Abstract

A novel sensing method is proposed for wavelength scanning interferometry using multiple tunable light sources. As it is well known, a deterioration of depth resolution usually occurs when multiple phase intervals, corresponding to the multiple tunable light sources, are used for distance measurement purposes. It is shown here, that it is possible to regain depth resolution characteristics of a complete scan by means of a temporal phase unwrapping extrapolation method. With the proposed method, the resulting phase differences among multiple phase intervals can be successfully unwrapped to find out the intermediate phase. This effectively allows the application of whole-scan phase sensing for distance measurement using reduced scanning intervals, increased speed, and improved depth detection.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of the depth resolution in depth-resolved wavenumber-scanning interferometry using multiple uncorrelated wavenumber bands

Jinxiong Xu, Yufei Liu, Bo Dong, Yulei Bai, Linlin Hu, Cong Shi, Zhuoming Xu, and Yanzhou Zhou
Appl. Opt. 52(20) 4890-4897 (2013)

Quadrature wavelength scanning interferometry

Giuseppe Moschetti, Alistair Forbes, Richard K. Leach, Xiang Jiang, and Daniel O’Connor
Appl. Opt. 55(20) 5332-5340 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, “Optical coherence tomography: development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
    [Crossref] [PubMed]
  2. B. Heisse, Image Processing for Phase-Sensitive Optical Coherence Tomography: Applications in Differential Phase Contrast-OCT and Polarization-Sensitive OCT Imaging (Suedwestdeutscher Verlag fuer Hochschulschriften, 2010).
  3. P. D. Ruiz, J. M. Huntley, and R. D. Wildman, “Depth-resolved whole-field displacement measurement by wavelength-scanning electronic speckle pattern interferometry,” Appl. Opt. 44(19), 3945–3953 (2005).
    [Crossref] [PubMed]
  4. X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
    [Crossref] [PubMed]
  5. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
    [Crossref]
  6. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
    [Crossref] [PubMed]
  7. P. R. Hoskins and W. Svensson, “Current state of ultrasound elastography,” Ultrasound 20, 3–4 (2012).
    [Crossref]
  8. A. Yamamoto, C. C. Kuo, and K. Sunouchi, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8(1), 59–63 (2001).
    [Crossref]
  9. A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, “Simultaneous wavenumber measurement and coherence detection using temporal phase unwrapping,” Appl. Opt. 51(5), 558–567 (2012).
    [Crossref] [PubMed]
  10. A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, “Wavelength scanning interferometry using a Ti:Sapphire laser with wide tuning range,” Opt. Laser Eng. 50(8), 1089–1096 (2012).
    [Crossref]
  11. J. Xu, Y. Liu, B. Dong, Y. Bai, L. Hu, C. Shi, Z Xu, and Y Zhou, “Improvement of the depth resolution in depth-resolved wavenumber-scanning interferometry using multiple uncorrelated wavenumber bands,” Appl. Opt. 52(20), 4890–4897 (2013).
    [Crossref] [PubMed]
  12. C. Lu, M. Tsai, Y. Wang, Y. Kiang, and C. C. Yang, “Resolution improvement in optical coherence tomography with segmented spectrum management,” Opt. Quant. Electron. 37(13–15), 1165–1173 (2005).
    [Crossref]
  13. Y. Zhang, Y. Bai, J. Xu, W. Xu, and Y. Zhou, “Effective improvement of depth resolution and reduction of ripple error in depth-resolved wavenumber-scanning interferometry,” Opt. Laser Eng. 66, 58–63 (2015).
    [Crossref]
  14. H. Muhamedsalih, F. Gao, and X. Jiang, “Comparison study of algorithms and accuracy in the wavelength scanning interferometry,” Appl. Opt. 51(36), 8854–8862, (2012).
    [Crossref] [PubMed]
  15. J. M. Huntley and H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32(17), 3047–3052 (1993).
    [Crossref] [PubMed]

2015 (1)

Y. Zhang, Y. Bai, J. Xu, W. Xu, and Y. Zhou, “Effective improvement of depth resolution and reduction of ripple error in depth-resolved wavenumber-scanning interferometry,” Opt. Laser Eng. 66, 58–63 (2015).
[Crossref]

2013 (1)

2012 (4)

H. Muhamedsalih, F. Gao, and X. Jiang, “Comparison study of algorithms and accuracy in the wavelength scanning interferometry,” Appl. Opt. 51(36), 8854–8862, (2012).
[Crossref] [PubMed]

P. R. Hoskins and W. Svensson, “Current state of ultrasound elastography,” Ultrasound 20, 3–4 (2012).
[Crossref]

A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, “Simultaneous wavenumber measurement and coherence detection using temporal phase unwrapping,” Appl. Opt. 51(5), 558–567 (2012).
[Crossref] [PubMed]

A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, “Wavelength scanning interferometry using a Ti:Sapphire laser with wide tuning range,” Opt. Laser Eng. 50(8), 1089–1096 (2012).
[Crossref]

2010 (2)

A. F. Fercher, “Optical coherence tomography: development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (1)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

2005 (2)

P. D. Ruiz, J. M. Huntley, and R. D. Wildman, “Depth-resolved whole-field displacement measurement by wavelength-scanning electronic speckle pattern interferometry,” Appl. Opt. 44(19), 3945–3953 (2005).
[Crossref] [PubMed]

C. Lu, M. Tsai, Y. Wang, Y. Kiang, and C. C. Yang, “Resolution improvement in optical coherence tomography with segmented spectrum management,” Opt. Quant. Electron. 37(13–15), 1165–1173 (2005).
[Crossref]

2001 (1)

A. Yamamoto, C. C. Kuo, and K. Sunouchi, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8(1), 59–63 (2001).
[Crossref]

1993 (1)

Bai, Y.

Y. Zhang, Y. Bai, J. Xu, W. Xu, and Y. Zhou, “Effective improvement of depth resolution and reduction of ripple error in depth-resolved wavenumber-scanning interferometry,” Opt. Laser Eng. 66, 58–63 (2015).
[Crossref]

J. Xu, Y. Liu, B. Dong, Y. Bai, L. Hu, C. Shi, Z Xu, and Y Zhou, “Improvement of the depth resolution in depth-resolved wavenumber-scanning interferometry using multiple uncorrelated wavenumber bands,” Appl. Opt. 52(20), 4890–4897 (2013).
[Crossref] [PubMed]

Boppart, S. A.

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

Coupland, J. M.

A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, “Wavelength scanning interferometry using a Ti:Sapphire laser with wide tuning range,” Opt. Laser Eng. 50(8), 1089–1096 (2012).
[Crossref]

A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, “Simultaneous wavenumber measurement and coherence detection using temporal phase unwrapping,” Appl. Opt. 51(5), 558–567 (2012).
[Crossref] [PubMed]

Crecea, V.

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

Davila, A.

A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, “Wavelength scanning interferometry using a Ti:Sapphire laser with wide tuning range,” Opt. Laser Eng. 50(8), 1089–1096 (2012).
[Crossref]

A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, “Simultaneous wavenumber measurement and coherence detection using temporal phase unwrapping,” Appl. Opt. 51(5), 558–567 (2012).
[Crossref] [PubMed]

Dong, B.

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography: development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

Gao, F.

Heisse, B.

B. Heisse, Image Processing for Phase-Sensitive Optical Coherence Tomography: Applications in Differential Phase Contrast-OCT and Polarization-Sensitive OCT Imaging (Suedwestdeutscher Verlag fuer Hochschulschriften, 2010).

Hillman, T. R.

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Hoskins, P. R.

P. R. Hoskins and W. Svensson, “Current state of ultrasound elastography,” Ultrasound 20, 3–4 (2012).
[Crossref]

Hu, L.

Huntley, J. M.

Jiang, X.

Kennedy, B. F.

Kiang, Y.

C. Lu, M. Tsai, Y. Wang, Y. Kiang, and C. C. Yang, “Resolution improvement in optical coherence tomography with segmented spectrum management,” Opt. Quant. Electron. 37(13–15), 1165–1173 (2005).
[Crossref]

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Kuo, C. C.

A. Yamamoto, C. C. Kuo, and K. Sunouchi, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8(1), 59–63 (2001).
[Crossref]

Liang, X.

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

Liu, Y.

Lu, C.

C. Lu, M. Tsai, Y. Wang, Y. Kiang, and C. C. Yang, “Resolution improvement in optical coherence tomography with segmented spectrum management,” Opt. Quant. Electron. 37(13–15), 1165–1173 (2005).
[Crossref]

McLaughlin, R. A.

Muhamedsalih, H.

Pallikarakis, C.

A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, “Wavelength scanning interferometry using a Ti:Sapphire laser with wide tuning range,” Opt. Laser Eng. 50(8), 1089–1096 (2012).
[Crossref]

A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, “Simultaneous wavenumber measurement and coherence detection using temporal phase unwrapping,” Appl. Opt. 51(5), 558–567 (2012).
[Crossref] [PubMed]

Quirk, B. C.

Ruiz, P. D.

Saldner, H.

Sampson, D. D.

Shi, C.

Sunouchi, K.

A. Yamamoto, C. C. Kuo, and K. Sunouchi, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8(1), 59–63 (2001).
[Crossref]

Svensson, W.

P. R. Hoskins and W. Svensson, “Current state of ultrasound elastography,” Ultrasound 20, 3–4 (2012).
[Crossref]

Tsai, M.

C. Lu, M. Tsai, Y. Wang, Y. Kiang, and C. C. Yang, “Resolution improvement in optical coherence tomography with segmented spectrum management,” Opt. Quant. Electron. 37(13–15), 1165–1173 (2005).
[Crossref]

Wang, R. K.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Wang, Y.

C. Lu, M. Tsai, Y. Wang, Y. Kiang, and C. C. Yang, “Resolution improvement in optical coherence tomography with segmented spectrum management,” Opt. Quant. Electron. 37(13–15), 1165–1173 (2005).
[Crossref]

Wildman, R. D.

Xu, J.

Y. Zhang, Y. Bai, J. Xu, W. Xu, and Y. Zhou, “Effective improvement of depth resolution and reduction of ripple error in depth-resolved wavenumber-scanning interferometry,” Opt. Laser Eng. 66, 58–63 (2015).
[Crossref]

J. Xu, Y. Liu, B. Dong, Y. Bai, L. Hu, C. Shi, Z Xu, and Y Zhou, “Improvement of the depth resolution in depth-resolved wavenumber-scanning interferometry using multiple uncorrelated wavenumber bands,” Appl. Opt. 52(20), 4890–4897 (2013).
[Crossref] [PubMed]

Xu, W.

Y. Zhang, Y. Bai, J. Xu, W. Xu, and Y. Zhou, “Effective improvement of depth resolution and reduction of ripple error in depth-resolved wavenumber-scanning interferometry,” Opt. Laser Eng. 66, 58–63 (2015).
[Crossref]

Xu, Z

Yamamoto, A.

A. Yamamoto, C. C. Kuo, and K. Sunouchi, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8(1), 59–63 (2001).
[Crossref]

Yang, C. C.

C. Lu, M. Tsai, Y. Wang, Y. Kiang, and C. C. Yang, “Resolution improvement in optical coherence tomography with segmented spectrum management,” Opt. Quant. Electron. 37(13–15), 1165–1173 (2005).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Bai, J. Xu, W. Xu, and Y. Zhou, “Effective improvement of depth resolution and reduction of ripple error in depth-resolved wavenumber-scanning interferometry,” Opt. Laser Eng. 66, 58–63 (2015).
[Crossref]

Zhou, Y

Zhou, Y.

Y. Zhang, Y. Bai, J. Xu, W. Xu, and Y. Zhou, “Effective improvement of depth resolution and reduction of ripple error in depth-resolved wavenumber-scanning interferometry,” Opt. Laser Eng. 66, 58–63 (2015).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

J. Innov. Opt. Health Sci. (1)

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Laser Eng. (2)

A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, “Wavelength scanning interferometry using a Ti:Sapphire laser with wide tuning range,” Opt. Laser Eng. 50(8), 1089–1096 (2012).
[Crossref]

Y. Zhang, Y. Bai, J. Xu, W. Xu, and Y. Zhou, “Effective improvement of depth resolution and reduction of ripple error in depth-resolved wavenumber-scanning interferometry,” Opt. Laser Eng. 66, 58–63 (2015).
[Crossref]

Opt. Quant. Electron. (1)

C. Lu, M. Tsai, Y. Wang, Y. Kiang, and C. C. Yang, “Resolution improvement in optical coherence tomography with segmented spectrum management,” Opt. Quant. Electron. 37(13–15), 1165–1173 (2005).
[Crossref]

Opt. Rev. (1)

A. Yamamoto, C. C. Kuo, and K. Sunouchi, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8(1), 59–63 (2001).
[Crossref]

Ultrasound (1)

P. R. Hoskins and W. Svensson, “Current state of ultrasound elastography,” Ultrasound 20, 3–4 (2012).
[Crossref]

Z. Med. Phys. (1)

A. F. Fercher, “Optical coherence tomography: development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

Other (1)

B. Heisse, Image Processing for Phase-Sensitive Optical Coherence Tomography: Applications in Differential Phase Contrast-OCT and Polarization-Sensitive OCT Imaging (Suedwestdeutscher Verlag fuer Hochschulschriften, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematical diagram showing a single layer material with thickness Λ0/2n, WS represents the light that is tuned at constant wavenumber rate, D is a photodetector in which the interference of two reflected beams is registered, corresponding to reflections from surfaces R and S. (b) Resolution δΛ and Depth range ΛM from the single layer of non-dispersive transparent material, obtained for the positive frequencies corresponding to the normalized power spectrum | I ˜ ( Λ ) | 2 of an interference signal acquired by detector D.

Fig. 2
Fig. 2

Individual signals of two consecutive spectral windows shown in each column, from top to bottom: WSI normalized interference signal, unwrapped phase in radians, normalized power spectrum of interference signal shown in the first row. Samples are shown over the interpolated signal.

Fig. 3
Fig. 3

Experimental wavenumber jumps δk generated by tuning a Ti:Sapphire laser in a tuning section defined by 60 samples s. The random wavenumber jumps produced by this laser cause an imprecise sampling of the interference signal, and even larger wavenumber jumps were reported [10] for larger tuning sections that required custom signal processing algorithms.

Fig. 4
Fig. 4

Simulation of a wavelength scanning interferometer with object under inspection conformed by two layers of constant refractive index. (a) Binary spectral shaping due to multiple light sources with same spectral width and spacing in wavenumber. (b) Phase differences in radians for three peaks of a two layer object, each peak denoted consecutively by r = 1,2,3 with respect to the initial scanning wavenumber k0, notice that the spectral shaping of (a) removes phase data from a continuous or full spectral windows showing discontinuous phase data corresponding to the spectral windows m = 1, 2, 3. Each segment of a labeled line has the same slope corresponding to a peak r, as a non-dispersive refractive index was considered in this simulation.

Fig. 5
Fig. 5

Normalized power spectrum of the multiple signals shown in dash-dot line that presents higher secondary lobes compared to the continuous signal shown in continuous line. Even that the depth resolution remains the same for both signals, the secondary lobes caused by the signal disruption makes the detection of the central lobe ambiguous.

Fig. 6
Fig. 6

Normalized interference signal with uniform sampling and two spectral windows spaced by a phase change less than 2π. The first spectral window is shown with point markers, while the second spectral window with circle markers. The refractive index is assumed constant due to the short scan.

Fig. 7
Fig. 7

From top to bottom: interference signals I(k) in gray level units obtained using WSI with a glass wedge as a testing target, for four spectral bands m = 1,2,3,4 on the left column, with its respective wavelength scanned interval in the right column for each sample s.

Tables (1)

Tables Icon

Table 1 Glass wedge thickness measurement using, unwrapped phase | Δ ϕ u ( m ) |, wavenumber intervals |Δk(m)|, and refractive index n for m = 2,3,4.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , k k ) = [ I 0 ( x , y ) + I 1 ( x , y ) cos { ( k k ) Λ 0 ( x , y ) + ϕ 0 } ] W [ k k ] ,
I ˜ ( Λ ) = [ I 0 δ ( Λ ) + I 1 2 δ ( Λ Λ 0 ) e i ϕ 0 + I 1 2 δ ( Λ + Λ 0 ) e i ϕ 0 ] [ W ˜ ( Λ ) e i k Λ ] .
Λ M = π δ k ,
δ Λ = γ 2 π N k δ k ,
ν 0 = 1 2 π ϕ k = Λ 0 ( x , y ) 2 π ,
Λ ^ 0 ( x , y ) = 2 π ( l 1 ) Δ K .
ϕ ^ w ( x , y ) = k Λ ^ 0 ( x , y ) ,
Λ r = Δ ϕ r ( m = 1 , Q ) Δ k r ( m = 1 , Q ) .
Δ ϕ ^ u ( m = 1 , 3 ) = 1 Δ ϕ ^ u ( m = 1 , 2 ) ,
Δ ϕ ^ u ( m = 1 , 3 ) = ( Δ ϕ ^ w ( m = 1 , 3 ) , 1 Δ ϕ ^ u ( m = 1 , 2 ) ) .
Δ ϕ ^ u ( m = 1 , n ) = ( Δ ϕ ^ w ( m = 1 , n ) , n 2 Δ ϕ ^ u ( m = 1 , n 2 ) ) ,
j = ( k ( m = 1 ) k ( m = j + 2 ) ) / ( k ( m = 1 ) k ( m = j + 1 ) ) .

Metrics