Abstract

Single dibenzoterrylene (DBT) molecules offer great promise as bright, reliable sources of single photons on demand, capable of integration into solid-state devices. It has been proposed that DBT in anthracene might be placed close to an optical waveguide for this purpose, but so far there have been no demonstrations of sufficiently thin crystals, with a controlled concentration of the dopant molecules. Here we present a method for growing very thin anthracene crystals from super-saturated vapour, which produces crystals of extreme flatness and controlled thickness. We show how this crystal can be doped with an adjustable concentration of dibenzoterrylene (DBT) molecules and we examine the optical properties of these molecules to demonstrate their suitability as quantum emitters in nanophotonic devices. Our measurements show that the molecules are available in the crystal as single quantum emitters, with a well-defined polarisation relative to the crystal axes, making them amenable to alignment with optical nanostructures. We find that the radiative lifetime and saturation intensity vary little within the crystal and are not in any way compromised by the unusual matrix environment. We show that a large fraction of these emitters can be excited more than 1012 times without photo-bleaching, making them suitable for real applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature

C. Toninelli, K. Early, J. Bremi, A. Renn, S. Götzinger, and V. Sandoghdar
Opt. Express 18(7) 6577-6582 (2010)

Single dipole evanescently coupled to a multimode waveguide

N. R. Verhart, G. Lepert, A. L. Billing, J. Hwang, and E. A. Hinds
Opt. Express 22(16) 19633-19640 (2014)

Efficient generation of near infra-red single photons from the zero-phonon line of a single molecule

J.-B. Trebbia, H. Ruf, Ph. Tamarat, and B. Lounis
Opt. Express 17(26) 23986-23991 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
    [Crossref]
  2. Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
    [Crossref]
  3. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref] [PubMed]
  4. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
    [Crossref]
  5. A. A. L. Nicolet, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Spectroscopy and photophysics,” Chem. Phys. Chem. 8, 1215–1220 (2007).
    [PubMed]
  6. P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single molecule spectroscopy,” J. Phys. Chem. A 104, 1–16 (2000).
    [Crossref]
  7. J.-B. Trebbia, H. Ruf, P. Tamarat, and B. Lounis, “Efficient generation of near infra-red single photons from the zero-phonon line of a single molecule,” Opt. Express 17, 23986–23991 (2009).
    [Crossref]
  8. J. Hwang and E. A. Hinds, “Dye molecules as single-photon sources and large optical nonlinearities on a chip,” New J. Phys. 13, 085009 (2011).
    [Crossref]
  9. N. R. Verhart, G. Lepert, A. L. Billing, J. Hwang, and E. A. Hinds, “Single dipole evanescently coupled to a multimode waveguide,” Opt. Express 22, 19633–19640 (2014).
    [Crossref] [PubMed]
  10. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  11. A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites,” Chem. Phys. Chem. 8, 1929–1936 (2007).
    [PubMed]
  12. A. Makarewicz, I. Deperasinska, E. Karpiuk, J. Nowacki, and B. Kozankiewicz, “Vibronic spectra of single dibenzoterrylene molecules in anthracene and 2,3-dimethylanthracene crystals,” Chem. Phys. Lett. 535, 140–145 (2012).
    [Crossref]
  13. K. D. Major, Y.-H. Lien, C. Polisseni, S. Grandi, K. W. Kho, A. S. Clark, J. Hwang, and E. A. Hinds, “Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production,” Rev. Sci. Instrum. 86, 083106 (2015).
    [Crossref] [PubMed]
  14. C. Toninelli, K. Early, J. Bremi, A. Renn, S. Götzinger, and V. Sandoghdar, “Near-infrared single-photons from aligned molecules in ultrathin crystallinefilms at room temperature,” Opt. Express 18, 6577–6582 (2010).
    [Crossref] [PubMed]
  15. A. C. Wirtz, M. Dokter, C. Hofmann, and E. J. J. Groenen, “Spincoated polyethylene films for single-molecule optics,” Chem. Phys. Lett. 417, 383–388 (2006).
    [Crossref]
  16. S. Faez, P. Trschmann, H. R. Haakh, S. Götzinger, and V. Sandoghdar, “Coherent interaction of light and single molecules in a dielectric nanoguide,” Phys. Rev. Lett. 113, 213601 (2014).
    [Crossref] [PubMed]
  17. R. F. P. Grimbergen, M. F. Reedijk, H. Meekes, and P. Bennema, “Growth behavior of crystal faces containing symmetry-related connected nets: a case study of naphthalene and anthracene,” J. Phys. Chem. B 102, 2646 (1998).
    [Crossref]
  18. S. Verlaak, S. Steudel, P. Heremans, D. Janssen, and M. S. Deleuze, “Nucleation of organic semiconductors on inert substrates,” Phys. Rev. B 68, 195409 (2003).
    [Crossref]
  19. X. Chen, V. Oja, W. G. Chan, and M. R. Hajaligol, “Vapor pressure characterization of several phenolics and polyhydric compounds by knudsen effusion method,” J. Chem. Eng. Data 51, 386–391 (2006).
    [Crossref]
  20. D. R. Lide, ed., CRC Handbook of Chemistry and Physics (90th ed.) (CRC Press: Boca Raton, 2000).
  21. P. J. Linstrom and W. G. Mallard, Anthracene in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 2014).
  22. A. Sassella, M. Campione, A. Papagni, C. Goletti, G. Bussetti, P. V. Marcon, and G. Raos, “Strategies for two-dimensional growth of organic molecular films,” Chem. Phys. 325, 193–206 (2006).
    [Crossref]
  23. J. E. Northrup, M. L. Tiago, and S. G. Louie, “Surface energetics and growth of pentacene,” Phys. Rev. B 66, 121404(R) (2002).
    [Crossref]
  24. A. Migdall, S. Polyakov, J. Fan, and J. Bienfang, Single-Photon Generation and Detection: Experimental Methods in the Physical Sciences (Elsevier, 2013).
  25. R. Loudon, The Quantum Theory of Light (Oxford Science Publications, 2000), 3rd ed.
  26. B. Kozankiewicz and M. Orrit, “Single-molecule photophysics, from cryogenic to ambient conditions,” Chem. Phys. Rev. 43, 1029–1043 (2014).

2015 (1)

K. D. Major, Y.-H. Lien, C. Polisseni, S. Grandi, K. W. Kho, A. S. Clark, J. Hwang, and E. A. Hinds, “Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production,” Rev. Sci. Instrum. 86, 083106 (2015).
[Crossref] [PubMed]

2014 (3)

S. Faez, P. Trschmann, H. R. Haakh, S. Götzinger, and V. Sandoghdar, “Coherent interaction of light and single molecules in a dielectric nanoguide,” Phys. Rev. Lett. 113, 213601 (2014).
[Crossref] [PubMed]

B. Kozankiewicz and M. Orrit, “Single-molecule photophysics, from cryogenic to ambient conditions,” Chem. Phys. Rev. 43, 1029–1043 (2014).

N. R. Verhart, G. Lepert, A. L. Billing, J. Hwang, and E. A. Hinds, “Single dipole evanescently coupled to a multimode waveguide,” Opt. Express 22, 19633–19640 (2014).
[Crossref] [PubMed]

2013 (1)

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

2012 (1)

A. Makarewicz, I. Deperasinska, E. Karpiuk, J. Nowacki, and B. Kozankiewicz, “Vibronic spectra of single dibenzoterrylene molecules in anthracene and 2,3-dimethylanthracene crystals,” Chem. Phys. Lett. 535, 140–145 (2012).
[Crossref]

2011 (2)

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
[Crossref]

J. Hwang and E. A. Hinds, “Dye molecules as single-photon sources and large optical nonlinearities on a chip,” New J. Phys. 13, 085009 (2011).
[Crossref]

2010 (2)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

C. Toninelli, K. Early, J. Bremi, A. Renn, S. Götzinger, and V. Sandoghdar, “Near-infrared single-photons from aligned molecules in ultrathin crystallinefilms at room temperature,” Opt. Express 18, 6577–6582 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (3)

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites,” Chem. Phys. Chem. 8, 1929–1936 (2007).
[PubMed]

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[Crossref]

A. A. L. Nicolet, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Spectroscopy and photophysics,” Chem. Phys. Chem. 8, 1215–1220 (2007).
[PubMed]

2006 (3)

X. Chen, V. Oja, W. G. Chan, and M. R. Hajaligol, “Vapor pressure characterization of several phenolics and polyhydric compounds by knudsen effusion method,” J. Chem. Eng. Data 51, 386–391 (2006).
[Crossref]

A. Sassella, M. Campione, A. Papagni, C. Goletti, G. Bussetti, P. V. Marcon, and G. Raos, “Strategies for two-dimensional growth of organic molecular films,” Chem. Phys. 325, 193–206 (2006).
[Crossref]

A. C. Wirtz, M. Dokter, C. Hofmann, and E. J. J. Groenen, “Spincoated polyethylene films for single-molecule optics,” Chem. Phys. Lett. 417, 383–388 (2006).
[Crossref]

2003 (1)

S. Verlaak, S. Steudel, P. Heremans, D. Janssen, and M. S. Deleuze, “Nucleation of organic semiconductors on inert substrates,” Phys. Rev. B 68, 195409 (2003).
[Crossref]

2002 (1)

J. E. Northrup, M. L. Tiago, and S. G. Louie, “Surface energetics and growth of pentacene,” Phys. Rev. B 66, 121404(R) (2002).
[Crossref]

2000 (2)

P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single molecule spectroscopy,” J. Phys. Chem. A 104, 1–16 (2000).
[Crossref]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

1998 (1)

R. F. P. Grimbergen, M. F. Reedijk, H. Meekes, and P. Bennema, “Growth behavior of crystal faces containing symmetry-related connected nets: a case study of naphthalene and anthracene,” J. Phys. Chem. B 102, 2646 (1998).
[Crossref]

Aharonovich, I.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
[Crossref]

Bennema, P.

R. F. P. Grimbergen, M. F. Reedijk, H. Meekes, and P. Bennema, “Growth behavior of crystal faces containing symmetry-related connected nets: a case study of naphthalene and anthracene,” J. Phys. Chem. B 102, 2646 (1998).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Bienfang, J.

A. Migdall, S. Polyakov, J. Fan, and J. Bienfang, Single-Photon Generation and Detection: Experimental Methods in the Physical Sciences (Elsevier, 2013).

Billing, A. L.

Bordat, P.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites,” Chem. Phys. Chem. 8, 1929–1936 (2007).
[PubMed]

Bremi, J.

Brown, R.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites,” Chem. Phys. Chem. 8, 1929–1936 (2007).
[PubMed]

Bussetti, G.

A. Sassella, M. Campione, A. Papagni, C. Goletti, G. Bussetti, P. V. Marcon, and G. Raos, “Strategies for two-dimensional growth of organic molecular films,” Chem. Phys. 325, 193–206 (2006).
[Crossref]

Campione, M.

A. Sassella, M. Campione, A. Papagni, C. Goletti, G. Bussetti, P. V. Marcon, and G. Raos, “Strategies for two-dimensional growth of organic molecular films,” Chem. Phys. 325, 193–206 (2006).
[Crossref]

Chan, W. G.

X. Chen, V. Oja, W. G. Chan, and M. R. Hajaligol, “Vapor pressure characterization of several phenolics and polyhydric compounds by knudsen effusion method,” J. Chem. Eng. Data 51, 386–391 (2006).
[Crossref]

Chen, M.-C.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

Chen, X.

X. Chen, V. Oja, W. G. Chan, and M. R. Hajaligol, “Vapor pressure characterization of several phenolics and polyhydric compounds by knudsen effusion method,” J. Chem. Eng. Data 51, 386–391 (2006).
[Crossref]

Clark, A. S.

K. D. Major, Y.-H. Lien, C. Polisseni, S. Grandi, K. W. Kho, A. S. Clark, J. Hwang, and E. A. Hinds, “Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production,” Rev. Sci. Instrum. 86, 083106 (2015).
[Crossref] [PubMed]

Deleuze, M. S.

S. Verlaak, S. Steudel, P. Heremans, D. Janssen, and M. S. Deleuze, “Nucleation of organic semiconductors on inert substrates,” Phys. Rev. B 68, 195409 (2003).
[Crossref]

Deperasinska, I.

A. Makarewicz, I. Deperasinska, E. Karpiuk, J. Nowacki, and B. Kozankiewicz, “Vibronic spectra of single dibenzoterrylene molecules in anthracene and 2,3-dimethylanthracene crystals,” Chem. Phys. Lett. 535, 140–145 (2012).
[Crossref]

Dokter, M.

A. C. Wirtz, M. Dokter, C. Hofmann, and E. J. J. Groenen, “Spincoated polyethylene films for single-molecule optics,” Chem. Phys. Lett. 417, 383–388 (2006).
[Crossref]

Early, K.

Faez, S.

S. Faez, P. Trschmann, H. R. Haakh, S. Götzinger, and V. Sandoghdar, “Coherent interaction of light and single molecules in a dielectric nanoguide,” Phys. Rev. Lett. 113, 213601 (2014).
[Crossref] [PubMed]

Fan, J.

A. Migdall, S. Polyakov, J. Fan, and J. Bienfang, Single-Photon Generation and Detection: Experimental Methods in the Physical Sciences (Elsevier, 2013).

Goletti, C.

A. Sassella, M. Campione, A. Papagni, C. Goletti, G. Bussetti, P. V. Marcon, and G. Raos, “Strategies for two-dimensional growth of organic molecular films,” Chem. Phys. 325, 193–206 (2006).
[Crossref]

Götzinger, S.

S. Faez, P. Trschmann, H. R. Haakh, S. Götzinger, and V. Sandoghdar, “Coherent interaction of light and single molecules in a dielectric nanoguide,” Phys. Rev. Lett. 113, 213601 (2014).
[Crossref] [PubMed]

C. Toninelli, K. Early, J. Bremi, A. Renn, S. Götzinger, and V. Sandoghdar, “Near-infrared single-photons from aligned molecules in ultrathin crystallinefilms at room temperature,” Opt. Express 18, 6577–6582 (2010).
[Crossref] [PubMed]

Grandi, S.

K. D. Major, Y.-H. Lien, C. Polisseni, S. Grandi, K. W. Kho, A. S. Clark, J. Hwang, and E. A. Hinds, “Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production,” Rev. Sci. Instrum. 86, 083106 (2015).
[Crossref] [PubMed]

Greentree, A. D.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
[Crossref]

Grimbergen, R. F. P.

R. F. P. Grimbergen, M. F. Reedijk, H. Meekes, and P. Bennema, “Growth behavior of crystal faces containing symmetry-related connected nets: a case study of naphthalene and anthracene,” J. Phys. Chem. B 102, 2646 (1998).
[Crossref]

Groenen, E. J. J.

A. C. Wirtz, M. Dokter, C. Hofmann, and E. J. J. Groenen, “Spincoated polyethylene films for single-molecule optics,” Chem. Phys. Lett. 417, 383–388 (2006).
[Crossref]

Haakh, H. R.

S. Faez, P. Trschmann, H. R. Haakh, S. Götzinger, and V. Sandoghdar, “Coherent interaction of light and single molecules in a dielectric nanoguide,” Phys. Rev. Lett. 113, 213601 (2014).
[Crossref] [PubMed]

Hajaligol, M. R.

X. Chen, V. Oja, W. G. Chan, and M. R. Hajaligol, “Vapor pressure characterization of several phenolics and polyhydric compounds by knudsen effusion method,” J. Chem. Eng. Data 51, 386–391 (2006).
[Crossref]

He, Y.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

He, Y.-M.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

Heremans, P.

S. Verlaak, S. Steudel, P. Heremans, D. Janssen, and M. S. Deleuze, “Nucleation of organic semiconductors on inert substrates,” Phys. Rev. B 68, 195409 (2003).
[Crossref]

Hinds, E. A.

K. D. Major, Y.-H. Lien, C. Polisseni, S. Grandi, K. W. Kho, A. S. Clark, J. Hwang, and E. A. Hinds, “Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production,” Rev. Sci. Instrum. 86, 083106 (2015).
[Crossref] [PubMed]

N. R. Verhart, G. Lepert, A. L. Billing, J. Hwang, and E. A. Hinds, “Single dipole evanescently coupled to a multimode waveguide,” Opt. Express 22, 19633–19640 (2014).
[Crossref] [PubMed]

J. Hwang and E. A. Hinds, “Dye molecules as single-photon sources and large optical nonlinearities on a chip,” New J. Phys. 13, 085009 (2011).
[Crossref]

Höfling, S.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

Hofmann, C.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites,” Chem. Phys. Chem. 8, 1929–1936 (2007).
[PubMed]

A. A. L. Nicolet, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Spectroscopy and photophysics,” Chem. Phys. Chem. 8, 1215–1220 (2007).
[PubMed]

A. C. Wirtz, M. Dokter, C. Hofmann, and E. J. J. Groenen, “Spincoated polyethylene films for single-molecule optics,” Chem. Phys. Lett. 417, 383–388 (2006).
[Crossref]

Hwang, J.

K. D. Major, Y.-H. Lien, C. Polisseni, S. Grandi, K. W. Kho, A. S. Clark, J. Hwang, and E. A. Hinds, “Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production,” Rev. Sci. Instrum. 86, 083106 (2015).
[Crossref] [PubMed]

N. R. Verhart, G. Lepert, A. L. Billing, J. Hwang, and E. A. Hinds, “Single dipole evanescently coupled to a multimode waveguide,” Opt. Express 22, 19633–19640 (2014).
[Crossref] [PubMed]

J. Hwang and E. A. Hinds, “Dye molecules as single-photon sources and large optical nonlinearities on a chip,” New J. Phys. 13, 085009 (2011).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Janssen, D.

S. Verlaak, S. Steudel, P. Heremans, D. Janssen, and M. S. Deleuze, “Nucleation of organic semiconductors on inert substrates,” Phys. Rev. B 68, 195409 (2003).
[Crossref]

Jiang, X.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Kamp, M.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

Karpiuk, E.

A. Makarewicz, I. Deperasinska, E. Karpiuk, J. Nowacki, and B. Kozankiewicz, “Vibronic spectra of single dibenzoterrylene molecules in anthracene and 2,3-dimethylanthracene crystals,” Chem. Phys. Lett. 535, 140–145 (2012).
[Crossref]

Kho, K. W.

K. D. Major, Y.-H. Lien, C. Polisseni, S. Grandi, K. W. Kho, A. S. Clark, J. Hwang, and E. A. Hinds, “Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production,” Rev. Sci. Instrum. 86, 083106 (2015).
[Crossref] [PubMed]

Kolchenko, M. A.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites,” Chem. Phys. Chem. 8, 1929–1936 (2007).
[PubMed]

A. A. L. Nicolet, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Spectroscopy and photophysics,” Chem. Phys. Chem. 8, 1215–1220 (2007).
[PubMed]

Kozankiewicz, B.

B. Kozankiewicz and M. Orrit, “Single-molecule photophysics, from cryogenic to ambient conditions,” Chem. Phys. Rev. 43, 1029–1043 (2014).

A. Makarewicz, I. Deperasinska, E. Karpiuk, J. Nowacki, and B. Kozankiewicz, “Vibronic spectra of single dibenzoterrylene molecules in anthracene and 2,3-dimethylanthracene crystals,” Chem. Phys. Lett. 535, 140–145 (2012).
[Crossref]

A. A. L. Nicolet, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Spectroscopy and photophysics,” Chem. Phys. Chem. 8, 1215–1220 (2007).
[PubMed]

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites,” Chem. Phys. Chem. 8, 1929–1936 (2007).
[PubMed]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Lepert, G.

Lien, Y.-H.

K. D. Major, Y.-H. Lien, C. Polisseni, S. Grandi, K. W. Kho, A. S. Clark, J. Hwang, and E. A. Hinds, “Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production,” Rev. Sci. Instrum. 86, 083106 (2015).
[Crossref] [PubMed]

Linstrom, P. J.

P. J. Linstrom and W. G. Mallard, Anthracene in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 2014).

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford Science Publications, 2000), 3rd ed.

Louie, S. G.

J. E. Northrup, M. L. Tiago, and S. G. Louie, “Surface energetics and growth of pentacene,” Phys. Rev. B 66, 121404(R) (2002).
[Crossref]

Lounis, B.

Lu, C.-Y.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

Maali, A.

P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single molecule spectroscopy,” J. Phys. Chem. A 104, 1–16 (2000).
[Crossref]

Major, K. D.

K. D. Major, Y.-H. Lien, C. Polisseni, S. Grandi, K. W. Kho, A. S. Clark, J. Hwang, and E. A. Hinds, “Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production,” Rev. Sci. Instrum. 86, 083106 (2015).
[Crossref] [PubMed]

Makarewicz, A.

A. Makarewicz, I. Deperasinska, E. Karpiuk, J. Nowacki, and B. Kozankiewicz, “Vibronic spectra of single dibenzoterrylene molecules in anthracene and 2,3-dimethylanthracene crystals,” Chem. Phys. Lett. 535, 140–145 (2012).
[Crossref]

Mallard, W. G.

P. J. Linstrom and W. G. Mallard, Anthracene in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 2014).

Marcon, P. V.

A. Sassella, M. Campione, A. Papagni, C. Goletti, G. Bussetti, P. V. Marcon, and G. Raos, “Strategies for two-dimensional growth of organic molecular films,” Chem. Phys. 325, 193–206 (2006).
[Crossref]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Meekes, H.

R. F. P. Grimbergen, M. F. Reedijk, H. Meekes, and P. Bennema, “Growth behavior of crystal faces containing symmetry-related connected nets: a case study of naphthalene and anthracene,” J. Phys. Chem. B 102, 2646 (1998).
[Crossref]

Migdall, A.

A. Migdall, S. Polyakov, J. Fan, and J. Bienfang, Single-Photon Generation and Detection: Experimental Methods in the Physical Sciences (Elsevier, 2013).

Nicolet, A. A. L.

A. A. L. Nicolet, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Spectroscopy and photophysics,” Chem. Phys. Chem. 8, 1215–1220 (2007).
[PubMed]

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites,” Chem. Phys. Chem. 8, 1929–1936 (2007).
[PubMed]

Northrup, J. E.

J. E. Northrup, M. L. Tiago, and S. G. Louie, “Surface energetics and growth of pentacene,” Phys. Rev. B 66, 121404(R) (2002).
[Crossref]

Nowacki, J.

A. Makarewicz, I. Deperasinska, E. Karpiuk, J. Nowacki, and B. Kozankiewicz, “Vibronic spectra of single dibenzoterrylene molecules in anthracene and 2,3-dimethylanthracene crystals,” Chem. Phys. Lett. 535, 140–145 (2012).
[Crossref]

O’Brien, J. L.

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[Crossref]

Oja, V.

X. Chen, V. Oja, W. G. Chan, and M. R. Hajaligol, “Vapor pressure characterization of several phenolics and polyhydric compounds by knudsen effusion method,” J. Chem. Eng. Data 51, 386–391 (2006).
[Crossref]

Orrit, M.

B. Kozankiewicz and M. Orrit, “Single-molecule photophysics, from cryogenic to ambient conditions,” Chem. Phys. Rev. 43, 1029–1043 (2014).

A. A. L. Nicolet, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Spectroscopy and photophysics,” Chem. Phys. Chem. 8, 1215–1220 (2007).
[PubMed]

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites,” Chem. Phys. Chem. 8, 1929–1936 (2007).
[PubMed]

P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single molecule spectroscopy,” J. Phys. Chem. A 104, 1–16 (2000).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Pan, J.-W.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

Papagni, A.

A. Sassella, M. Campione, A. Papagni, C. Goletti, G. Bussetti, P. V. Marcon, and G. Raos, “Strategies for two-dimensional growth of organic molecular films,” Chem. Phys. 325, 193–206 (2006).
[Crossref]

Polisseni, C.

K. D. Major, Y.-H. Lien, C. Polisseni, S. Grandi, K. W. Kho, A. S. Clark, J. Hwang, and E. A. Hinds, “Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production,” Rev. Sci. Instrum. 86, 083106 (2015).
[Crossref] [PubMed]

Polyakov, S.

A. Migdall, S. Polyakov, J. Fan, and J. Bienfang, Single-Photon Generation and Detection: Experimental Methods in the Physical Sciences (Elsevier, 2013).

Prawer, S.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
[Crossref]

Raos, G.

A. Sassella, M. Campione, A. Papagni, C. Goletti, G. Bussetti, P. V. Marcon, and G. Raos, “Strategies for two-dimensional growth of organic molecular films,” Chem. Phys. 325, 193–206 (2006).
[Crossref]

Reedijk, M. F.

R. F. P. Grimbergen, M. F. Reedijk, H. Meekes, and P. Bennema, “Growth behavior of crystal faces containing symmetry-related connected nets: a case study of naphthalene and anthracene,” J. Phys. Chem. B 102, 2646 (1998).
[Crossref]

Renn, A.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ruf, H.

Sandoghdar, V.

S. Faez, P. Trschmann, H. R. Haakh, S. Götzinger, and V. Sandoghdar, “Coherent interaction of light and single molecules in a dielectric nanoguide,” Phys. Rev. Lett. 113, 213601 (2014).
[Crossref] [PubMed]

C. Toninelli, K. Early, J. Bremi, A. Renn, S. Götzinger, and V. Sandoghdar, “Near-infrared single-photons from aligned molecules in ultrathin crystallinefilms at room temperature,” Opt. Express 18, 6577–6582 (2010).
[Crossref] [PubMed]

Sassella, A.

A. Sassella, M. Campione, A. Papagni, C. Goletti, G. Bussetti, P. V. Marcon, and G. Raos, “Strategies for two-dimensional growth of organic molecular films,” Chem. Phys. 325, 193–206 (2006).
[Crossref]

Schneider, C.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

Steudel, S.

S. Verlaak, S. Steudel, P. Heremans, D. Janssen, and M. S. Deleuze, “Nucleation of organic semiconductors on inert substrates,” Phys. Rev. B 68, 195409 (2003).
[Crossref]

Tamarat, P.

Tiago, M. L.

J. E. Northrup, M. L. Tiago, and S. G. Louie, “Surface energetics and growth of pentacene,” Phys. Rev. B 66, 121404(R) (2002).
[Crossref]

Toninelli, C.

Trebbia, J.-B.

Trschmann, P.

S. Faez, P. Trschmann, H. R. Haakh, S. Götzinger, and V. Sandoghdar, “Coherent interaction of light and single molecules in a dielectric nanoguide,” Phys. Rev. Lett. 113, 213601 (2014).
[Crossref] [PubMed]

Verhart, N. R.

Verlaak, S.

S. Verlaak, S. Steudel, P. Heremans, D. Janssen, and M. S. Deleuze, “Nucleation of organic semiconductors on inert substrates,” Phys. Rev. B 68, 195409 (2003).
[Crossref]

Wei, Y.-J.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Wirtz, A. C.

A. C. Wirtz, M. Dokter, C. Hofmann, and E. J. J. Groenen, “Spincoated polyethylene films for single-molecule optics,” Chem. Phys. Lett. 417, 383–388 (2006).
[Crossref]

Xiong, F.-L.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Zhao, Y.

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

Chem. Phys. (1)

A. Sassella, M. Campione, A. Papagni, C. Goletti, G. Bussetti, P. V. Marcon, and G. Raos, “Strategies for two-dimensional growth of organic molecular films,” Chem. Phys. 325, 193–206 (2006).
[Crossref]

Chem. Phys. Chem. (2)

A. A. L. Nicolet, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Spectroscopy and photophysics,” Chem. Phys. Chem. 8, 1215–1220 (2007).
[PubMed]

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kolchenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites,” Chem. Phys. Chem. 8, 1929–1936 (2007).
[PubMed]

Chem. Phys. Lett. (2)

A. Makarewicz, I. Deperasinska, E. Karpiuk, J. Nowacki, and B. Kozankiewicz, “Vibronic spectra of single dibenzoterrylene molecules in anthracene and 2,3-dimethylanthracene crystals,” Chem. Phys. Lett. 535, 140–145 (2012).
[Crossref]

A. C. Wirtz, M. Dokter, C. Hofmann, and E. J. J. Groenen, “Spincoated polyethylene films for single-molecule optics,” Chem. Phys. Lett. 417, 383–388 (2006).
[Crossref]

Chem. Phys. Rev. (1)

B. Kozankiewicz and M. Orrit, “Single-molecule photophysics, from cryogenic to ambient conditions,” Chem. Phys. Rev. 43, 1029–1043 (2014).

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

J. Chem. Eng. Data (1)

X. Chen, V. Oja, W. G. Chan, and M. R. Hajaligol, “Vapor pressure characterization of several phenolics and polyhydric compounds by knudsen effusion method,” J. Chem. Eng. Data 51, 386–391 (2006).
[Crossref]

J. Phys. Chem. A (1)

P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single molecule spectroscopy,” J. Phys. Chem. A 104, 1–16 (2000).
[Crossref]

J. Phys. Chem. B (1)

R. F. P. Grimbergen, M. F. Reedijk, H. Meekes, and P. Bennema, “Growth behavior of crystal faces containing symmetry-related connected nets: a case study of naphthalene and anthracene,” J. Phys. Chem. B 102, 2646 (1998).
[Crossref]

Nature Photon. (1)

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
[Crossref]

New J. Phys. (1)

J. Hwang and E. A. Hinds, “Dye molecules as single-photon sources and large optical nonlinearities on a chip,” New J. Phys. 13, 085009 (2011).
[Crossref]

Opt. Express (3)

Phys. Rev. B (2)

S. Verlaak, S. Steudel, P. Heremans, D. Janssen, and M. S. Deleuze, “Nucleation of organic semiconductors on inert substrates,” Phys. Rev. B 68, 195409 (2003).
[Crossref]

J. E. Northrup, M. L. Tiago, and S. G. Louie, “Surface energetics and growth of pentacene,” Phys. Rev. B 66, 121404(R) (2002).
[Crossref]

Phys. Rev. Lett. (3)

S. Faez, P. Trschmann, H. R. Haakh, S. Götzinger, and V. Sandoghdar, “Coherent interaction of light and single molecules in a dielectric nanoguide,” Phys. Rev. Lett. 113, 213601 (2014).
[Crossref] [PubMed]

Y. He, Y.-M. He, Y.-J. Wei, X. Jiang, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots,” Phys. Rev. Lett. 111, 237403 (2013).
[Crossref]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. D. Major, Y.-H. Lien, C. Polisseni, S. Grandi, K. W. Kho, A. S. Clark, J. Hwang, and E. A. Hinds, “Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production,” Rev. Sci. Instrum. 86, 083106 (2015).
[Crossref] [PubMed]

Science (1)

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[Crossref]

Other (4)

A. Migdall, S. Polyakov, J. Fan, and J. Bienfang, Single-Photon Generation and Detection: Experimental Methods in the Physical Sciences (Elsevier, 2013).

R. Loudon, The Quantum Theory of Light (Oxford Science Publications, 2000), 3rd ed.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics (90th ed.) (CRC Press: Boca Raton, 2000).

P. J. Linstrom and W. G. Mallard, Anthracene in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

We have numerically solved Maxwell’s equations for a radiating dipole embedded in a 2 μm-square “crystal” of anthracene. The dipole lies 32 nm above a silicon nitride waveguide 500 nm wide and 120 nm thick on a glass substrate. (a) Sketch of the geometry. (b) Top: side view of substrate, waveguide, anthracene and dipole. Below: Simulation results for several thicknesses of the crystal. (i) Radiation is lost into the substrate. (ii) Radiation propagates in the waveguide. (iii–iv) Radiation is lost into the thick anthracene layer. (c) Graph showing the calculated coupling efficiency as the thickness of the anthracene crystal is varied. This peaks at ∼ 22% (total in both directions) for a thickness of ∼ 150 nm.

Fig. 2
Fig. 2

Preparing the thin crystal of anthracene doped with DBT. (a) Steps involved in the processing. (i) clean of the glass substrate in a plasma, (ii) spin-coat DBT molecules onto the surface, (iii) grow a thin anthracene crystal over the molecules, (vi) spin-coat a protective layer of PVA. (b) The crystal growth apparatus is a test tube with anthracene powder heated at the bottom and the glass substrate covering the open top, all in a nitrogen atmosphere inside a glove bag.

Fig. 3
Fig. 3

Atomic force microscope images (taken in tapping mode) of the crystals grown at a variety of bottom temperatures Tb (a) 139°C, (b) 197°C, (c) 217°C, (d) 231°C, (e) 243°C, and (f) 256°C. These images show the transition from tall, thin crystals - similar to those reported in [13] - to wide, flat mesas. The transition occurs between Tb = 220 and 240°C.

Fig. 4
Fig. 4

Atomic force microscope image of a thin anthracene mesa. (a) 3D plot. (b) Section through the centre along x, showing a flat-top profile with a height of ∼80 nm and very low roughness.

Fig. 5
Fig. 5

Schematic of our confocal microscope system. 780-BPF: 780 nm band pass filter; PBS: polarising beam splitter; HWP: half wave plate; FC: fiber coupler; PMF: polarisation maintaining fiber; 90:10 BS: 90% transmission, 10% reflection cube beam splitter; X–Y SM: X–Y steering mirrors; L1, L2: telecentric lens system f1 = 75mm, f2 = 250mm; Objective: Nikon OFN25 DIC N2 60× microscope objective; 3D Stage: Thorlabs Nanomax MAX311/M translation stage for positioning the sample ; 792-LPF: Chroma technology RET792LP long pass filter; MMF: multimode fiber; 50:50 Multimode Fiber BS: 50% transmission, 50% reflection multimode fiber beam splitter; Si APD: Perkin Elmer SPCM-AQRH-15-FC silicon avalanche photodiode detectors.

Fig. 6
Fig. 6

Confocal microscope images. (a) Anthracene crystals viewed in reflected excitation light (long-pass filter removed). (b) The same crystals viewed with the long-pass filter in place. Nearly all the spots are single DBT molecules.

Fig. 7
Fig. 7

Test of DBT polarisation. (a) Sum of the two images from Fig. 6. (b) Normalised polar plots of molecule emission as the excitation laser polarisation angle is varied. Labels (i–iii) indicate the crystal in which the molecules reside, as shown in (a). The colour of the lines signifies the visibility of the fitted function to the data. Within a given crystal the optical dipoles clearly share a common orientation. (c) Histogram showing the spread of molecule orientations relative to the mean orientation, taken over 58 molecules in 12 crystals.

Fig. 8
Fig. 8

Second order correlation function of the light from a single fluorescent spot within a thin anthracene crystal when pumped with a pulsed laser. The reduced peak in the centre shows that this is a single DBT molecule. Black line: data accumulated over 30 minutes with the timing resolution set to 106.9ps. Red line: fit to Eq.(2). Blue dashed line: background level deduced from the fitted function.

Fig. 9
Fig. 9

A typical plot of detected molecule emission for various illumination intensities, showing a saturation intensity of Isat = 75(3) kW/cm2 and a maximum count rate of Rmax = 440 kC/s. Red line: fit to the data using Eq. 3.

Fig. 10
Fig. 10

Photo-bleaching of DBT in thin anthracene crystals. The graphs show the number of DBT molecules remaining unbleached as a function of the exposure time. Orange squares: Anthracene grown in an atmosphere of air and excited at 780 nm using an intensity of 10kW/cm2. Orange line: a fit to exponential decay, giving a lifetime of 5.7s. Blue Circles: Anthracene grown in a nitrogen atmosphere and excited at 780 nm with 130kW/cm2. Blue line: simple empirical formula 15e(−t/5.7) +31e(−t/103) +30 intended to show that the decay rate per molecule increases with time and hence that the bleaching is not exponential.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C ( 2 ) ( τ ) = a ^ ( t ) a ^ ( t + τ ) a ^ ( t + τ ) ,
C ( 2 ) ( τ ) B + N n = ( 1 δ 0 n m ) e | τ n Δ t | T 1 ,
R = I I + I sat R max ,

Metrics