Abstract

This paper presents an approach to detect the index of incremental photoelectric encoder with shorter time for rotary inertial navigation system. The order of index detection and coarse alignment is exchanged in this approach and information from coarse alignment is used to calculate the direction of index. Then two cases of azimuth axis and four cases of horizontal axes are analyzed and corresponding solutions are designed. The paper examines the solutions through two experiments in a tri-axis rotary inertial navigation system, and the results demonstrate that the system can capture index pulse in the application of the presupposes schemes with shorter time.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved motor control method with measurements of fiber optics gyro (FOG) for dual-axis rotational inertial navigation system (RINS)

Tianxiao Song, Xueyun Wang, Wenwei Liang, and Li Xing
Opt. Express 26(10) 13072-13084 (2018)

Single-axis rotation/azimuth-motion insulation inertial navigation control system with FOGs

Lingcao Wang, Kui Li, Yuanpei Chen, Juncheng Liu, and Yanchun Xu
Opt. Express 25(25) 30956-30975 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. G. Savage, “Blazing gyros: The evolution of strapdown inertial navigation technology for aircraft,” J. Guid. Control Dyn. 36(3), 637–655 (2013).
    [Crossref]
  2. J. N. Chamoun and M. J. F. Digonnet, “Noise and bias error due to polarization coupling in a fiber optic gyroscope,” J. Lightwave Technol. 33(13), 2839–2847 (2015).
    [Crossref]
  3. Z. Wang, H. Zhao, S. Qiu, and Q. Gao, “Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system,” IEEE/ASME Trans. Mech. 20(6), 3170–3181 (2015).
  4. J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001 (2011).
    [Crossref] [PubMed]
  5. L. Feng, J. Wang, Y. Zhi, Y. Tang, Q. Wang, H. Li, and W. Wang, “Transmissive resonator optic gyro based on silica waveguide ring resonator,” Opt. Express 22(22), 27565–27575 (2014).
    [Crossref] [PubMed]
  6. Y. Yan, H. Ma, and Z. Jin, “Reducing polarization-fluctuation induced drift in resonant fiber optic gyro by using single-polarization fiber,” Opt. Express 23(3), 2002–2009 (2015).
    [Crossref] [PubMed]
  7. O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia 52(5), 654–665 (2015).
    [Crossref]
  8. Z. Wang, W. Zhang, W. Huang, and F. Li, “Liquid-damped fiber laser accelerometer: Theory and experiment,” IEEE Sens. J. 15(11), 6360–6365 (2015).
    [Crossref]
  9. Z. Wu, X. Hu, M. Wu, H. Mu, J. Cao, K. Zhang, and Z. Tuo, “An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map,” Appl. Phys. Lett. 103(10), 104102 (2013).
    [Crossref]
  10. J. Waldmann, R. I. G. Silva, and R. A. J. Chagas, “Observability analysis of inertial navigation errors from optical flow subspace constraint,” Inf. Sci. 327, 300–326 (2016).
    [Crossref]
  11. B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
    [Crossref]
  12. Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sen. Actuat. A. Phys. 232, 39–48 (2015).
  13. W. Sun, D. Wang, L. Xu, and L. Xu, “MEMS-based rotary strapdown inertial navigation system,” Meas. 46(8), 2585–2596 (2013).
    [Crossref]
  14. L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
    [Crossref]
  15. Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sen. Actuat. A-Phys. 219, 24–31 (2014).
  16. Q. Zhang, L. Wang, Z. Liu, and P. Feng, “An accurate calibration method based on velocity in a rotational inertial navigation system,” Sensors (Basel) 15(8), 18443–18458 (2015).
    [Crossref] [PubMed]
  17. X. Wang, J. Wu, T. Xu, and W. Wang, “Analysis and verification of rotation modulation effects on inertial navigation system based on MEMS sensors,” J. Navig. 66(5), 751–772 (2013).
    [Crossref]
  18. F. P. Quintián, N. Calarco, A. Lutenberg, and J. Lipovetzky, “Performance of an optical encoder based on a nondiffractive beam implemented with a specific photodetection integrated circuit and a diffractive optical element,” Appl. Opt. 54(25), 7640–7647 (2015).
    [Crossref] [PubMed]
  19. N. Al-Emadi, L. Ben-Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Meas. 54, 58–64 (2014).
    [Crossref]
  20. X. Wang, “Fast alignment and calibration algorithms for inertial navigation system,” Aerosp. Sci. Technol. 13(4–5), 204–209 (2009).
    [Crossref]
  21. S. Gao, W. Wei, Y. Zhong, and Z. Feng, “Rapid alignment method based on local observability analysis for strapdown inertial navigation system,” Acta Astronaut. 94(2), 790–798 (2014).
    [Crossref]
  22. P. M. G. Silson, “Coarse alignment of a ship’s strapdown inertial attitude reference system using velocity loci,” IEEE Trans. Instrum. Meas. 60(6), 1930–1941 (2011).
    [Crossref]
  23. J. Ali, M. Ushaq, and S. Majeed, “Robust aspects in dependable filter design for alignment of a submarine inertial navigation system,” J. Mar. Sci. Technol. 17(3), 340–348 (2012).
    [Crossref]
  24. P. Marland, “The NATO ships inertial navigation system (SINS),” J. Nav. Eng. 33(3), 688–700 (1992).
  25. F. Pei, L. Zhu, and J. Zhao, “Initial self-alignment for marine rotary SINS using novel adaptive kalman filter,” Math. Probl. Eng. 2015, 320536 (2015).

2016 (1)

J. Waldmann, R. I. G. Silva, and R. A. J. Chagas, “Observability analysis of inertial navigation errors from optical flow subspace constraint,” Inf. Sci. 327, 300–326 (2016).
[Crossref]

2015 (9)

Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sen. Actuat. A. Phys. 232, 39–48 (2015).

Q. Zhang, L. Wang, Z. Liu, and P. Feng, “An accurate calibration method based on velocity in a rotational inertial navigation system,” Sensors (Basel) 15(8), 18443–18458 (2015).
[Crossref] [PubMed]

J. N. Chamoun and M. J. F. Digonnet, “Noise and bias error due to polarization coupling in a fiber optic gyroscope,” J. Lightwave Technol. 33(13), 2839–2847 (2015).
[Crossref]

Z. Wang, H. Zhao, S. Qiu, and Q. Gao, “Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system,” IEEE/ASME Trans. Mech. 20(6), 3170–3181 (2015).

Y. Yan, H. Ma, and Z. Jin, “Reducing polarization-fluctuation induced drift in resonant fiber optic gyro by using single-polarization fiber,” Opt. Express 23(3), 2002–2009 (2015).
[Crossref] [PubMed]

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia 52(5), 654–665 (2015).
[Crossref]

Z. Wang, W. Zhang, W. Huang, and F. Li, “Liquid-damped fiber laser accelerometer: Theory and experiment,” IEEE Sens. J. 15(11), 6360–6365 (2015).
[Crossref]

F. P. Quintián, N. Calarco, A. Lutenberg, and J. Lipovetzky, “Performance of an optical encoder based on a nondiffractive beam implemented with a specific photodetection integrated circuit and a diffractive optical element,” Appl. Opt. 54(25), 7640–7647 (2015).
[Crossref] [PubMed]

F. Pei, L. Zhu, and J. Zhao, “Initial self-alignment for marine rotary SINS using novel adaptive kalman filter,” Math. Probl. Eng. 2015, 320536 (2015).

2014 (5)

N. Al-Emadi, L. Ben-Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Meas. 54, 58–64 (2014).
[Crossref]

S. Gao, W. Wei, Y. Zhong, and Z. Feng, “Rapid alignment method based on local observability analysis for strapdown inertial navigation system,” Acta Astronaut. 94(2), 790–798 (2014).
[Crossref]

L. Feng, J. Wang, Y. Zhi, Y. Tang, Q. Wang, H. Li, and W. Wang, “Transmissive resonator optic gyro based on silica waveguide ring resonator,” Opt. Express 22(22), 27565–27575 (2014).
[Crossref] [PubMed]

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sen. Actuat. A-Phys. 219, 24–31 (2014).

2013 (4)

X. Wang, J. Wu, T. Xu, and W. Wang, “Analysis and verification of rotation modulation effects on inertial navigation system based on MEMS sensors,” J. Navig. 66(5), 751–772 (2013).
[Crossref]

W. Sun, D. Wang, L. Xu, and L. Xu, “MEMS-based rotary strapdown inertial navigation system,” Meas. 46(8), 2585–2596 (2013).
[Crossref]

P. G. Savage, “Blazing gyros: The evolution of strapdown inertial navigation technology for aircraft,” J. Guid. Control Dyn. 36(3), 637–655 (2013).
[Crossref]

Z. Wu, X. Hu, M. Wu, H. Mu, J. Cao, K. Zhang, and Z. Tuo, “An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map,” Appl. Phys. Lett. 103(10), 104102 (2013).
[Crossref]

2012 (2)

B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
[Crossref]

J. Ali, M. Ushaq, and S. Majeed, “Robust aspects in dependable filter design for alignment of a submarine inertial navigation system,” J. Mar. Sci. Technol. 17(3), 340–348 (2012).
[Crossref]

2011 (2)

P. M. G. Silson, “Coarse alignment of a ship’s strapdown inertial attitude reference system using velocity loci,” IEEE Trans. Instrum. Meas. 60(6), 1930–1941 (2011).
[Crossref]

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001 (2011).
[Crossref] [PubMed]

2009 (1)

X. Wang, “Fast alignment and calibration algorithms for inertial navigation system,” Aerosp. Sci. Technol. 13(4–5), 204–209 (2009).
[Crossref]

1992 (1)

P. Marland, “The NATO ships inertial navigation system (SINS),” J. Nav. Eng. 33(3), 688–700 (1992).

Al-Emadi, N.

N. Al-Emadi, L. Ben-Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Meas. 54, 58–64 (2014).
[Crossref]

Ali, J.

J. Ali, M. Ushaq, and S. Majeed, “Robust aspects in dependable filter design for alignment of a submarine inertial navigation system,” J. Mar. Sci. Technol. 17(3), 340–348 (2012).
[Crossref]

Benammar, M.

N. Al-Emadi, L. Ben-Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Meas. 54, 58–64 (2014).
[Crossref]

Ben-Brahim, L.

N. Al-Emadi, L. Ben-Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Meas. 54, 58–64 (2014).
[Crossref]

Calarco, N.

Cao, J.

Z. Wu, X. Hu, M. Wu, H. Mu, J. Cao, K. Zhang, and Z. Tuo, “An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map,” Appl. Phys. Lett. 103(10), 104102 (2013).
[Crossref]

Cervantes, F. G.

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia 52(5), 654–665 (2015).
[Crossref]

Chagas, R. A. J.

J. Waldmann, R. I. G. Silva, and R. A. J. Chagas, “Observability analysis of inertial navigation errors from optical flow subspace constraint,” Inf. Sci. 327, 300–326 (2016).
[Crossref]

Chamoun, J. N.

Deng, Z.

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sen. Actuat. A-Phys. 219, 24–31 (2014).

Digonnet, M. J. F.

Feng, L.

Feng, P.

Q. Zhang, L. Wang, Z. Liu, and P. Feng, “An accurate calibration method based on velocity in a rotational inertial navigation system,” Sensors (Basel) 15(8), 18443–18458 (2015).
[Crossref] [PubMed]

Feng, Z.

S. Gao, W. Wei, Y. Zhong, and Z. Feng, “Rapid alignment method based on local observability analysis for strapdown inertial navigation system,” Acta Astronaut. 94(2), 790–798 (2014).
[Crossref]

Fu, M.

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sen. Actuat. A-Phys. 219, 24–31 (2014).

Gao, P.

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

Gao, Q.

Z. Wang, H. Zhao, S. Qiu, and Q. Gao, “Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system,” IEEE/ASME Trans. Mech. 20(6), 3170–3181 (2015).

Gao, S.

S. Gao, W. Wei, Y. Zhong, and Z. Feng, “Rapid alignment method based on local observability analysis for strapdown inertial navigation system,” Acta Astronaut. 94(2), 790–798 (2014).
[Crossref]

Gerberding, O.

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia 52(5), 654–665 (2015).
[Crossref]

Han, S.

Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sen. Actuat. A. Phys. 232, 39–48 (2015).

B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
[Crossref]

Hu, X.

Z. Wu, X. Hu, M. Wu, H. Mu, J. Cao, K. Zhang, and Z. Tuo, “An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map,” Appl. Phys. Lett. 103(10), 104102 (2013).
[Crossref]

Huang, W.

Z. Wang, W. Zhang, W. Huang, and F. Li, “Liquid-damped fiber laser accelerometer: Theory and experiment,” IEEE Sens. J. 15(11), 6360–6365 (2015).
[Crossref]

Jin, Z.

Kasevich, M. A.

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001 (2011).
[Crossref] [PubMed]

Li, F.

Z. Wang, W. Zhang, W. Huang, and F. Li, “Liquid-damped fiber laser accelerometer: Theory and experiment,” IEEE Sens. J. 15(11), 6360–6365 (2015).
[Crossref]

Li, H.

Liao, D.

B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
[Crossref]

Lipovetzky, J.

Liu, Z.

Q. Zhang, L. Wang, Z. Liu, and P. Feng, “An accurate calibration method based on velocity in a rotational inertial navigation system,” Sensors (Basel) 15(8), 18443–18458 (2015).
[Crossref] [PubMed]

Lutenberg, A.

Ma, H.

Majeed, S.

J. Ali, M. Ushaq, and S. Majeed, “Robust aspects in dependable filter design for alignment of a submarine inertial navigation system,” J. Mar. Sci. Technol. 17(3), 340–348 (2012).
[Crossref]

Marland, P.

P. Marland, “The NATO ships inertial navigation system (SINS),” J. Nav. Eng. 33(3), 688–700 (1992).

Melcher, J.

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia 52(5), 654–665 (2015).
[Crossref]

Mu, H.

Z. Wu, X. Hu, M. Wu, H. Mu, J. Cao, K. Zhang, and Z. Tuo, “An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map,” Appl. Phys. Lett. 103(10), 104102 (2013).
[Crossref]

Pei, F.

F. Pei, L. Zhu, and J. Zhao, “Initial self-alignment for marine rotary SINS using novel adaptive kalman filter,” Math. Probl. Eng. 2015, 320536 (2015).

Pratt, J. R.

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia 52(5), 654–665 (2015).
[Crossref]

Qiu, S.

Z. Wang, H. Zhao, S. Qiu, and Q. Gao, “Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system,” IEEE/ASME Trans. Mech. 20(6), 3170–3181 (2015).

Quintián, F. P.

Ren, Q.

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sen. Actuat. A-Phys. 219, 24–31 (2014).

Savage, P. G.

P. G. Savage, “Blazing gyros: The evolution of strapdown inertial navigation technology for aircraft,” J. Guid. Control Dyn. 36(3), 637–655 (2013).
[Crossref]

Silson, P. M. G.

P. M. G. Silson, “Coarse alignment of a ship’s strapdown inertial attitude reference system using velocity loci,” IEEE Trans. Instrum. Meas. 60(6), 1930–1941 (2011).
[Crossref]

Silva, R. I. G.

J. Waldmann, R. I. G. Silva, and R. A. J. Chagas, “Observability analysis of inertial navigation errors from optical flow subspace constraint,” Inf. Sci. 327, 300–326 (2016).
[Crossref]

Stockton, J. K.

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001 (2011).
[Crossref] [PubMed]

Sun, W.

W. Sun, D. Wang, L. Xu, and L. Xu, “MEMS-based rotary strapdown inertial navigation system,” Meas. 46(8), 2585–2596 (2013).
[Crossref]

Takase, K.

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001 (2011).
[Crossref] [PubMed]

Tang, Y.

Taylor, J. M.

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia 52(5), 654–665 (2015).
[Crossref]

Tuo, Z.

Z. Wu, X. Hu, M. Wu, H. Mu, J. Cao, K. Zhang, and Z. Tuo, “An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map,” Appl. Phys. Lett. 103(10), 104102 (2013).
[Crossref]

Ushaq, M.

J. Ali, M. Ushaq, and S. Majeed, “Robust aspects in dependable filter design for alignment of a submarine inertial navigation system,” J. Mar. Sci. Technol. 17(3), 340–348 (2012).
[Crossref]

Waldmann, J.

J. Waldmann, R. I. G. Silva, and R. A. J. Chagas, “Observability analysis of inertial navigation errors from optical flow subspace constraint,” Inf. Sci. 327, 300–326 (2016).
[Crossref]

Wang, B.

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sen. Actuat. A-Phys. 219, 24–31 (2014).

Wang, D.

W. Sun, D. Wang, L. Xu, and L. Xu, “MEMS-based rotary strapdown inertial navigation system,” Meas. 46(8), 2585–2596 (2013).
[Crossref]

Wang, J.

Wang, L.

Q. Zhang, L. Wang, Z. Liu, and P. Feng, “An accurate calibration method based on velocity in a rotational inertial navigation system,” Sensors (Basel) 15(8), 18443–18458 (2015).
[Crossref] [PubMed]

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

Wang, Q.

Wang, W.

L. Feng, J. Wang, Y. Zhi, Y. Tang, Q. Wang, H. Li, and W. Wang, “Transmissive resonator optic gyro based on silica waveguide ring resonator,” Opt. Express 22(22), 27565–27575 (2014).
[Crossref] [PubMed]

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

X. Wang, J. Wu, T. Xu, and W. Wang, “Analysis and verification of rotation modulation effects on inertial navigation system based on MEMS sensors,” J. Navig. 66(5), 751–772 (2013).
[Crossref]

Wang, X.

X. Wang, J. Wu, T. Xu, and W. Wang, “Analysis and verification of rotation modulation effects on inertial navigation system based on MEMS sensors,” J. Navig. 66(5), 751–772 (2013).
[Crossref]

X. Wang, “Fast alignment and calibration algorithms for inertial navigation system,” Aerosp. Sci. Technol. 13(4–5), 204–209 (2009).
[Crossref]

Wang, Z.

Z. Wang, H. Zhao, S. Qiu, and Q. Gao, “Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system,” IEEE/ASME Trans. Mech. 20(6), 3170–3181 (2015).

Z. Wang, W. Zhang, W. Huang, and F. Li, “Liquid-damped fiber laser accelerometer: Theory and experiment,” IEEE Sens. J. 15(11), 6360–6365 (2015).
[Crossref]

Wei, W.

S. Gao, W. Wei, Y. Zhong, and Z. Feng, “Rapid alignment method based on local observability analysis for strapdown inertial navigation system,” Acta Astronaut. 94(2), 790–798 (2014).
[Crossref]

Wu, J.

X. Wang, J. Wu, T. Xu, and W. Wang, “Analysis and verification of rotation modulation effects on inertial navigation system based on MEMS sensors,” J. Navig. 66(5), 751–772 (2013).
[Crossref]

Wu, M.

Z. Wu, X. Hu, M. Wu, H. Mu, J. Cao, K. Zhang, and Z. Tuo, “An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map,” Appl. Phys. Lett. 103(10), 104102 (2013).
[Crossref]

Wu, Z.

Z. Wu, X. Hu, M. Wu, H. Mu, J. Cao, K. Zhang, and Z. Tuo, “An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map,” Appl. Phys. Lett. 103(10), 104102 (2013).
[Crossref]

Xu, L.

W. Sun, D. Wang, L. Xu, and L. Xu, “MEMS-based rotary strapdown inertial navigation system,” Meas. 46(8), 2585–2596 (2013).
[Crossref]

W. Sun, D. Wang, L. Xu, and L. Xu, “MEMS-based rotary strapdown inertial navigation system,” Meas. 46(8), 2585–2596 (2013).
[Crossref]

Xu, T.

X. Wang, J. Wu, T. Xu, and W. Wang, “Analysis and verification of rotation modulation effects on inertial navigation system based on MEMS sensors,” J. Navig. 66(5), 751–772 (2013).
[Crossref]

Yan, Y.

Yuan, B.

B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
[Crossref]

Zhang, K.

Z. Wu, X. Hu, M. Wu, H. Mu, J. Cao, K. Zhang, and Z. Tuo, “An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map,” Appl. Phys. Lett. 103(10), 104102 (2013).
[Crossref]

Zhang, Q.

Q. Zhang, L. Wang, Z. Liu, and P. Feng, “An accurate calibration method based on velocity in a rotational inertial navigation system,” Sensors (Basel) 15(8), 18443–18458 (2015).
[Crossref] [PubMed]

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

Zhang, W.

Z. Wang, W. Zhang, W. Huang, and F. Li, “Liquid-damped fiber laser accelerometer: Theory and experiment,” IEEE Sens. J. 15(11), 6360–6365 (2015).
[Crossref]

Zhao, H.

Z. Wang, H. Zhao, S. Qiu, and Q. Gao, “Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system,” IEEE/ASME Trans. Mech. 20(6), 3170–3181 (2015).

Zhao, J.

F. Pei, L. Zhu, and J. Zhao, “Initial self-alignment for marine rotary SINS using novel adaptive kalman filter,” Math. Probl. Eng. 2015, 320536 (2015).

Zheng, K.

Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sen. Actuat. A. Phys. 232, 39–48 (2015).

Zheng, Z.

Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sen. Actuat. A. Phys. 232, 39–48 (2015).

Zhi, Y.

Zhong, Y.

S. Gao, W. Wei, Y. Zhong, and Z. Feng, “Rapid alignment method based on local observability analysis for strapdown inertial navigation system,” Acta Astronaut. 94(2), 790–798 (2014).
[Crossref]

Zhu, L.

F. Pei, L. Zhu, and J. Zhao, “Initial self-alignment for marine rotary SINS using novel adaptive kalman filter,” Math. Probl. Eng. 2015, 320536 (2015).

Acta Astronaut. (1)

S. Gao, W. Wei, Y. Zhong, and Z. Feng, “Rapid alignment method based on local observability analysis for strapdown inertial navigation system,” Acta Astronaut. 94(2), 790–798 (2014).
[Crossref]

Aerosp. Sci. Technol. (1)

X. Wang, “Fast alignment and calibration algorithms for inertial navigation system,” Aerosp. Sci. Technol. 13(4–5), 204–209 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. Wu, X. Hu, M. Wu, H. Mu, J. Cao, K. Zhang, and Z. Tuo, “An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map,” Appl. Phys. Lett. 103(10), 104102 (2013).
[Crossref]

IEEE Sens. J. (1)

Z. Wang, W. Zhang, W. Huang, and F. Li, “Liquid-damped fiber laser accelerometer: Theory and experiment,” IEEE Sens. J. 15(11), 6360–6365 (2015).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

P. M. G. Silson, “Coarse alignment of a ship’s strapdown inertial attitude reference system using velocity loci,” IEEE Trans. Instrum. Meas. 60(6), 1930–1941 (2011).
[Crossref]

IEEE/ASME Trans. Mech. (1)

Z. Wang, H. Zhao, S. Qiu, and Q. Gao, “Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system,” IEEE/ASME Trans. Mech. 20(6), 3170–3181 (2015).

Inf. Sci. (1)

J. Waldmann, R. I. G. Silva, and R. A. J. Chagas, “Observability analysis of inertial navigation errors from optical flow subspace constraint,” Inf. Sci. 327, 300–326 (2016).
[Crossref]

J. Guid. Control Dyn. (1)

P. G. Savage, “Blazing gyros: The evolution of strapdown inertial navigation technology for aircraft,” J. Guid. Control Dyn. 36(3), 637–655 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Mar. Sci. Technol. (1)

J. Ali, M. Ushaq, and S. Majeed, “Robust aspects in dependable filter design for alignment of a submarine inertial navigation system,” J. Mar. Sci. Technol. 17(3), 340–348 (2012).
[Crossref]

J. Nav. Eng. (1)

P. Marland, “The NATO ships inertial navigation system (SINS),” J. Nav. Eng. 33(3), 688–700 (1992).

J. Navig. (1)

X. Wang, J. Wu, T. Xu, and W. Wang, “Analysis and verification of rotation modulation effects on inertial navigation system based on MEMS sensors,” J. Navig. 66(5), 751–772 (2013).
[Crossref]

Math. Probl. Eng. (1)

F. Pei, L. Zhu, and J. Zhao, “Initial self-alignment for marine rotary SINS using novel adaptive kalman filter,” Math. Probl. Eng. 2015, 320536 (2015).

Meas. (2)

W. Sun, D. Wang, L. Xu, and L. Xu, “MEMS-based rotary strapdown inertial navigation system,” Meas. 46(8), 2585–2596 (2013).
[Crossref]

N. Al-Emadi, L. Ben-Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Meas. 54, 58–64 (2014).
[Crossref]

Meas. Sci. Technol. (1)

B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
[Crossref]

Metrologia (1)

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia 52(5), 654–665 (2015).
[Crossref]

Opt. Eng. (1)

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001 (2011).
[Crossref] [PubMed]

Sen. Actuat. A-Phys. (1)

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sen. Actuat. A-Phys. 219, 24–31 (2014).

Sen. Actuat. A. Phys. (1)

Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sen. Actuat. A. Phys. 232, 39–48 (2015).

Sensors (Basel) (1)

Q. Zhang, L. Wang, Z. Liu, and P. Feng, “An accurate calibration method based on velocity in a rotational inertial navigation system,” Sensors (Basel) 15(8), 18443–18458 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Diagram for the index detection in normal rotary mechanism.
Fig. 2
Fig. 2 Diagram for positional relationship of coordinates.
Fig. 3
Fig. 3 Diagram for transformation of attitude angles.
Fig. 4
Fig. 4 Diagram for angular relationship along axis x.
Fig. 5
Fig. 5 Four cases of index detection for axis x and y.
Fig. 6
Fig. 6 Structure of the RINS for experiments.
Fig. 7
Fig. 7 Results of the first experiment.
Fig. 8
Fig. 8 Results of the second experiment.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{ T 31 = f i p x p / g T 32 = f i p y p / g T 33 = f i p z p / g T 21 = ( ω i p x p T 31 ω i e sin φ ) / ( ω i e cos φ ) T 22 = ( ω i p y p T 32 ω i e sin φ ) / ( ω i e cos φ ) T 23 = ( ω i p z p T 33 ω i e sin φ ) / ( ω i e cos φ ) T 11 = T 22 T 33 T 23 T 32 T 12 = T 23 T 31 T 21 T 33 T 13 = T 21 T 32 T 22 T 31
{ θ p = sin 1 ( T 32 ) γ p = tan 1 ( T 31 / T 33 )
ψ p = { ψ p 0 , ψ p 0 0 2 π ψ p 0 , ψ p 0 > 0
ϕ z p c = ϕ z c ( ψ m ψ p )
{ θ p = θ p cos ( ψ m ψ p ) γ p sin ( ψ m ψ p ) γ p = θ p sin ( ψ m ψ p ) + γ p cos ( ψ m ψ p )
ϕ x p c = ϕ x c + θ b θ p
ϕ x p c ϕ x c θ
ϕ y p c ϕ y c γ p

Metrics