Abstract

Optical coherence tomography (OCT) is an attractive medical modality due to its ability to acquire high-resolution, cross-sectional images inside the body using flexible, small-diameter, scanning fiber optic probes. Conventional, cross-sectional OCT imaging technologies have approximately 10-μm axial resolution and 30-μm lateral resolution, specifications that enable the visualization of microscopic architectural morphology. While this resolution is useful for many clinical applications, it is insufficient for resolving individual cells that characterize many diseases. To address this gap, a supercontinuum-laser-based, μm-resolution OCT (μOCT) system and a 500 μm-diameter, extended depth of focus single fiber optic probe for endoscopic and intravascular imaging were designed and fabricated. At the distal tip of the fiber optic probe, a cylindrical waveguide was used to divide the wavefront to provide multiple circular propagation modes. Once transmitted through a relatively high NA lens (NA >0.1), these modes were projected as multiple coaxial foci (~3 μm full width at half maximum (FWHM)) over a greatly extended focal depth range. The distal tip of the probe also contained a common-path reference reflectance to minimize polarization and dispersion imbalances between sample and reference arm light. Measurements showed that the probe provides a 20-fold depth of focus extension, maintaining a 3-5 µm lateral resolution (FWHM of PSF) and a 2 μm axial resolution over a depth range of approximately 1 mm. These results suggest that this new optical configuration will be useful for achieving high-resolution, cross-sectional OCT imaging in catheter/endoscope-based medical imaging devices.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

10 March 2016: A correction was made to the author listing.


OSA Recommended Articles
Extended depth of focus for coherence-based cellular imaging

Biwei Yin, Chulho Hyun, Joseph A. Gardecki, and Guillermo J. Tearney
Optica 4(8) 959-965 (2017)

Design and fabrication of an optical probe with a phase filter for extended depth of focus

Jingchao Xing, Junyoung Kim, and Hongki Yoo
Opt. Express 24(2) 1037-1044 (2016)

Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter

Junyoung Kim, Jingchao Xing, Hyeong Soo Nam, Joon Woo Song, Jin Won Kim, and Hongki Yoo
Opt. Lett. 42(3) 379-382 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
    [Crossref] [PubMed]
  3. M. E. Brezinski, G. J. Tearney, B. E. Bouma, S. A. Boppart, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography,” Am. J. Cardiol. 77(1), 92–93 (1996).
    [Crossref] [PubMed]
  4. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
    [Crossref] [PubMed]
  5. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
    [Crossref] [PubMed]
  6. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Express 14(5), 1878–1887 (2006).
    [Crossref] [PubMed]
  7. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [Crossref] [PubMed]
  8. D. Lorenser, C. Christian Singe, A. Curatolo, and D. D. Sampson, “Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography,” Opt. Lett. 39(3), 548–551 (2014).
    [Crossref] [PubMed]
  9. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguichi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express 17(4), 2375–2384 (2009).
    [Crossref] [PubMed]
  10. J. Xing, J. Kim, and H. Yoo, “Design and fabrication of an optical probe with a phase filter for extended depth of focus,” Opt. Express 24(2), 1037–1044 (2016).
    [Crossref] [PubMed]
  11. B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
    [Crossref] [PubMed]
  12. D. Lorenser, X. Yang, and D. D. Sampson, “Ultrathin fiber probes with extended depth of focus for optical coherence tomography,” Opt. Lett. 37(10), 1616–1618 (2012).
    [Crossref] [PubMed]
  13. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [Crossref] [PubMed]
  14. J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express 21(8), 10048–10061 (2013).
    [Crossref] [PubMed]
  15. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
    [Crossref] [PubMed]
  16. R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27(6), 337–339 (1975).
    [Crossref]
  17. O. Bryngdahl and W. H. Lee, “On light distribution in optical waveguides,” J. Opt. Soc. Am. 68(3), 310–315 (1978).
    [Crossref]
  18. S. W. Allison and G. T. Gillies, “Observations of and applications for self-imaging in optical fibers,” Appl. Opt. 33(10), 1802–1805 (1994).
    [Crossref] [PubMed]
  19. X. Zhu, A. Schülzgen, H. Wei, K. Kieu, and N. Peyghambarian, “White light Bessel-like beams generated by miniature all-fiber device,” Opt. Express 19(12), 11365–11374 (2011).
    [Crossref] [PubMed]
  20. B. Yin, J. Dwelle, B. Wang, T. Wang, M. D. Feldman, H. G. Rylander, and T. E. Milner, “Fourier optics analysis of phase-mask-based path-length-multiplexed optical coherence tomography,” J. Opt. Soc. Am. A 32(11), 2169–2177 (2015).
    [Crossref] [PubMed]
  21. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
    [Crossref] [PubMed]
  22. W. C. Kuo, C. M. Lai, Y. S. Huang, C. Y. Chang, and Y. M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. Express 21(16), 19280–19291 (2013).
    [Crossref] [PubMed]
  23. T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. W. van der Steen, R. Huber, and G. Soest, “Intravascular optical coherence tomography imaging at 3200 frames per second,” Opt. Lett. 38(10), 1715–1717 (2013).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (1)

2013 (4)

2012 (1)

2011 (2)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Wei, K. Kieu, and N. Peyghambarian, “White light Bessel-like beams generated by miniature all-fiber device,” Opt. Express 19(12), 11365–11374 (2011).
[Crossref] [PubMed]

2010 (1)

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (2)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
[Crossref] [PubMed]

2006 (2)

2004 (1)

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref] [PubMed]

1997 (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

1996 (1)

M. E. Brezinski, G. J. Tearney, B. E. Bouma, S. A. Boppart, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography,” Am. J. Cardiol. 77(1), 92–93 (1996).
[Crossref] [PubMed]

1994 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1978 (1)

1975 (1)

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27(6), 337–339 (1975).
[Crossref]

Allison, S. W.

Ankele, G.

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27(6), 337–339 (1975).
[Crossref]

Bachmann, A. H.

Barton, J. K.

Beurskens, R.

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, S. A. Boppart, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography,” Am. J. Cardiol. 77(1), 92–93 (1996).
[Crossref] [PubMed]

Bouma, B. E.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, S. A. Boppart, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography,” Am. J. Cardiol. 77(1), 92–93 (1996).
[Crossref] [PubMed]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, S. A. Boppart, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography,” Am. J. Cardiol. 77(1), 92–93 (1996).
[Crossref] [PubMed]

Brown, C. T. A.

Bryngdahl, O.

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Chang, C. Y.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chow, T. H.

Christian Singe, C.

Curatolo, A.

de Boer, J. F.

de Groot, M.

Dholakia, K.

Drexler, W.

Dwelle, J.

Feldman, M. D.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, S. A. Boppart, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography,” Am. J. Cardiol. 77(1), 92–93 (1996).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Gillies, G. T.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, S. A. Boppart, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography,” Am. J. Cardiol. 77(1), 92–93 (1996).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Herrington, C. S.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, Y. S.

Huber, R.

Kieu, K.

Kim, J.

Kumar, A.

Kuo, W. C.

Kuo, Y. M.

Lai, C. M.

Lancee, C. T.

Lasser, T.

Lee, K. K. C.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Lee, W. H.

Lee, W. M.

Leitgeb, R. A.

Leung, M. K. K.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, L.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Lorenser, D.

Mariampillai, A.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Mazilu, M.

Milner, T. E.

Mo, J.

Munce, N. R.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Ng, B. K.

Peyghambarian, N.

Pfeiffer, T.

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Rylander, H. G.

Sampson, D. D.

Sattman, H.

Schülzgen, A.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sibbett, W.

Soest, G.

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, S. A. Boppart, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography,” Am. J. Cardiol. 77(1), 92–93 (1996).
[Crossref] [PubMed]

Springeling, G.

Standish, B. A.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Steinmann, L.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, S. A. Boppart, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography,” Am. J. Cardiol. 77(1), 92–93 (1996).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Taguichi, K.

Tan, K. M.

Tearney, G. J.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, S. A. Boppart, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography,” Am. J. Cardiol. 77(1), 92–93 (1996).
[Crossref] [PubMed]

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Tumlinson, A. R.

Ulrich, R.

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27(6), 337–339 (1975).
[Crossref]

Unterhuber, A.

van der Steen, A. F. W.

Villiger, M.

Vitkin, I. A.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Wang, B.

Wang, R. K.

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
[Crossref] [PubMed]

Wang, T.

Wei, H.

Wieser, W.

Xing, J.

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Yang, V. X. D.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Yang, X.

Yin, B.

Yoo, H.

Zhu, X.

Am. J. Cardiol. (1)

M. E. Brezinski, G. J. Tearney, B. E. Bouma, S. A. Boppart, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Imaging of coronary artery microstructure (in vitro) with optical coherence tomography,” Am. J. Cardiol. 77(1), 92–93 (1996).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27(6), 337–339 (1975).
[Crossref]

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Med. (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Opt. Express (7)

J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express 21(8), 10048–10061 (2013).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguichi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express 17(4), 2375–2384 (2009).
[Crossref] [PubMed]

J. Xing, J. Kim, and H. Yoo, “Design and fabrication of an optical probe with a phase filter for extended depth of focus,” Opt. Express 24(2), 1037–1044 (2016).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Wei, K. Kieu, and N. Peyghambarian, “White light Bessel-like beams generated by miniature all-fiber device,” Opt. Express 19(12), 11365–11374 (2011).
[Crossref] [PubMed]

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Express 14(5), 1878–1887 (2006).
[Crossref] [PubMed]

W. C. Kuo, C. M. Lai, Y. S. Huang, C. Y. Chang, and Y. M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. Express 21(16), 19280–19291 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Med. Biol. (1)

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A self-imaging wavefront division fiber optic probe design consisting of a circularly cylindrical waveguide, a glass spacer, a GRIN lens and a right-angle prism. A common-path configuration is achieved by using the back-reflection from the prism-air interface as the OCT reference. (b) Simulated intensity distribution in image space, color bar intensity is in linear scale with arbitrary units (a. u.). (c) Simulated on-axis intensity distribution.
Fig. 2
Fig. 2 (a) Photograph of the common-path self-imaging wavefront division fiber optic probe. (b) Transmitted far field ring pattern on the plane normal to the beam propagation direction.
Fig. 3
Fig. 3 (a) Simulated intensity vs. depth in air where the sensitivity noise level is set to be consistent with measurement result. (b) OCT spectrometer sensitivity roll-off characterized by an external interferometer. OPD: optical pathlength difference. (c) Self-imaging wavefront division fiber optic probe Z-scan measurement. (d) Z-scan measurement compensated by sensitivity roll-off shown in (b).
Fig. 4
Fig. 4 μOCT B-scan phantom image acquired by the self-imaging wavefront division fiber optic probe. Three insets on the right are zoomed images at different depths indicating a well maintained lateral resolution over more than a 1 mm depth range. Vertical and horizontal axes are in µm units. 10 μm scale bars on the lower right applies to the insets.
Fig. 5
Fig. 5 PSF characterization. (a) A μOCT A-scan (right) taken from the dotted line in the phantom image (left), demonstrating a 2-μm axial PSF FWHM over the entire 1 mm depth range. (b) Measured FWHM of lateral PSF vs. depth in phantom, indicating that the FWHM was maintained within 4.2 μm for most of the lateral PSFs across the entire 1 mm depth range.

Metrics