Abstract

The simultaneous multiple surface (SMS) design method is extended to include design of diffractive optical surfaces besides refractive and reflective ones. This method involves the simultaneous and direct (no optimization) calculation of diffractive and refractive/reflective surfaces. Using the phase-shift properties of diffractive elements as an extra degree of freedom, two rays for each point on each diffractive surface are controlled. Representative diffractive systems designed by the SMS method are shown.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design method of nonsymmetric imaging systems consisting of multiple flat phase elements

Tong Yang, Dewen Cheng, and Yongtian Wang
Opt. Express 26(19) 25347-25363 (2018)

Design method for nonsymmetric imaging optics consisting of freeform-surface-substrate phase elements

Yingzhe Duan, Tong Yang, Dewen Cheng, and Yongtian Wang
Opt. Express 28(2) 1603-1620 (2020)

Multiple surface expansion method for design of freeform imaging systems

Ruirui Tang, Benqi Zhang, Guofan Jin, and Jun Zhu
Opt. Express 26(3) 2983-2994 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
    [Crossref]
  2. F. Duerr, P. Benítez, J. C. Miñano, Y. Meuret, and H. Thienpont, “Analytic design method for optimal imaging: coupling three ray sets using two free-form lens profiles,” Opt. Express 20(5), 5576–5585 (2012).
    [Crossref] [PubMed]
  3. P. Benítez and J. C. Miñano, "Sharp imaging of Multiple object Points: How and Why," in Renewable Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2013), paper FW3A.2
  4. J. C. Miñano, P. Benítez, W. Lin, J. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express 17(26), 24036–24044 (2009).
    [Crossref] [PubMed]
  5. M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34(14), 2452–2461 (1995).
    [Crossref] [PubMed]
  6. F. Languy, Achromatization of nonimaging Fresnel lenses for photovoltaic solar concentration using refractive and diffractive patterns, PhD thesis, (University of Liege, 2012).
  7. T. M. de Jong, Diffractive nonimaging optics, PhD thesis (TU Eindhoven, 2012).
  8. D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34(14), 2462–2468 (1995).
    [Crossref] [PubMed]
  9. D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28(5), 976–983 (1989).
    [Crossref] [PubMed]
  10. M. Golub, “Generalized conversion from the phase function to the blazed surface-relief profile of diffractive optical elements,” J. Opt. Soc. Am. A 16(5), 1194–1201 (1999).
    [Crossref]
  11. M. C. Gupta, The Handbook of Photonics, Second edition. (CRC, 2007).
  12. J. C. Miñano, P. Benítez, J. C. Gonzalez, W. Falicoff, and H. J. Caulfield, “High efficiency non-imaging optics,” US patent 6,639,733 B2 (2003).
  13. P. Benítez, J. C. Miñano, and A. Santamaría, “Analysis of microstructured surfaces in two dimensions,” Opt. Express 14(19), 8561–8567 (2006).
    [Crossref] [PubMed]
  14. R. K. Luneburg, Mathematical Theory of Optics (University of California, 1964).
  15. B. Narasimhan, P. Benítez, and Juan C. Miñano, Cedint, Polytechnical University of Madrid, Spain are preparing a manuscript to be called as “Aplanatic systems as a limiting case of SMS – a new look”.

2012 (1)

2009 (1)

2006 (1)

2004 (1)

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

1999 (1)

1995 (2)

1989 (1)

Benítez, P.

Blen, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Buralli, D. A.

Chaves, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Dross, O.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Duerr, F.

Faklis, D.

Falicoff, W.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Golub, M.

Hernández, M.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Infante, J.

Lin, W.

Meuret, Y.

Miñano, J. C.

Missig, M. D.

Mohedano, R.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Morris, G. M.

Muñoz, F.

Rogers, J. R.

Santamaría, A.

Thienpont, H.

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Opt. Express (3)

Other (7)

P. Benítez and J. C. Miñano, "Sharp imaging of Multiple object Points: How and Why," in Renewable Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2013), paper FW3A.2

F. Languy, Achromatization of nonimaging Fresnel lenses for photovoltaic solar concentration using refractive and diffractive patterns, PhD thesis, (University of Liege, 2012).

T. M. de Jong, Diffractive nonimaging optics, PhD thesis (TU Eindhoven, 2012).

M. C. Gupta, The Handbook of Photonics, Second edition. (CRC, 2007).

J. C. Miñano, P. Benítez, J. C. Gonzalez, W. Falicoff, and H. J. Caulfield, “High efficiency non-imaging optics,” US patent 6,639,733 B2 (2003).

R. K. Luneburg, Mathematical Theory of Optics (University of California, 1964).

B. Narasimhan, P. Benítez, and Juan C. Miñano, Cedint, Polytechnical University of Madrid, Spain are preparing a manuscript to be called as “Aplanatic systems as a limiting case of SMS – a new look”.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A Diffractive Oval, a freeform diffractive surface imaging two points.
Fig. 2
Fig. 2 Procedure to design simultaneously a refractive and a diffractive surface.
Fig. 3
Fig. 3 Single freeform monochromatic diffractive surface coupling 2 spherical wavefronts. (left) 3D representation of the system. (center and right) RMS spot size over object plane.
Fig. 4
Fig. 4 Freeform bichromatic Diffractive Oval. (left) 2D representation of the system. (center and right) RMS spot size over object height and wavelength. Although only two wavelengths are being controlled (RMS = 0), the design has almost RMS = 0 for all wavelengths in between.
Fig. 5
Fig. 5 Hybrid system coupling three wavefronts. (top) 2D representation of the system. (bottom) RMS spot size over the object height and wavelength. The control of only three wavefronts allows that a set of combination of wavefronts with specific wavelengths have very low RMS spot size value.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S d ( p )= S i ( p )+ mλ 2π ϕ( p ),
n d (N× r d )= n i (N× r i )+ mλ 2π (N×ϕ),
S a d = S a i + m λ a 2π ϕ S b d = S b i + m λ b 2π ϕ .
( S a d ( p ) S a i ( p ) ) / λ a = ( S b d ( p ) S b i ( p ) ) / λ b .
2π L apa' / λ a 2π L bpb' / λ b =const,

Metrics