Abstract

An ultracompact, cost-effective, and highly accurate fiber optic temperature sensor is proposed and demonstrated. The sensing head consists of Fabry-Perot microcavity formed by an internal mirror made of a thin titanium dioxide (TiO2) film and a microscopic segment of single-mode fiber covered with Poly(dimethylsiloxane) (PDMS). Due to the high thermo-optic coefficient of PDMS the reflectance of the fiber-PDMS interface varies strongly with temperature which in turn modifies the amplitude of the interference pattern. To quantify the changes of the latter we monitored the visibility of the interference pattern and analyzed it by means of the fast Fourier transform. Our sensor exhibits linear response, high sensitivity, and response time of 14 seconds. We believe that the microscopic dimensions along with the performance of the sensor here presented makes it appealing for sensing temperature in PDMS microfluidic circuits or in biological applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermo-optic coefficient measurement of liquids based on simultaneous temperature and refractive index sensing capability of a two-mode fiber interferometric probe

Young Ho Kim, Seong Jun Park, Sie-Wook Jeon, Seongmin Ju, Chang-Soo Park, Won-Taek Han, and Byeong Ha Lee
Opt. Express 20(21) 23744-23754 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
    [Crossref] [PubMed]
  2. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
    [Crossref] [PubMed]
  3. H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
    [Crossref] [PubMed]
  4. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  5. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  6. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
    [Crossref]
  7. E. Udd, “The Emergence of Fiber Optic Sensor Technology,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed., E. Udd, W. B. Spillman, eds. (John Wiley & Sons, 2011).
  8. C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry–Pérot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
    [Crossref]
  9. B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
    [Crossref] [PubMed]
  10. A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
    [Crossref] [PubMed]
  11. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  12. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [Crossref] [PubMed]
  13. C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
    [Crossref]
  14. X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
    [Crossref]
  15. X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end- capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
    [Crossref]
  16. C. Moreno-Hernández, D. Monzón-Hernández, I. Hernández-Romano, and J. Villatoro, “Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample,” Opt. Express 23(17), 22141–22148 (2015).
    [Crossref] [PubMed]
  17. R. Mukhopadhyay, “When PDMS isn’t the best. What are its weaknesses, and which other polymers can researchers add to their toolboxes?” Anal. Chem. 79(9), 3248–3253 (2007).
    [Crossref] [PubMed]
  18. I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” IEEE Photonics Technol. Lett. 25(21), 2066–2069 (2013).
    [Crossref]
  19. A. L. Thangawng, R. S. Ruoff, M. A. Swartz, and M. R. Glucksberg, “An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization,” Biomed. Microdevices 9(4), 587–595 (2007).
    [Crossref] [PubMed]
  20. D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di- methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
    [Crossref]
  21. S. L. Peterson, A. McDonald, P. L. Gourley, and D. Y. Sasaki, “Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells,” J. Biomed. Mater. Res. A 72(1), 10–18 (2005).
    [Crossref] [PubMed]
  22. R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
    [Crossref] [PubMed]
  23. C. E. Lee, H. F. Taylor, A. M. Markus, and E. Udd, “Optical-fiber Fabry-Perot embedded sensor,” Opt. Lett. 14(21), 1225–1227 (1989).
    [Crossref] [PubMed]
  24. Y. H. Kim, K. S. Park, B. H. Lee, S. Lee, D. H. Woo, and Y. T. Chough, “Highly accurate refractive index sensor based on Fourier-transformed phase acquisition in fiber-optic interferometer,” in Proceeding of International Conference In Sensing Technology, (IEEE, 2013) pp. 555–558.
    [Crossref]
  25. J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).
  26. D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
    [Crossref]

2015 (3)

2014 (3)

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end- capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
[Crossref] [PubMed]

2013 (2)

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry–Pérot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” IEEE Photonics Technol. Lett. 25(21), 2066–2069 (2013).
[Crossref]

2012 (3)

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

2009 (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

2008 (3)

2007 (2)

A. L. Thangawng, R. S. Ruoff, M. A. Swartz, and M. R. Glucksberg, “An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization,” Biomed. Microdevices 9(4), 587–595 (2007).
[Crossref] [PubMed]

R. Mukhopadhyay, “When PDMS isn’t the best. What are its weaknesses, and which other polymers can researchers add to their toolboxes?” Anal. Chem. 79(9), 3248–3253 (2007).
[Crossref] [PubMed]

2006 (5)

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
[Crossref] [PubMed]

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

2005 (1)

S. L. Peterson, A. McDonald, P. L. Gourley, and D. Y. Sasaki, “Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells,” J. Biomed. Mater. Res. A 72(1), 10–18 (2005).
[Crossref] [PubMed]

1989 (1)

Barrera, D.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Brinkmann, M.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

Chen, C.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end- capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, Q. D.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end- capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chiang, K. S.

Choi, E. S.

Choi, H. Y.

Chough, Y. T.

Y. H. Kim, K. S. Park, B. H. Lee, S. Lee, D. H. Woo, and Y. T. Chough, “Highly accurate refractive index sensor based on Fourier-transformed phase acquisition in fiber-optic interferometer,” in Proceeding of International Conference In Sensing Technology, (IEEE, 2013) pp. 555–558.
[Crossref]

Craighead, H.

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

Decossas, S.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di- methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Deng, Y. L.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Draheim, J.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Edwards, T.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Finazzi, V.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Franzke, J.

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
[Crossref] [PubMed]

Fu, E.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Fuard, D.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di- methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Gao, R.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Gaso, P.

I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” IEEE Photonics Technol. Lett. 25(21), 2066–2069 (2013).
[Crossref]

Geng, Y. F.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Glucksberg, M. R.

A. L. Thangawng, R. S. Ruoff, M. A. Swartz, and M. R. Glucksberg, “An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization,” Biomed. Microdevices 9(4), 587–595 (2007).
[Crossref] [PubMed]

Gourley, P. L.

S. L. Peterson, A. McDonald, P. L. Gourley, and D. Y. Sasaki, “Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells,” J. Biomed. Mater. Res. A 72(1), 10–18 (2005).
[Crossref] [PubMed]

He, J.

Helton, K.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Herminghaus, S.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

Hernández-Romano, I.

Horng, J. S.

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry–Pérot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Hsu, J. M.

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry–Pérot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Hwang, H. E.

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Janasek, D.

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
[Crossref] [PubMed]

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Kim, Y. H.

Y. H. Kim, K. S. Park, B. H. Lee, S. Lee, D. H. Woo, and Y. T. Chough, “Highly accurate refractive index sensor based on Fourier-transformed phase acquisition in fiber-optic interferometer,” in Proceeding of International Conference In Sensing Technology, (IEEE, 2013) pp. 555–558.
[Crossref]

Lee, B. H.

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

Y. H. Kim, K. S. Park, B. H. Lee, S. Lee, D. H. Woo, and Y. T. Chough, “Highly accurate refractive index sensor based on Fourier-transformed phase acquisition in fiber-optic interferometer,” in Proceeding of International Conference In Sensing Technology, (IEEE, 2013) pp. 555–558.
[Crossref]

Lee, C. E.

Lee, C. L.

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry–Pérot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Lee, L. H.

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Lee, S.

Y. H. Kim, K. S. Park, B. H. Lee, S. Lee, D. H. Woo, and Y. T. Chough, “Highly accurate refractive index sensor based on Fourier-transformed phase acquisition in fiber-optic interferometer,” in Proceeding of International Conference In Sensing Technology, (IEEE, 2013) pp. 555–558.
[Crossref]

Li, C. M.

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry–Pérot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Li, X. J.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Li, Z.

Liao, C.

Liao, X.

Liu, S.

Liu, W. J.

Liu, Y.

Liu, Z.

Manz, A.

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
[Crossref] [PubMed]

Markus, A. M.

Martincek, I.

I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” IEEE Photonics Technol. Lett. 25(21), 2066–2069 (2013).
[Crossref]

McDonald, A.

S. L. Peterson, A. McDonald, P. L. Gourley, and D. Y. Sasaki, “Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells,” J. Biomed. Mater. Res. A 72(1), 10–18 (2005).
[Crossref] [PubMed]

Minkovich, V. P.

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).

Monzón-Hernández, D.

Moreno-Hernández, C.

Mukhopadhyay, R.

R. Mukhopadhyay, “When PDMS isn’t the best. What are its weaknesses, and which other polymers can researchers add to their toolboxes?” Anal. Chem. 79(9), 3248–3253 (2007).
[Crossref] [PubMed]

Nelson, K.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Paek, U. C.

Park, K. S.

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

Y. H. Kim, K. S. Park, B. H. Lee, S. Lee, D. H. Woo, and Y. T. Chough, “Highly accurate refractive index sensor based on Fourier-transformed phase acquisition in fiber-optic interferometer,” in Proceeding of International Conference In Sensing Technology, (IEEE, 2013) pp. 555–558.
[Crossref]

Park, S. J.

Peterson, S. L.

S. L. Peterson, A. McDonald, P. L. Gourley, and D. Y. Sasaki, “Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells,” J. Biomed. Mater. Res. A 72(1), 10–18 (2005).
[Crossref] [PubMed]

Pfohl, T.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

Pruneri, V.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Pudis, D.

I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” IEEE Photonics Technol. Lett. 25(21), 2066–2069 (2013).
[Crossref]

Qin, B.

Qu, J.

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Ran, Z. L.

Rao, Y. J.

Ruoff, R. S.

A. L. Thangawng, R. S. Ruoff, M. A. Swartz, and M. R. Glucksberg, “An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization,” Biomed. Microdevices 9(4), 587–595 (2007).
[Crossref] [PubMed]

Sales, S.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Sasaki, D. Y.

S. L. Peterson, A. McDonald, P. L. Gourley, and D. Y. Sasaki, “Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells,” J. Biomed. Mater. Res. A 72(1), 10–18 (2005).
[Crossref] [PubMed]

Schiavone, P.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di- methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Seemann, R.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

Sun, B.

Sun, H. B.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end- capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Sung, W. Y.

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry–Pérot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Swartz, M. A.

A. L. Thangawng, R. S. Ruoff, M. A. Swartz, and M. R. Glucksberg, “An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization,” Biomed. Microdevices 9(4), 587–595 (2007).
[Crossref] [PubMed]

Tam, M. R.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Tan, X. L.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Tang, J.

Taylor, H. F.

Thangawng, A. L.

A. L. Thangawng, R. S. Ruoff, M. A. Swartz, and M. R. Glucksberg, “An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization,” Biomed. Microdevices 9(4), 587–595 (2007).
[Crossref] [PubMed]

Tracqui, P.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di- methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Tzvetkova-Chevolleau, T.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di- methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Udd, E.

Villatoro, J.

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).

C. Moreno-Hernández, D. Monzón-Hernández, I. Hernández-Romano, and J. Villatoro, “Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample,” Opt. Express 23(17), 22141–22148 (2015).
[Crossref] [PubMed]

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Wang, Y.

Weigl, B. H.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Woo, D. H.

Y. H. Kim, K. S. Park, B. H. Lee, S. Lee, D. H. Woo, and Y. T. Chough, “Highly accurate refractive index sensor based on Fourier-transformed phase acquisition in fiber-optic interferometer,” in Proceeding of International Conference In Sensing Technology, (IEEE, 2013) pp. 555–558.
[Crossref]

Xue, Y.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end- capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yager, P.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yang, J.

Yang, R.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end- capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yin, G.

Yin, Z.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Yu, Y. S.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end- capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yuan, L.

Zhang, X. Y.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end- capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhang, Y.

Zhou, A.

Zhou, J.

Zhu, C. C.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end- capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhu, Z.

Zubia, J.

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).

Anal. Chem. (1)

R. Mukhopadhyay, “When PDMS isn’t the best. What are its weaknesses, and which other polymers can researchers add to their toolboxes?” Anal. Chem. 79(9), 3248–3253 (2007).
[Crossref] [PubMed]

Biomed. Microdevices (1)

A. L. Thangawng, R. S. Ruoff, M. A. Swartz, and M. R. Glucksberg, “An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization,” Biomed. Microdevices 9(4), 587–595 (2007).
[Crossref] [PubMed]

IEEE Photonics J. (1)

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (5)

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end- capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry–Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” IEEE Photonics Technol. Lett. 25(21), 2066–2069 (2013).
[Crossref]

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry–Pérot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).

IEEE Sens. J. (1)

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

J. Biomed. Mater. Res. A (1)

S. L. Peterson, A. McDonald, P. L. Gourley, and D. Y. Sasaki, “Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells,” J. Biomed. Mater. Res. A 72(1), 10–18 (2005).
[Crossref] [PubMed]

Microelectron. Eng. (1)

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di- methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Nature (5)

D. Janasek, J. Franzke, and A. Manz, “Scaling and the design of miniaturized chemical-analysis systems,” Nature 442(7101), 374–380 (2006).
[Crossref] [PubMed]

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Rep. Prog. Phys. (1)

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[Crossref]

Other (2)

E. Udd, “The Emergence of Fiber Optic Sensor Technology,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed., E. Udd, W. B. Spillman, eds. (John Wiley & Sons, 2011).

Y. H. Kim, K. S. Park, B. H. Lee, S. Lee, D. H. Woo, and Y. T. Chough, “Highly accurate refractive index sensor based on Fourier-transformed phase acquisition in fiber-optic interferometer,” in Proceeding of International Conference In Sensing Technology, (IEEE, 2013) pp. 555–558.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the sensing head, S1 provides the reference beam and S2 the probe beam. (b) Image of the cavity composed by an internal mirror and the cleaved end of a SMF. (c) The interrogation of the device involves a light source (LS), a fiber optic circulator (FOC) or coupler and a power meter (PM).

Fig. 2
Fig. 2

(a) Simulation of the reflection spectra of the device shown in Fig. 1(a) at difference temperatures. (b) Interference patterns observed in a 20 µm-long Fabry-Perot cavity in PDMS at different temperatures

Fig. 3
Fig. 3

(a) Variation of the ER at different temperatures. (b) Variation of the ER at different RIs of the PDMS. The dots are experimental values and the solids lines fitting lines to the experimental data. The length of the cavity was 20 μm.

Fig. 4
Fig. 4

Cavity length 20 µm: (a) Calculated FFT of the spectra shown in Fig. 3, (b) Normalized amplitude of the FFT peak as a function of temperature; Cavity length 238 µm: (c) Calculated FFT of the spectra, the inset shows higher span, (d) Normalized amplitude of the FFT peak as a function of temperature.

Fig. 5
Fig. 5

Temperature cycling test to determine the response time of the proposed devices. The length of the cavity was 20 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I R = R 1 I 0 + ( 1A ) 2 ( 1 R 1 ) 2 R 2 I 0 +2( 1A )( 1 R 1 ) R 1 R 2 I 0 cos( φ )
ER=10 log 10 [ R 1 + ( 1A ) 2 ( 1 R 1 ) 2 R 2 +2( 1A )( 1 R 1 ) R 1 R 2 R 1 + ( 1A ) 2 ( 1 R 1 ) 2 R 2 2( 1A )( 1 R 1 ) R 1 R 2 ]

Metrics