remove the oxide layer.
Fig. 2
Fig. 2 (a) Unit cell geometry for the cavity mirror region. The design parameters are: a = 325 nm, w = 630 nm, rx = 70 nm, ry = 240 nm. The Si device layer thickness is 220 nm. (b) Plot of electric field y-component for the X-point mode of the nanobeam unit cell, with the cell geometry outlined in black. (c) Band diagrams showing the TE-like dielectric modes for the nanobeam mirror and defect regions. The defect here is a 10% reduction in the photonic crystal lattice spacing. The defect mode is chosen to lie near the LN light line, but still within the TE band gap of the mirror region. Note that the TM-like modes are all above the LN light line.
Fig. 3
Fig. 3 (a) The unit cell length (ie. the lattice spacing) vs. hole number along the length of the nanobeam. The nanobeam has a 39-hole defect consisting of a quadratic reduction in lattice spacing, down to a minimum of 90% of the nominal spacing. On either side of the defect are mirror regions each consisting of 20 unit cells with the nominal spacing of 325 nm. Not all mirror holes are shown. (b) shows side and top views of the fundamental optical mode, which has a frequency of 203 THz. The color plot shows the y-component of the optical mode electric field. For both side and top views the cross-sections are taken through the center of the nanobeam. The black lines show the outline of the device (the vertical lines in the side view mark the ellipse centers). (c) shows an enlarged image of the optical mode, showing the field penetration into the LN substrate. Approximately 15% of the electromagnetic energy is contained in the LN. (d) The nanobeam cavity supports various higher order longitudinal modes, separated by 2.6 to 2.8 THz.
Fig. 4
Fig. 4 Plot showing how the radiation-limited Q factor (left axis) and mode volume (right axis) of the fundamental nanobeam mode changes with an increase in the number of holes in the defect region. A longer defect region results in a larger mode volume, but also a greatly reduced amount of out-of-plane scattering. The error bars for the mode volume and Q factor were established by varying the size of the simulation space and refining the mesh. It should be noted that these finite-element simulations only consider losses due to far-field radiation from a perfect structure; in reality, measured device Q factors will likely be limited by material absorption and fabrication defects [34]. Inset: The geometry of the high-Q nanobeam with 39 defect holes.
Fig. 5
Fig. 5 (a) Plot showing the electro-optic overlap for the nanobeam cross-section. The optical mode electric field norm is plotted in color, and the white arrows indicate the DC electric displacement field due to the electrodes. The nanobeam geometry is outlined in black and the electrodes are shown in white. The distance between the electrodes and nanobeam edge is 600 nm and the electrode height is 50 nm. (b) shows how the simulated Qmetal (due to metal absorption) and the electro-optic coupling rate gV/2π vary as a function of the electrode distance from the edges of the nanobeam.

Tables (1)

Tables Icon

Table 1 Material parameters used for simulations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ε x x ( z z ) = r 13 n 0 4 E y app ,
Δ ε y y = r 33 n e 4 E y app ,
Δ ω = ω 0 2 i j LN E 0 i * Δ ε i j E 0 j d 3 r E 0 i * ε i j E 0 j d 3 r ,
g V 2 π = Δ ω 2 π V app .

Metrics