Abstract

Copper plasma generated at different filament-copper interaction points was characterized by spectroscopic, acoustic, and imaging measurements. The longitudinal variation of the filament intensity was qualitatively determined by acoustic measurements in air. The maximum plasma temperature was measured at the location of peak filament intensity, corresponding to the maximum mean electron energy during plasma formation. The highest copper plasma density was measured past the location of the maximum electron density in the filament, where spectral broadening of the filament leads to enhanced ionization. Acoustic measurements in air and on solid target were correlated to reconstructed plasma properties. Optimal line emission is measured near the geometric focus of the lens used to produce the filament.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanometer-film analysis by the laser-induced breakdown spectroscopy method: the effects of laser focus to sample distance

Yuxiang Sun, Shilei Zhong, Fukai Shan, Yuan Lu, Xin Sun, Zhe Liu, and Pengpeng Sheng
Appl. Opt. 54(15) 4812-4819 (2015)

Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips
Opt. Express 24(16) 17941-17949 (2016)

Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

S. S. Harilal, J. Yeak, and M. C. Phillips
Opt. Express 23(21) 27113-27122 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Liu, S. Petit, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
    [Crossref]
  2. A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self modelocking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
    [Crossref]
  3. S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta, Part B 56, 707–714 (2001).
    [Crossref]
  4. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (libs) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
    [Crossref]
  5. X. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: Strontium and its isotopes,” Spectrochim. Acta, Part B 66, 767–775 (2011).
    [Crossref]
  6. S. Palanco, S. Conesa, and J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462–467 (2004).
    [Crossref]
  7. B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
    [Crossref]
  8. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
    [Crossref]
  9. W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
    [Crossref]
  10. H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
    [Crossref]
  11. H. L. Xu, W. Liu, and S. L. Chin, “Remote time-resolved filament-induced breakdown spectroscopy of biological materials,” Opt. Lett. 31, 1540–1542 (2006).
    [Crossref] [PubMed]
  12. J.-F. Daigle, P. Mathieu, G. Roy, J.-R. Simard, and S. Chin, “Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy,” Opt. Commun. 278, 147–152 (2007).
    [Crossref]
  13. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
    [Crossref]
  14. P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
    [Crossref]
  15. S. Harilal, J. Yeak, and M. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23, 27113–27122 (2015).
    [Crossref] [PubMed]
  16. Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
    [Crossref]
  17. J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
    [Crossref]
  18. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
    [Crossref]
  19. J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Opt. 42, 7117–7120 (2003).
    [Crossref]
  20. L. Grad and J. Možina, “Acoustic in situ monitoring of excimer laser ablation of different ceramics,” Appl. Surf. Sci. 69, 370–375 (1993).
    [Crossref]
  21. B. J. Wong, L. Gibbs, J. Neev, and J. Shanks, “Measurement of acoustic transients during pulsed holmium:yag laser ablation of cadaveric human temporal bone,” Laser Med. Sci. 15, 2–5 (2000).
    [Crossref]
  22. T. Efthimiopoulos, E. Kritsotakis, H. Kiagias, C. Savvakis, and Y. Bertachas, “Laser ablation rate of materials using the generated acoustic waves,” J. Phys. D: Appl. Phys. 31, 2648 (1998).
    [Crossref]
  23. S. Davies, C. Edwards, G. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D: Appl. Phys. 26, 329 (1999).
    [Crossref]
  24. H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
    [Crossref]
  25. S. Hosseini, J. Yu, Q. Luo, and S. Chin, “Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study,” Appl. Phys. B: Lasers Opt. 79, 519–523 (2004).
    [Crossref]
  26. F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
    [Crossref]
  27. L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  28. J. Odhner, D. Romanov, and R. Levis, “Self-shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
    [Crossref] [PubMed]
  29. T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
    [Crossref]
  30. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quant. Electron. 39, 205 (2009).
    [Crossref]
  31. G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced breakdown spectroscopy and ablation threshold analysis using a megahertz yb fiber laser oscillator,” Spectrochim. Acta, Part B 107, 146–151 (2015).
    [Crossref]
  32. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
    [Crossref]
  33. W. M. Wood, C. Siders, and M. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523 (1991).
    [Crossref] [PubMed]
  34. D. Grischkowsky, E. Courtens, and J. Armstrong, “Observation of self-steepening of optical pulses with possible shock formation,” Phys. Rev. Lett. 31, 422 (1973).
    [Crossref]
  35. C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. Tikhonchuk, “Conical forward thz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
    [Crossref]
  36. S. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084 (1992).
    [Crossref] [PubMed]
  37. K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” J. Appl. Phys. 118, 043107 (2015).
    [Crossref]
  38. S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B 97, 13–33 (2014).
    [Crossref]
  39. B. Zmerli, N. B. Nessib, M. Dimitrijević, and S. Sahal-Bréchot, “Stark broadening calculations of neutral copper spectral lines and temperature dependence,” Phys. Scr. 82, 055301 (2010).
    [Crossref]
  40. H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
    [Crossref]
  41. M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101, 034101 (2012).
    [Crossref]
  42. S. L. Chin, D. K. Evans, R. D. McAlpine, and W. N. Selander, “Single-pulse photoacoustic technique for measuring ir multiphoton absorption by polyatomic molecules,” Appl. Opt. 21, 65–68 (1982).
    [Crossref] [PubMed]
  43. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
    [Crossref]

2016 (1)

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

2015 (5)

S. Harilal, J. Yeak, and M. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23, 27113–27122 (2015).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced breakdown spectroscopy and ablation threshold analysis using a megahertz yb fiber laser oscillator,” Spectrochim. Acta, Part B 107, 146–151 (2015).
[Crossref]

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” J. Appl. Phys. 118, 043107 (2015).
[Crossref]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

2014 (1)

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B 97, 13–33 (2014).
[Crossref]

2012 (1)

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101, 034101 (2012).
[Crossref]

2011 (1)

X. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: Strontium and its isotopes,” Spectrochim. Acta, Part B 66, 767–775 (2011).
[Crossref]

2010 (2)

B. Zmerli, N. B. Nessib, M. Dimitrijević, and S. Sahal-Bréchot, “Stark broadening calculations of neutral copper spectral lines and temperature dependence,” Phys. Scr. 82, 055301 (2010).
[Crossref]

J. Odhner, D. Romanov, and R. Levis, “Self-shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
[Crossref] [PubMed]

2009 (2)

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quant. Electron. 39, 205 (2009).
[Crossref]

2007 (2)

J.-F. Daigle, P. Mathieu, G. Roy, J.-R. Simard, and S. Chin, “Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy,” Opt. Commun. 278, 147–152 (2007).
[Crossref]

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. Tikhonchuk, “Conical forward thz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

2006 (3)

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
[Crossref]

H. L. Xu, W. Liu, and S. L. Chin, “Remote time-resolved filament-induced breakdown spectroscopy of biological materials,” Opt. Lett. 31, 1540–1542 (2006).
[Crossref] [PubMed]

2005 (3)

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
[Crossref]

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

2004 (4)

S. Hosseini, J. Yu, Q. Luo, and S. Chin, “Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study,” Appl. Phys. B: Lasers Opt. 79, 519–523 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

S. Palanco, S. Conesa, and J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462–467 (2004).
[Crossref]

2003 (1)

2002 (1)

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

2001 (1)

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta, Part B 56, 707–714 (2001).
[Crossref]

2000 (3)

B. J. Wong, L. Gibbs, J. Neev, and J. Shanks, “Measurement of acoustic transients during pulsed holmium:yag laser ablation of cadaveric human temporal bone,” Laser Med. Sci. 15, 2–5 (2000).
[Crossref]

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (libs) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[Crossref]

1999 (3)

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

S. Davies, C. Edwards, G. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D: Appl. Phys. 26, 329 (1999).
[Crossref]

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

1998 (1)

T. Efthimiopoulos, E. Kritsotakis, H. Kiagias, C. Savvakis, and Y. Bertachas, “Laser ablation rate of materials using the generated acoustic waves,” J. Phys. D: Appl. Phys. 31, 2648 (1998).
[Crossref]

1993 (1)

L. Grad and J. Možina, “Acoustic in situ monitoring of excimer laser ablation of different ceramics,” Appl. Surf. Sci. 69, 370–375 (1993).
[Crossref]

1992 (1)

S. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084 (1992).
[Crossref] [PubMed]

1991 (1)

W. M. Wood, C. Siders, and M. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523 (1991).
[Crossref] [PubMed]

1982 (1)

1973 (1)

D. Grischkowsky, E. Courtens, and J. Armstrong, “Observation of self-steepening of optical pulses with possible shock formation,” Phys. Rev. Lett. 31, 422 (1973).
[Crossref]

1966 (1)

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self modelocking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

1965 (1)

L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

1964 (1)

W. Liu, S. Petit, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Ackermann, R.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
[Crossref]

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

Akozbek, N.

W. Liu, S. Petit, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Aközbek, N.

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

Armstrong, J.

D. Grischkowsky, E. Courtens, and J. Armstrong, “Observation of self-steepening of optical pulses with possible shock formation,” Phys. Rev. Lett. 31, 422 (1973).
[Crossref]

Asimellis, G.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta, Part B 56, 707–714 (2001).
[Crossref]

Barefield, J. E.

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” J. Appl. Phys. 118, 043107 (2015).
[Crossref]

Baudelet, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101, 034101 (2012).
[Crossref]

Becker, A.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

W. Liu, S. Petit, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Bégin, M.

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

Bergé, L.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
[Crossref]

Bertachas, Y.

T. Efthimiopoulos, E. Kritsotakis, H. Kiagias, C. Savvakis, and Y. Bertachas, “Laser ablation rate of materials using the generated acoustic waves,” J. Phys. D: Appl. Phys. 31, 2648 (1998).
[Crossref]

Bol’shakov, A. A.

X. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: Strontium and its isotopes,” Spectrochim. Acta, Part B 66, 767–775 (2011).
[Crossref]

Bourayou, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Boutou, V.

Bowden, C.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

W. Liu, S. Petit, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Bromley, B.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta, Part B 56, 707–714 (2001).
[Crossref]

Burnett, K.

S. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084 (1992).
[Crossref] [PubMed]

Chan, G. C.-Y.

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

Chien, C. Y.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

Chien, C.-Y.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Chin, S.

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

J.-F. Daigle, P. Mathieu, G. Roy, J.-R. Simard, and S. Chin, “Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy,” Opt. Commun. 278, 147–152 (2007).
[Crossref]

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

S. Hosseini, J. Yu, Q. Luo, and S. Chin, “Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study,” Appl. Phys. B: Lasers Opt. 79, 519–523 (2004).
[Crossref]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

W. Liu, S. Petit, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Chin, S. L.

Choi, I.

X. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: Strontium and its isotopes,” Spectrochim. Acta, Part B 66, 767–775 (2011).
[Crossref]

Colgan, J.

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” J. Appl. Phys. 118, 043107 (2015).
[Crossref]

Comtois, D.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

Conesa, S.

S. Palanco, S. Conesa, and J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462–467 (2004).
[Crossref]

Couairon, A.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. Tikhonchuk, “Conical forward thz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Courtens, E.

D. Grischkowsky, E. Courtens, and J. Armstrong, “Observation of self-steepening of optical pulses with possible shock formation,” Phys. Rev. Lett. 31, 422 (1973).
[Crossref]

Cremers, D. A.

D’Amico, C.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. Tikhonchuk, “Conical forward thz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Daigle, J.-F.

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

J.-F. Daigle, P. Mathieu, G. Roy, J.-R. Simard, and S. Chin, “Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy,” Opt. Commun. 278, 147–152 (2007).
[Crossref]

Dantus, M.

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced breakdown spectroscopy and ablation threshold analysis using a megahertz yb fiber laser oscillator,” Spectrochim. Acta, Part B 107, 146–151 (2015).
[Crossref]

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

Davies, S.

S. Davies, C. Edwards, G. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D: Appl. Phys. 26, 329 (1999).
[Crossref]

DeMaria, A. J.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self modelocking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

Desparois, A.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

Dimitrijevic, M.

B. Zmerli, N. B. Nessib, M. Dimitrijević, and S. Sahal-Bréchot, “Stark broadening calculations of neutral copper spectral lines and temperature dependence,” Phys. Scr. 82, 055301 (2010).
[Crossref]

Downer, M.

W. M. Wood, C. Siders, and M. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523 (1991).
[Crossref] [PubMed]

Durand, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101, 034101 (2012).
[Crossref]

Edwards, C.

S. Davies, C. Edwards, G. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D: Appl. Phys. 26, 329 (1999).
[Crossref]

Efthimiopoulos, T.

T. Efthimiopoulos, E. Kritsotakis, H. Kiagias, C. Savvakis, and Y. Bertachas, “Laser ablation rate of materials using the generated acoustic waves,” J. Phys. D: Appl. Phys. 31, 2648 (1998).
[Crossref]

Eislöffel, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Evans, D. K.

Favre, C.

Ferris, M. J.

Franco, M.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. Tikhonchuk, “Conical forward thz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Frey, S.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
[Crossref]

Geffroy, S.

Gibbs, L.

B. J. Wong, L. Gibbs, J. Neev, and J. Shanks, “Measurement of acoustic transients during pulsed holmium:yag laser ablation of cadaveric human temporal bone,” Laser Med. Sci. 15, 2–5 (2000).
[Crossref]

Grad, L.

L. Grad and J. Možina, “Acoustic in situ monitoring of excimer laser ablation of different ceramics,” Appl. Surf. Sci. 69, 370–375 (1993).
[Crossref]

Gravel, J.-F.

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

Grischkowsky, D.

D. Grischkowsky, E. Courtens, and J. Armstrong, “Observation of self-steepening of optical pulses with possible shock formation,” Phys. Rev. Lett. 31, 422 (1973).
[Crossref]

Gross, A.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

Gunaratne, T.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

Hang, W.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B 97, 13–33 (2014).
[Crossref]

Harilal, S.

Hartig, K. C.

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” J. Appl. Phys. 118, 043107 (2015).
[Crossref]

Hatzes, A. P.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Hazlett, R.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta, Part B 56, 707–714 (2001).
[Crossref]

He, M.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B 97, 13–33 (2014).
[Crossref]

Heynau, H.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self modelocking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

Hosseini, S.

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

S. Hosseini, J. Yu, Q. Luo, and S. Chin, “Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study,” Appl. Phys. B: Lasers Opt. 79, 519–523 (2004).
[Crossref]

Hou, H.

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

Houard, A.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. Tikhonchuk, “Conical forward thz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Huang, B.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B 97, 13–33 (2014).
[Crossref]

Ilyin, A. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

Jiang, Y.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B 97, 13–33 (2014).
[Crossref]

Jiang, Z.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

Jie, Z.

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

Jin, Y.

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

Johnston, T.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Johnston, T. W.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

Jovanovic, I.

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” J. Appl. Phys. 118, 043107 (2015).
[Crossref]

Kamali, Y.

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

Kandidov, V.

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

Kandidov, V. P.

V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quant. Electron. 39, 205 (2009).
[Crossref]

Kangas, M.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

Kasparian, J.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
[Crossref]

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Opt. 42, 7117–7120 (2003).
[Crossref]

Keldysh, L.

L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Kiagias, H.

T. Efthimiopoulos, E. Kritsotakis, H. Kiagias, C. Savvakis, and Y. Bertachas, “Laser ablation rate of materials using the generated acoustic waves,” J. Phys. D: Appl. Phys. 31, 2648 (1998).
[Crossref]

Kieffer, J.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Kieffer, J.-C.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

Kilcrease, D. P.

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” J. Appl. Phys. 118, 043107 (2015).
[Crossref]

Knight, A. K.

Kolesik, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

Kosareva, O.

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

Kosareva, O. G.

V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quant. Electron. 39, 205 (2009).
[Crossref]

Kritsotakis, E.

T. Efthimiopoulos, E. Kritsotakis, H. Kiagias, C. Savvakis, and Y. Bertachas, “Laser ablation rate of materials using the generated acoustic waves,” J. Phys. D: Appl. Phys. 31, 2648 (1998).
[Crossref]

La Fontaine, B.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

Labutin, T. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

Laserna, J.

S. Palanco, S. Conesa, and J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462–467 (2004).
[Crossref]

Laux, U.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Lednev, V. N.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

Lessard, F.

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

Levis, R.

J. Odhner, D. Romanov, and R. Levis, “Self-shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
[Crossref] [PubMed]

Lim, K.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101, 034101 (2012).
[Crossref]

Liu, W.

H. L. Xu, W. Liu, and S. L. Chin, “Remote time-resolved filament-induced breakdown spectroscopy of biological materials,” Opt. Lett. 31, 1540–1542 (2006).
[Crossref] [PubMed]

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

W. Liu, S. Petit, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Lozovoy, V.

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced breakdown spectroscopy and ablation threshold analysis using a megahertz yb fiber laser oscillator,” Spectrochim. Acta, Part B 107, 146–151 (2015).
[Crossref]

Luo, Q.

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

S. Hosseini, J. Yu, Q. Luo, and S. Chin, “Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study,” Appl. Phys. B: Lasers Opt. 79, 519–523 (2004).
[Crossref]

Mao, X.

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

X. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: Strontium and its isotopes,” Spectrochim. Acta, Part B 66, 767–775 (2011).
[Crossref]

Marceau, C.

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

Martin, J.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta, Part B 56, 707–714 (2001).
[Crossref]

Mathieu, P.

J.-F. Daigle, P. Mathieu, G. Roy, J.-R. Simard, and S. Chin, “Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy,” Opt. Commun. 278, 147–152 (2007).
[Crossref]

McAlpine, R. D.

McKay, C. P.

X. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: Strontium and its isotopes,” Spectrochim. Acta, Part B 66, 767–775 (2011).
[Crossref]

Méjean, G.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
[Crossref]

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

Mercure, H. P.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

Mlejnek, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

Moloney, J. V.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

Mondelain, D.

Možina, J.

L. Grad and J. Možina, “Acoustic in situ monitoring of excimer laser ablation of different ceramics,” Appl. Surf. Sci. 69, 370–375 (1993).
[Crossref]

Mysyrowicz, A.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. Tikhonchuk, “Conical forward thz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Neev, J.

B. J. Wong, L. Gibbs, J. Neev, and J. Shanks, “Measurement of acoustic transients during pulsed holmium:yag laser ablation of cadaveric human temporal bone,” Laser Med. Sci. 15, 2–5 (2000).
[Crossref]

Nessib, N. B.

B. Zmerli, N. B. Nessib, M. Dimitrijević, and S. Sahal-Bréchot, “Stark broadening calculations of neutral copper spectral lines and temperature dependence,” Phys. Scr. 82, 055301 (2010).
[Crossref]

Nie, B.

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced breakdown spectroscopy and ablation threshold analysis using a megahertz yb fiber laser oscillator,” Spectrochim. Acta, Part B 107, 146–151 (2015).
[Crossref]

Odhner, J.

J. Odhner, D. Romanov, and R. Levis, “Self-shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
[Crossref] [PubMed]

Palanco, S.

S. Palanco, S. Conesa, and J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462–467 (2004).
[Crossref]

Palmer, S. B.

S. Davies, C. Edwards, G. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D: Appl. Phys. 26, 329 (1999).
[Crossref]

Panov, N.

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

Parker, D. E.

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced breakdown spectroscopy and ablation threshold analysis using a megahertz yb fiber laser oscillator,” Spectrochim. Acta, Part B 107, 146–151 (2015).
[Crossref]

Parker, G. J.

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced breakdown spectroscopy and ablation threshold analysis using a megahertz yb fiber laser oscillator,” Spectrochim. Acta, Part B 107, 146–151 (2015).
[Crossref]

Pearce, T.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta, Part B 56, 707–714 (2001).
[Crossref]

Peng, W.

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

Pepin, H.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Pépin, H.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

Perry, D. L.

X. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: Strontium and its isotopes,” Spectrochim. Acta, Part B 66, 767–775 (2011).
[Crossref]

Petit, S.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

W. Liu, S. Petit, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Phillips, M.

Popov, A. M.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

Prade, B.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. Tikhonchuk, “Conical forward thz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Rae, S.

S. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084 (1992).
[Crossref] [PubMed]

Ramme, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101, 034101 (2012).
[Crossref]

Richardson, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101, 034101 (2012).
[Crossref]

Rizk, F.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Rodriguez, M.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Rohwetter, P.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

Romanov, D.

J. Odhner, D. Romanov, and R. Levis, “Self-shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
[Crossref] [PubMed]

Rosenwasser, S.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta, Part B 56, 707–714 (2001).
[Crossref]

Roy, G.

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

J.-F. Daigle, P. Mathieu, G. Roy, J.-R. Simard, and S. Chin, “Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy,” Opt. Commun. 278, 147–152 (2007).
[Crossref]

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

Russo, R. E.

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

X. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: Strontium and its isotopes,” Spectrochim. Acta, Part B 66, 767–775 (2011).
[Crossref]

Sahal-Bréchot, S.

B. Zmerli, N. B. Nessib, M. Dimitrijević, and S. Sahal-Bréchot, “Stark broadening calculations of neutral copper spectral lines and temperature dependence,” Phys. Scr. 82, 055301 (2010).
[Crossref]

Salmon, E.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
[Crossref]

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Opt. 42, 7117–7120 (2003).
[Crossref]

Sauerbrey, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Savvakis, C.

T. Efthimiopoulos, E. Kritsotakis, H. Kiagias, C. Savvakis, and Y. Bertachas, “Laser ablation rate of materials using the generated acoustic waves,” J. Phys. D: Appl. Phys. 31, 2648 (1998).
[Crossref]

Scherbarth, N. L.

Scholz, A.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Selander, W. N.

Shanks, J.

B. J. Wong, L. Gibbs, J. Neev, and J. Shanks, “Measurement of acoustic transients during pulsed holmium:yag laser ablation of cadaveric human temporal bone,” Laser Med. Sci. 15, 2–5 (2000).
[Crossref]

Shlenov, S. A.

V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quant. Electron. 39, 205 (2009).
[Crossref]

Siders, C.

W. M. Wood, C. Siders, and M. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523 (1991).
[Crossref] [PubMed]

Simard, J.-R.

J.-F. Daigle, P. Mathieu, G. Roy, J.-R. Simard, and S. Chin, “Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy,” Opt. Commun. 278, 147–152 (2007).
[Crossref]

Singh, S.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

Skupin, S.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
[Crossref]

Sorkhabi, O.

X. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: Strontium and its isotopes,” Spectrochim. Acta, Part B 66, 767–775 (2011).
[Crossref]

Stecklum, B.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Stelmaszczyk, K.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

Stetser, D. A.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self modelocking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

Taylor, G.

S. Davies, C. Edwards, G. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D: Appl. Phys. 26, 329 (1999).
[Crossref]

Tikhonchuk, V.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. Tikhonchuk, “Conical forward thz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Vidal, F.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

Wang, X.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B 97, 13–33 (2014).
[Crossref]

Weidman, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101, 034101 (2012).
[Crossref]

Wei-Jun, L.

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

Wolf, J.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
[Crossref]

Wolf, J.-P.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Opt. 42, 7117–7120 (2003).
[Crossref]

Wong, B. J.

B. J. Wong, L. Gibbs, J. Neev, and J. Shanks, “Measurement of acoustic transients during pulsed holmium:yag laser ablation of cadaveric human temporal bone,” Laser Med. Sci. 15, 2–5 (2000).
[Crossref]

Wood, W. M.

W. M. Wood, C. Siders, and M. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523 (1991).
[Crossref] [PubMed]

Wöste, L.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Wright, E. M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

Xiao-Hui, Y.

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

Xu, H. L.

Yeak, J.

Yu, J.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
[Crossref]

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
[Crossref]

S. Hosseini, J. Yu, Q. Luo, and S. Chin, “Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study,” Appl. Phys. B: Lasers Opt. 79, 519–523 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Opt. 42, 7117–7120 (2003).
[Crossref]

Yu-Tong, L.

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

Zhang, B.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B 97, 13–33 (2014).
[Crossref]

Zhang, S.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B 97, 13–33 (2014).
[Crossref]

Zhao-Hua, W.

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

Zheng, R.

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

Zhi-Yi, W.

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

Zhi-Yuan, Z.

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

Zigler, A.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta, Part B 56, 707–714 (2001).
[Crossref]

Zmerli, B.

B. Zmerli, N. B. Nessib, M. Dimitrijević, and S. Sahal-Bréchot, “Stark broadening calculations of neutral copper spectral lines and temperature dependence,” Phys. Scr. 82, 055301 (2010).
[Crossref]

Zorba, V.

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

Zuo-Qiang, H.

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (4)

Q. Luo, S. Hosseini, W. Liu, J.-F. Gravel, O. Kosareva, N. Panov, N. Aközbek, V. Kandidov, G. Roy, and S. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B: Lasers Opt. 80, 35–38 (2005).
[Crossref]

J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, and S. Chin, “A simple method to significantly increase filaments’ length and ionization density,” Appl. Phys. B: Lasers Opt. 94, 249–257 (2009).
[Crossref]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. Wolf, L. Bergé, and S. Skupin, “UV-Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations,” Appl. Phys. B: Lasers Opt. 82, 341–345 (2006).
[Crossref]

S. Hosseini, J. Yu, Q. Luo, and S. Chin, “Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study,” Appl. Phys. B: Lasers Opt. 79, 519–523 (2004).
[Crossref]

Appl. Phys. Lett. (4)

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

W. Liu, S. Petit, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self modelocking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101, 034101 (2012).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

L. Grad and J. Možina, “Acoustic in situ monitoring of excimer laser ablation of different ceramics,” Appl. Surf. Sci. 69, 370–375 (1993).
[Crossref]

Chem. Phys. Lett. (1)

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

Chin. Phys. Lett. (1)

H. Zuo-Qiang, Y. Jin, Z. Jie, L. Yu-Tong, Y. Xiao-Hui, Z. Zhi-Yuan, W. Peng, W. Zhao-Hua, L. Wei-Jun, and W. Zhi-Yi, “Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air,” Chin. Phys. Lett. 22, 636 (2005).
[Crossref]

IEEE Trans. Plasma Sci. (1)

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

J. Anal. At. Spectrom. (2)

S. Palanco, S. Conesa, and J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462–467 (2004).
[Crossref]

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31, 90–118 (2016).
[Crossref]

J. Appl. Phys. (1)

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” J. Appl. Phys. 118, 043107 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (2)

T. Efthimiopoulos, E. Kritsotakis, H. Kiagias, C. Savvakis, and Y. Bertachas, “Laser ablation rate of materials using the generated acoustic waves,” J. Phys. D: Appl. Phys. 31, 2648 (1998).
[Crossref]

S. Davies, C. Edwards, G. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D: Appl. Phys. 26, 329 (1999).
[Crossref]

Laser Med. Sci. (1)

B. J. Wong, L. Gibbs, J. Neev, and J. Shanks, “Measurement of acoustic transients during pulsed holmium:yag laser ablation of cadaveric human temporal bone,” Laser Med. Sci. 15, 2–5 (2000).
[Crossref]

Opt. Commun. (2)

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

J.-F. Daigle, P. Mathieu, G. Roy, J.-R. Simard, and S. Chin, “Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy,” Opt. Commun. 278, 147–152 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Plasmas (1)

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[Crossref]

Phys. Rev. A (1)

S. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084 (1992).
[Crossref] [PubMed]

Phys. Rev. E (1)

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Phys. Rev. Lett. (5)

J. Odhner, D. Romanov, and R. Levis, “Self-shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
[Crossref] [PubMed]

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

W. M. Wood, C. Siders, and M. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523 (1991).
[Crossref] [PubMed]

D. Grischkowsky, E. Courtens, and J. Armstrong, “Observation of self-steepening of optical pulses with possible shock formation,” Phys. Rev. Lett. 31, 422 (1973).
[Crossref]

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. Tikhonchuk, “Conical forward thz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Phys. Scr. (1)

B. Zmerli, N. B. Nessib, M. Dimitrijević, and S. Sahal-Bréchot, “Stark broadening calculations of neutral copper spectral lines and temperature dependence,” Phys. Scr. 82, 055301 (2010).
[Crossref]

Quant. Electron. (1)

V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quant. Electron. 39, 205 (2009).
[Crossref]

Sov. Phys. JETP (1)

L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Spectrochim. Acta, Part B (7)

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced breakdown spectroscopy and ablation threshold analysis using a megahertz yb fiber laser oscillator,” Spectrochim. Acta, Part B 107, 146–151 (2015).
[Crossref]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B 97, 13–33 (2014).
[Crossref]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta, Part B 113, 113–118 (2015).
[Crossref]

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta, Part B 56, 707–714 (2001).
[Crossref]

X. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: Strontium and its isotopes,” Spectrochim. Acta, Part B 66, 767–775 (2011).
[Crossref]

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta, Part B 60, 1025–1033 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simplified schematic of FIBS experimental setup
Fig. 2
Fig. 2 Peak-to-peak acoustic signal averaged over 100 laser shots as a function of microphone distance from the geometrical focus of the lens (f = 4 m) for 53 fs laser pulses at an energy of 3.5 mJ. The region bounded by the vertical dashed lines indicates the locations at which filament-induced line emission from the copper target was observed.
Fig. 3
Fig. 3 Typical Cu FIBS spectra at several filament-copper interaction points.
Fig. 4
Fig. 4 (a) Normalized peak spectral intensity (filled circle) and SBR (filled square) of Cu I 521.82 nm emission line. (b) Propagation distance dependent temperature (filled circle) and density (filled square). For the −10 cm position, the density was calculated using the 521.82 nm emission line, due to omission of the 510.55 nm emission in the measurement at this filament propagation distance. (c) Acoustic signal detected with a microphone placed 5 cm away from the copper target (filled circle) and acoustic vibration signal detected with a transducer attached to the back face of the copper target (filled square). The lines are to guide the eye.
Fig. 5
Fig. 5 CCD images of light emission as plasma expands for filament-copper interaction points of 50–20cm (a–h). The integrated light yield as function of filament-copper interaction distance is shown in (i). In the images, the propagation direction of the filament is bottom-up and the location of the target is indicated by a white dashed line in (a).
Fig. 6
Fig. 6 Measured filament spectrum at −120 cm (black) and at 20 cm (blue).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N e ( cm 3 ) 1.6 × 10 12 T e 1 / 2 ( Δ E ) 3 ,

Metrics