Abstract

We report a functional reflective polarizer that can be incorporated into a compact augmented reality system. The design principle of the functional reflective polarizer is explained and two design examples are illustrated. In the first example, with the specially designed functional reflective polarizer, the transmittance of the augment reality system is relatively high as compared to a polarizing beam splitter or a conventional reflective polarizer. Such a functional reflective polarizer can also be used for vehicular displays. For the second example, the functional reflective polarizer is specially tailored to help those people with color vision deficiency.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays

Yun-Han Lee, Kun Yin, and Shin-Tson Wu
Opt. Express 25(22) 27008-27014 (2017)

Light-efficient augmented reality 3D display using highly transparent retro-reflective screen

Shoaib R. Soomro and Hakan Urey
Appl. Opt. 56(22) 6108-6113 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence-Teleop. Virt. 9(3), 287–309 (2000).
  2. A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “ASTOR: An autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.
    [Crossref]
  3. T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: A literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
    [Crossref]
  4. F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR,” in Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2008), 193–202.
  5. X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
    [Crossref] [PubMed]
  6. S. Lee, X. Hu, and H. Hua, “Effects of optical combiner and IPD change for convergence on near-field depth perception in an optical see-through HMD,” IEEE Trans. Vis. Comput. Graph. 99, 1 (2015).
  7. R. Zhang and H. Hua, “Characterizing polarization management in a p-HMPD system,” Appl. Opt. 47(4), 512–522 (2008).
    [Crossref] [PubMed]
  8. Y. Li, T. X. Wu, and S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
    [Crossref]
  9. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
    [Crossref] [PubMed]
  10. M. Alpern and T. Wake, “Cone pigments in human deutan colour vision defects,” J. Physiol. 266(3), 595–612 (1977).
    [Crossref] [PubMed]
  11. S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356(6368), 433–435 (1992).
    [Crossref] [PubMed]
  12. M. Neitz and J. Neitz, “Molecular genetics of color vision and color vision defects,” Arch. Ophthalmol. 118(5), 691–700 (2000).
    [Crossref] [PubMed]
  13. T. Alfrey, E. F. Gurnee, and W. J. Schrenk, “Physical optics of iridescent multilayered plastic films,” Polym. Eng. Sci. 9(6), 400–404 (1969).
    [Crossref]
  14. J. Zhang, T. P. Lodge, and C. W. Macosko, “Interfacial slip reduces polymer-polymer adhesion during coextrusion,” J. Rheol. (N.Y.N.Y.) 50(1), 41–57 (2006).
    [Crossref]
  15. J. Dooley, “Determining the processability of multilayer coextruded structures,” in PLACE Conference, (TAPPI, 2007), 16–20.
  16. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62(4), 502–510 (1972).
    [Crossref]
  17. Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4×4 matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).
    [Crossref]
  18. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  19. J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
    [Crossref]
  20. J. Li and S.-T. Wu, “Extended cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
    [Crossref]
  21. E. K. Macdonald and M. P. Shaver, “Intrinsic high refractive index polymers,” Polym. Int. 64(1), 6–14 (2015).
    [Crossref]
  22. T. Higashihara and M. Ueda, “Recent progress in high refractive index polymers,” Macromolecules 48(7), 1915–1929 (2015).
    [Crossref]
  23. K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
    [Crossref]
  24. R. Zhu, Z. Luo, H. Chen, Y. Dong, and S.-T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23(18), 23680–23693 (2015).
    [Crossref] [PubMed]
  25. J. I. You and K.-C. Park, “Image processing with color compensation using LCD display for color vision deficiency,” J. Disp. Technol. PP, 189 (2015).
  26. G. M. Machado, M. M. Oliveira, and L. A. F. Fernandes, “A physiologically-based model for simulation of color vision deficiency,” IEEE Trans. Vis. Comput. Graph. 15(6), 1291–1298 (2009).
    [Crossref] [PubMed]
  27. E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, “Chroma: A wearable augmented-reality solution for color blindness,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (ACM, 2014), pp. 799–810.
    [Crossref]
  28. D. H. Brainard, H. Jiang, N. P. Cottaris, F. Rieke, E. J. Chichilnisky, J. E. Farrell, and B. A. Wandell, “Isetbio: Computational tools for modeling early human vision,” in Imaging and Applied Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper IT4A.4.
  29. H. Brettel, F. Viénot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J. Opt. Soc. Am. A 14(10), 2647–2655 (1997).
    [Crossref] [PubMed]
  30. R. L. Donofrio, “Review paper: The Helmholtz-K ohlrausch effect,” J. Soc. Inf. Disp. 19(10), 658–664 (2011).
    [Crossref]
  31. J. F. Van Derlofske, J. M. Hillis, A. Lathrop, J. Wheatley, J. Thielen, and G. Benoit, “19.1: Invited paper: Illuminating the value of larger color gamuts for quantum dot displays,” SID Symp. Dig. Tech. Pap. 45(1), 237–240 (2014).
    [Crossref]

2015 (5)

S. Lee, X. Hu, and H. Hua, “Effects of optical combiner and IPD change for convergence on near-field depth perception in an optical see-through HMD,” IEEE Trans. Vis. Comput. Graph. 99, 1 (2015).

E. K. Macdonald and M. P. Shaver, “Intrinsic high refractive index polymers,” Polym. Int. 64(1), 6–14 (2015).
[Crossref]

T. Higashihara and M. Ueda, “Recent progress in high refractive index polymers,” Macromolecules 48(7), 1915–1929 (2015).
[Crossref]

R. Zhu, Z. Luo, H. Chen, Y. Dong, and S.-T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23(18), 23680–23693 (2015).
[Crossref] [PubMed]

J. I. You and K.-C. Park, “Image processing with color compensation using LCD display for color vision deficiency,” J. Disp. Technol. PP, 189 (2015).

2014 (1)

2011 (1)

R. L. Donofrio, “Review paper: The Helmholtz-K ohlrausch effect,” J. Soc. Inf. Disp. 19(10), 658–664 (2011).
[Crossref]

2010 (1)

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

2009 (2)

Y. Li, T. X. Wu, and S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

G. M. Machado, M. M. Oliveira, and L. A. F. Fernandes, “A physiologically-based model for simulation of color vision deficiency,” IEEE Trans. Vis. Comput. Graph. 15(6), 1291–1298 (2009).
[Crossref] [PubMed]

2008 (2)

R. Zhang and H. Hua, “Characterizing polarization management in a p-HMPD system,” Appl. Opt. 47(4), 512–522 (2008).
[Crossref] [PubMed]

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: A literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

2006 (1)

J. Zhang, T. P. Lodge, and C. W. Macosko, “Interfacial slip reduces polymer-polymer adhesion during coextrusion,” J. Rheol. (N.Y.N.Y.) 50(1), 41–57 (2006).
[Crossref]

2005 (1)

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

2004 (1)

J. Li and S.-T. Wu, “Extended cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

2003 (1)

Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4×4 matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).
[Crossref]

2000 (3)

M. Neitz and J. Neitz, “Molecular genetics of color vision and color vision defects,” Arch. Ophthalmol. 118(5), 691–700 (2000).
[Crossref] [PubMed]

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence-Teleop. Virt. 9(3), 287–309 (2000).

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[Crossref] [PubMed]

1997 (1)

1992 (1)

S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356(6368), 433–435 (1992).
[Crossref] [PubMed]

1977 (1)

M. Alpern and T. Wake, “Cone pigments in human deutan colour vision defects,” J. Physiol. 266(3), 595–612 (1977).
[Crossref] [PubMed]

1972 (1)

1969 (1)

T. Alfrey, E. F. Gurnee, and W. J. Schrenk, “Physical optics of iridescent multilayered plastic films,” Polym. Eng. Sci. 9(6), 400–404 (1969).
[Crossref]

Alfrey, T.

T. Alfrey, E. F. Gurnee, and W. J. Schrenk, “Physical optics of iridescent multilayered plastic films,” Polym. Eng. Sci. 9(6), 400–404 (1969).
[Crossref]

Alpern, M.

M. Alpern and T. Wake, “Cone pigments in human deutan colour vision defects,” J. Physiol. 266(3), 595–612 (1977).
[Crossref] [PubMed]

Baird, G.

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

Berreman, D. W.

Billinghurst, M.

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR,” in Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2008), 193–202.

Brettel, H.

Chen, H.

Dong, Y.

Donofrio, R. L.

R. L. Donofrio, “Review paper: The Helmholtz-K ohlrausch effect,” J. Soc. Inf. Disp. 19(10), 658–664 (2011).
[Crossref]

Dooley, J.

J. Dooley, “Determining the processability of multilayer coextruded structures,” in PLACE Conference, (TAPPI, 2007), 16–20.

Duh, H. B.-L.

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR,” in Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2008), 193–202.

Emmenegger, C.

E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, “Chroma: A wearable augmented-reality solution for color blindness,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (ACM, 2014), pp. 799–810.
[Crossref]

Fernandes, L. A. F.

G. M. Machado, M. M. Oliveira, and L. A. F. Fernandes, “A physiologically-based model for simulation of color vision deficiency,” IEEE Trans. Vis. Comput. Graph. 15(6), 1291–1298 (2009).
[Crossref] [PubMed]

Feuerstein, M.

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: A literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

Fuchs, H.

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence-Teleop. Virt. 9(3), 287–309 (2000).

Gilbert, L. R.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[Crossref] [PubMed]

Gurnee, E. F.

T. Alfrey, E. F. Gurnee, and W. J. Schrenk, “Physical optics of iridescent multilayered plastic films,” Polym. Eng. Sci. 9(6), 400–404 (1969).
[Crossref]

Gustafsson, J.

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “ASTOR: An autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.
[Crossref]

Higashihara, T.

T. Higashihara and M. Ueda, “Recent progress in high refractive index polymers,” Macromolecules 48(7), 1915–1929 (2015).
[Crossref]

Hu, X.

S. Lee, X. Hu, and H. Hua, “Effects of optical combiner and IPD change for convergence on near-field depth perception in an optical see-through HMD,” IEEE Trans. Vis. Comput. Graph. 99, 1 (2015).

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref] [PubMed]

Hua, H.

Huang, Y.

Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4×4 matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).
[Crossref]

Huynh, D.

E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, “Chroma: A wearable augmented-reality solution for color blindness,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (ACM, 2014), pp. 799–810.
[Crossref]

Kjellberg, T.

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “ASTOR: An autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.
[Crossref]

Koa, K.

E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, “Chroma: A wearable augmented-reality solution for color blindness,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (ACM, 2014), pp. 799–810.
[Crossref]

Lee, S.

S. Lee, X. Hu, and H. Hua, “Effects of optical combiner and IPD change for convergence on near-field depth perception in an optical see-through HMD,” IEEE Trans. Vis. Comput. Graph. 99, 1 (2015).

Li, J.

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

J. Li and S.-T. Wu, “Extended cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

Li, Y.

Y. Li, T. X. Wu, and S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

Lin, Y.-H.

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

Lindfors, C.

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “ASTOR: An autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.
[Crossref]

Lodge, T. P.

J. Zhang, T. P. Lodge, and C. W. Macosko, “Interfacial slip reduces polymer-polymer adhesion during coextrusion,” J. Rheol. (N.Y.N.Y.) 50(1), 41–57 (2006).
[Crossref]

Luo, Z.

Macdonald, E. K.

E. K. Macdonald and M. P. Shaver, “Intrinsic high refractive index polymers,” Polym. Int. 64(1), 6–14 (2015).
[Crossref]

Machado, G. M.

G. M. Machado, M. M. Oliveira, and L. A. F. Fernandes, “A physiologically-based model for simulation of color vision deficiency,” IEEE Trans. Vis. Comput. Graph. 15(6), 1291–1298 (2009).
[Crossref] [PubMed]

Macosko, C. W.

J. Zhang, T. P. Lodge, and C. W. Macosko, “Interfacial slip reduces polymer-polymer adhesion during coextrusion,” J. Rheol. (N.Y.N.Y.) 50(1), 41–57 (2006).
[Crossref]

Masaoka, K.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Mattsson, L.

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “ASTOR: An autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.
[Crossref]

Merbs, S. L.

S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356(6368), 433–435 (1992).
[Crossref] [PubMed]

Mollon, J. D.

Nakasu, E.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Nathans, J.

S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356(6368), 433–435 (1992).
[Crossref] [PubMed]

Navab, N.

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: A literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

Neitz, J.

M. Neitz and J. Neitz, “Molecular genetics of color vision and color vision defects,” Arch. Ophthalmol. 118(5), 691–700 (2000).
[Crossref] [PubMed]

Neitz, M.

M. Neitz and J. Neitz, “Molecular genetics of color vision and color vision defects,” Arch. Ophthalmol. 118(5), 691–700 (2000).
[Crossref] [PubMed]

Nevitt, T. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[Crossref] [PubMed]

Nguyen, C.

E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, “Chroma: A wearable augmented-reality solution for color blindness,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (ACM, 2014), pp. 799–810.
[Crossref]

Nishida, Y.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Oliveira, M. M.

G. M. Machado, M. M. Oliveira, and L. A. F. Fernandes, “A physiologically-based model for simulation of color vision deficiency,” IEEE Trans. Vis. Comput. Graph. 15(6), 1291–1298 (2009).
[Crossref] [PubMed]

Olwal, A.

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “ASTOR: An autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.
[Crossref]

Ouderkirk, A. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[Crossref] [PubMed]

Park, K.-C.

J. I. You and K.-C. Park, “Image processing with color compensation using LCD display for color vision deficiency,” J. Disp. Technol. PP, 189 (2015).

Ren, H.

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

Rolland, J. P.

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence-Teleop. Virt. 9(3), 287–309 (2000).

Schrenk, W. J.

T. Alfrey, E. F. Gurnee, and W. J. Schrenk, “Physical optics of iridescent multilayered plastic films,” Polym. Eng. Sci. 9(6), 400–404 (1969).
[Crossref]

Shao, C.

E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, “Chroma: A wearable augmented-reality solution for color blindness,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (ACM, 2014), pp. 799–810.
[Crossref]

Shaver, M. P.

E. K. Macdonald and M. P. Shaver, “Intrinsic high refractive index polymers,” Polym. Int. 64(1), 6–14 (2015).
[Crossref]

Sielhorst, T.

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: A literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

Stover, C. A.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[Crossref] [PubMed]

Sugawara, M.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Tanuwidjaja, E.

E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, “Chroma: A wearable augmented-reality solution for color blindness,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (ACM, 2014), pp. 799–810.
[Crossref]

Torbett, P.

E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, “Chroma: A wearable augmented-reality solution for color blindness,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (ACM, 2014), pp. 799–810.
[Crossref]

Ueda, M.

T. Higashihara and M. Ueda, “Recent progress in high refractive index polymers,” Macromolecules 48(7), 1915–1929 (2015).
[Crossref]

Viénot, F.

Wake, T.

M. Alpern and T. Wake, “Cone pigments in human deutan colour vision defects,” J. Physiol. 266(3), 595–612 (1977).
[Crossref] [PubMed]

Weber, M. F.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[Crossref] [PubMed]

Weibel, N.

E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, “Chroma: A wearable augmented-reality solution for color blindness,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (ACM, 2014), pp. 799–810.
[Crossref]

Wu, S.-T.

R. Zhu, Z. Luo, H. Chen, Y. Dong, and S.-T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23(18), 23680–23693 (2015).
[Crossref] [PubMed]

Y. Li, T. X. Wu, and S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

J. Li and S.-T. Wu, “Extended cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4×4 matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).
[Crossref]

Wu, T. X.

Y. Li, T. X. Wu, and S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4×4 matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).
[Crossref]

You, J. I.

J. I. You and K.-C. Park, “Image processing with color compensation using LCD display for color vision deficiency,” J. Disp. Technol. PP, 189 (2015).

Zhang, J.

J. Zhang, T. P. Lodge, and C. W. Macosko, “Interfacial slip reduces polymer-polymer adhesion during coextrusion,” J. Rheol. (N.Y.N.Y.) 50(1), 41–57 (2006).
[Crossref]

Zhang, R.

Zhou, F.

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR,” in Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2008), 193–202.

Zhu, R.

Appl. Opt. (1)

Arch. Ophthalmol. (1)

M. Neitz and J. Neitz, “Molecular genetics of color vision and color vision defects,” Arch. Ophthalmol. 118(5), 691–700 (2000).
[Crossref] [PubMed]

IEEE Trans. Broadcast (1)

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (2)

G. M. Machado, M. M. Oliveira, and L. A. F. Fernandes, “A physiologically-based model for simulation of color vision deficiency,” IEEE Trans. Vis. Comput. Graph. 15(6), 1291–1298 (2009).
[Crossref] [PubMed]

S. Lee, X. Hu, and H. Hua, “Effects of optical combiner and IPD change for convergence on near-field depth perception in an optical see-through HMD,” IEEE Trans. Vis. Comput. Graph. 99, 1 (2015).

J. Appl. Phys. (2)

Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4×4 matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).
[Crossref]

J. Li and S.-T. Wu, “Extended cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

J. Disp. Technol. (3)

J. I. You and K.-C. Park, “Image processing with color compensation using LCD display for color vision deficiency,” J. Disp. Technol. PP, 189 (2015).

Y. Li, T. X. Wu, and S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: A literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Physiol. (1)

M. Alpern and T. Wake, “Cone pigments in human deutan colour vision defects,” J. Physiol. 266(3), 595–612 (1977).
[Crossref] [PubMed]

J. Rheol. (N.Y.N.Y.) (1)

J. Zhang, T. P. Lodge, and C. W. Macosko, “Interfacial slip reduces polymer-polymer adhesion during coextrusion,” J. Rheol. (N.Y.N.Y.) 50(1), 41–57 (2006).
[Crossref]

J. Soc. Inf. Disp. (2)

R. L. Donofrio, “Review paper: The Helmholtz-K ohlrausch effect,” J. Soc. Inf. Disp. 19(10), 658–664 (2011).
[Crossref]

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

Macromolecules (1)

T. Higashihara and M. Ueda, “Recent progress in high refractive index polymers,” Macromolecules 48(7), 1915–1929 (2015).
[Crossref]

Nature (1)

S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356(6368), 433–435 (1992).
[Crossref] [PubMed]

Opt. Express (2)

Polym. Eng. Sci. (1)

T. Alfrey, E. F. Gurnee, and W. J. Schrenk, “Physical optics of iridescent multilayered plastic films,” Polym. Eng. Sci. 9(6), 400–404 (1969).
[Crossref]

Polym. Int. (1)

E. K. Macdonald and M. P. Shaver, “Intrinsic high refractive index polymers,” Polym. Int. 64(1), 6–14 (2015).
[Crossref]

Presence-Teleop. Virt. (1)

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence-Teleop. Virt. 9(3), 287–309 (2000).

Science (1)

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[Crossref] [PubMed]

Other (7)

A. Olwal, C. Lindfors, J. Gustafsson, T. Kjellberg, and L. Mattsson, “ASTOR: An autostereoscopic optical see-through augmented reality system,” in Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2005), pp. 24–27.
[Crossref]

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR,” in Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, 2008), 193–202.

J. Dooley, “Determining the processability of multilayer coextruded structures,” in PLACE Conference, (TAPPI, 2007), 16–20.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

J. F. Van Derlofske, J. M. Hillis, A. Lathrop, J. Wheatley, J. Thielen, and G. Benoit, “19.1: Invited paper: Illuminating the value of larger color gamuts for quantum dot displays,” SID Symp. Dig. Tech. Pap. 45(1), 237–240 (2014).
[Crossref]

E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, “Chroma: A wearable augmented-reality solution for color blindness,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (ACM, 2014), pp. 799–810.
[Crossref]

D. H. Brainard, H. Jiang, N. P. Cottaris, F. Rieke, E. J. Chichilnisky, J. E. Farrell, and B. A. Wandell, “Isetbio: Computational tools for modeling early human vision,” in Imaging and Applied Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper IT4A.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Structure of the proposed AR system.
Fig. 2
Fig. 2 (a) Structure of the regular reflective polarizer and (b) the principle of converting two thin film coatings to a single functional reflective polarizer: materials m1, m2 and m3 are drawn in white, blue and yellow, respectively.
Fig. 3
Fig. 3 (a) Simulated transmittance of the functional reflective polarizer and the normalized output spectra of the display panel, and (b) the output spectra of a WLED embedded LCD.
Fig. 4
Fig. 4 (a) Spectra sensitivity functions of the L, M and S cone cells and the transmittance of the commercial EnChroma glasses for people with CVD (b) Spectra sensitivity function of the L, M and S cone cells and the transmittance of our functional reflective polarizer in the x and y polarization.
Fig. 5
Fig. 5 (a) The perceived image without functional reflective polarizer. From upper left to bottom right, the images correspond to people with normal vision (upper left), protanomaly (upper right), deuteranomaly (bottom left) and tritanomaly (bottom right); (b) the perceived image with functional reflective polarizer. For (a)-(b), the spectral shift is 8nm. (c) The perceived image without functional reflective polarizer when the spectral shift is 16nm and (d) the perceived image with functional reflective polarizer when the spectral shift is 16nm.
Fig. 6
Fig. 6 The angular dependent transmittance of the functional reflective polarizer for inconspicuous AR system in the (a) x direction and (b) y direction; and the angular dependent transmittance of the functional reflective polarizer for people with CVD in the (c) x direction and (d) y direction. Also shown in Fig. 6(d) are the spectra sensitivity function of the L, M and S cone in dashed line.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T i = λ 1 λ 2 t i (λ) I i (λ)dλ / λ 1 λ 2 I i (λ)dλ .
T= 1 2 ( T x + T y )= 1 2 ( λ 1 λ 2 [ t x (λ)+ t y (λ)]I(λ)dλ / λ 1 λ 2 I(λ)dλ ).
R D =1 T D =1 λ 1 λ 2 t x (λ) I D (λ)dλ / λ 1 λ 2 I D (λ)dλ .
R= (n1) 2 (n+1) 2 ,
T y (1R) 2 12R=1 2 (n1) 2 (n+1) 2 .
S=Δλ/20,

Metrics