Abstract

External passive femtosecond enhancement cavities (fsECs) are widely used to increase the efficiency of non-linear conversion processes like high harmonic generation (HHG) at high repetition rates. Their performance is often limited by elliptical beam profiles, caused by oblique incidence on spherical focusing mirrors. We introduce a novel three-dimensionally folded variant of the typical planar bow-tie resonator geometry that guarantees circular beam profiles, maintains linear polarization, and allows for a significantly tighter focus as well as a larger beam cross-section on the cavity mirrors. The scheme is applied to improve focusing in a Ti:Sapphire based VUV frequency comb system, targeting the 5th harmonic around 160 nm (7.8 eV) towards high-precision spectroscopy of the low-energy isomer state of Thorium-229. It will also be beneficial in fsEC-applications with even higher seeding and intracavity power where the damage threshold of the mirrors becomes a major concern.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation

Akira Ozawa, Zhigang Zhao, Makoto Kuwata-Gonokami, and Yohei Kobayashi
Opt. Express 23(12) 15107-15118 (2015)

Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity

Johannes Weitenberg, Peter Rußbüldt, Tino Eidam, and Ioachim Pupeza
Opt. Express 19(10) 9551-9561 (2011)

Vacuum ultraviolet frequency combs generated by a femtosecond enhancement cavity in the visible

Birgitta Bernhardt, Akira Ozawa, Andreas Vernaleken, Ioachim Pupeza, Jan Kaster, Yohei Kobayashi, Ronald Holzwarth, Ernst Fill, Ferenc Krausz, Theodor W. Hänsch, and Thomas Udem
Opt. Lett. 37(4) 503-505 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B62 (2010).
    [Crossref]
  2. B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
    [Crossref] [PubMed]
  3. E. Peik, K. Zimmermann, M. Okhapkin, and C. Tamm, “Prospects for a Nuclear Optical Frequency Standard based on Thorium-229,” in 7th Symp. on Frequency Standards and Metrology (2008), 532–538.
  4. C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy,” Phys. Rev. Lett. 102, 233004 (2009).
    [Crossref] [PubMed]
  5. G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm, “Performance of a 229 Thorium solid-state nuclear clock,” New J. Phys. 14, 083019 (2012).
    [Crossref]
  6. P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm, “229Thorium-doped calcium fluoride for nuclear laser spectroscopy,” J. Phys.: Condens. Matter 26, 105402 (2014).
  7. J. Omachi, K. Yoshioka, and M. Kuwata-Gonokami, “High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy,” Opt. Express 20(21), 23542–23552 (2012).
    [Crossref] [PubMed]
  8. A. Siddiqui, K. Hong, J. Moses, J. Chen, F. Ö. Ilday, and F. X. Kärtner, “Demonstration of a cavity-enhanced optical parametric chirped-pulse amplification system,” Opt. Lett. 36(7), 1206–1208 (2011).
    [Crossref] [PubMed]
  9. Y Kobayashi, K. Torizuka, A. Marandi, R.L. Byer, R.A. McCracken, Z. Zhang, and D.T. Reid, “Femtosecond optical parametric oscillator frequency combs,” J. Opt. 17, 094010 (2015).
    [Crossref]
  10. F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 32(18), 23960–23967 (2015).
    [Crossref]
  11. A.K. Mills, T.J. Hammond, M.H.C. Lam, and D.J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45, 142001 (2012).
    [Crossref]
  12. R.J. Jones, K.D. Moll, M.J. Thorpe, and J. Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
    [Crossref] [PubMed]
  13. Ch. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, and T.W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
    [Crossref] [PubMed]
  14. A. Ozawa, Z. Zhao, M. Kuwata-Gonokami, and Y. Kobayashi, “High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation,” Opt. Express 2315107 (2015).
    [Crossref] [PubMed]
  15. J. Lee, D.R. Carlson, and R.J. Jones, “Optimizing intracavity high harmonic generation for XUV fs frequency combs,” Opt. Express 19, 23315 (2011).
    [Crossref] [PubMed]
  16. E. Seres, J. Seres, and C. Spielmann, “Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate,” Opt. Express 20(6), 6185–6190 (2012).
    [Crossref] [PubMed]
  17. H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Large-mode enhancement cavities,” Opt. Express 21(9), 11606–11617 (2013).
    [Crossref] [PubMed]
  18. K. Dupraz, K. Cassou, A. Martens, and F. Zomer, “The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities,” Opt. Comm. 353, 178–183 (2015).
    [Crossref]
  19. J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
    [Crossref]
  20. H. Kogelnik and T. Li, “Laser Beams and Resonators,” Appl. Opt. 5(10), 1550–1567 (1966).
    [Crossref] [PubMed]
  21. S. Yefet, V. Jouravsky, and A. Peer, “Kerr lens mode locking without nonlinear astigmatism,” J. Opt. Soc. Am. B 30(3), 549–551 (2013).
    [Crossref]
  22. T.W. Haensch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3) 441–444 (1980).
    [Crossref]
  23. K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117, 957–967 (2014).
    [Crossref]
  24. P. Kruit, J. Kimman, H. G. Muller, and M. J. Van Der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
    [Crossref]

2015 (4)

Y Kobayashi, K. Torizuka, A. Marandi, R.L. Byer, R.A. McCracken, Z. Zhang, and D.T. Reid, “Femtosecond optical parametric oscillator frequency combs,” J. Opt. 17, 094010 (2015).
[Crossref]

F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 32(18), 23960–23967 (2015).
[Crossref]

K. Dupraz, K. Cassou, A. Martens, and F. Zomer, “The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities,” Opt. Comm. 353, 178–183 (2015).
[Crossref]

A. Ozawa, Z. Zhao, M. Kuwata-Gonokami, and Y. Kobayashi, “High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation,” Opt. Express 2315107 (2015).
[Crossref] [PubMed]

2014 (2)

K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117, 957–967 (2014).
[Crossref]

P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm, “229Thorium-doped calcium fluoride for nuclear laser spectroscopy,” J. Phys.: Condens. Matter 26, 105402 (2014).

2013 (2)

2012 (5)

G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm, “Performance of a 229 Thorium solid-state nuclear clock,” New J. Phys. 14, 083019 (2012).
[Crossref]

A.K. Mills, T.J. Hammond, M.H.C. Lam, and D.J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45, 142001 (2012).
[Crossref]

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

E. Seres, J. Seres, and C. Spielmann, “Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate,” Opt. Express 20(6), 6185–6190 (2012).
[Crossref] [PubMed]

J. Omachi, K. Yoshioka, and M. Kuwata-Gonokami, “High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy,” Opt. Express 20(21), 23542–23552 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2009 (1)

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy,” Phys. Rev. Lett. 102, 233004 (2009).
[Crossref] [PubMed]

2007 (1)

B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref] [PubMed]

2005 (2)

R.J. Jones, K.D. Moll, M.J. Thorpe, and J. Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[Crossref] [PubMed]

Ch. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, and T.W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

1983 (1)

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van Der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

1980 (1)

T.W. Haensch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3) 441–444 (1980).
[Crossref]

1966 (1)

Apolonski, A.

Beck, B.

B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref] [PubMed]

Becker, J.

B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref] [PubMed]

Beiersdorfer, P.

B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref] [PubMed]

Bonis, J.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Brown, G.

B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref] [PubMed]

Byer, R.L.

Y Kobayashi, K. Torizuka, A. Marandi, R.L. Byer, R.A. McCracken, Z. Zhang, and D.T. Reid, “Femtosecond optical parametric oscillator frequency combs,” J. Opt. 17, 094010 (2015).
[Crossref]

Campbell, C. J.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy,” Phys. Rev. Lett. 102, 233004 (2009).
[Crossref] [PubMed]

Carlson, D.R.

Carstens, H.

Cassou, K.

K. Dupraz, K. Cassou, A. Martens, and F. Zomer, “The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities,” Opt. Comm. 353, 178–183 (2015).
[Crossref]

Chapman, M. S.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy,” Phys. Rev. Lett. 102, 233004 (2009).
[Crossref] [PubMed]

Chen, J.

Chiche, R.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Churchill, L. R.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy,” Phys. Rev. Lett. 102, 233004 (2009).
[Crossref] [PubMed]

Cizeron, R.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Cohen, M.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Cormier, E.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Cornebise, P.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Couillaud, B.

T.W. Haensch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3) 441–444 (1980).
[Crossref]

Delerue, N.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Depalatis, M. V.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy,” Phys. Rev. Lett. 102, 233004 (2009).
[Crossref] [PubMed]

Dessovic, P.

P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm, “229Thorium-doped calcium fluoride for nuclear laser spectroscopy,” J. Phys.: Condens. Matter 26, 105402 (2014).

Diddams, S. A.

Dupraz, K.

K. Dupraz, K. Cassou, A. Martens, and F. Zomer, “The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities,” Opt. Comm. 353, 178–183 (2015).
[Crossref]

Fill, E.

Flaminio, R.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Giessen, H.

F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 32(18), 23960–23967 (2015).
[Crossref]

Gohle, Ch.

Ch. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, and T.W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Haensch, T.W.

T.W. Haensch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3) 441–444 (1980).
[Crossref]

Hammond, T.J.

A.K. Mills, T.J. Hammond, M.H.C. Lam, and D.J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45, 142001 (2012).
[Crossref]

Hänsch, T.W.

Ch. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, and T.W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Hayasaka, K.

K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117, 957–967 (2014).
[Crossref]

Herrmann, M.

Ch. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, and T.W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Holzberger, S.

Holzwarth, R.

Ch. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, and T.W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Hong, K.

Ido, T.

K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117, 957–967 (2014).
[Crossref]

Ilday, F. Ö.

Jackson, R.A.

P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm, “229Thorium-doped calcium fluoride for nuclear laser spectroscopy,” J. Phys.: Condens. Matter 26, 105402 (2014).

Jehanno, D.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Jones, D.J.

A.K. Mills, T.J. Hammond, M.H.C. Lam, and D.J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45, 142001 (2012).
[Crossref]

Jones, R.J.

J. Lee, D.R. Carlson, and R.J. Jones, “Optimizing intracavity high harmonic generation for XUV fs frequency combs,” Opt. Express 19, 23315 (2011).
[Crossref] [PubMed]

R.J. Jones, K.D. Moll, M.J. Thorpe, and J. Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[Crossref] [PubMed]

Jouravsky, V.

Kärtner, F. X.

Kaster, J.

Kazakov, G.

P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm, “229Thorium-doped calcium fluoride for nuclear laser spectroscopy,” J. Phys.: Condens. Matter 26, 105402 (2014).

Kazakov, G. A.

G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm, “Performance of a 229 Thorium solid-state nuclear clock,” New J. Phys. 14, 083019 (2012).
[Crossref]

Kelley, R.

B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref] [PubMed]

Kilbourne, C.

B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref] [PubMed]

Kimman, J.

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van Der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

Kobayashi, Y

Y Kobayashi, K. Torizuka, A. Marandi, R.L. Byer, R.A. McCracken, Z. Zhang, and D.T. Reid, “Femtosecond optical parametric oscillator frequency combs,” J. Opt. 17, 094010 (2015).
[Crossref]

Kobayashi, Y.

Kogelnik, H.

Krausz, F.

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Large-mode enhancement cavities,” Opt. Express 21(9), 11606–11617 (2013).
[Crossref] [PubMed]

Ch. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, and T.W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Kruit, P.

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van Der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

Kuwata-Gonokami, M.

Kuzmich, A.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy,” Phys. Rev. Lett. 102, 233004 (2009).
[Crossref] [PubMed]

Labaye, F.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Lacroix, M.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Lam, M.H.C.

A.K. Mills, T.J. Hammond, M.H.C. Lam, and D.J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45, 142001 (2012).
[Crossref]

Lee, J.

Li, T.

Litvinov, A. N.

G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm, “Performance of a 229 Thorium solid-state nuclear clock,” New J. Phys. 14, 083019 (2012).
[Crossref]

Marandi, A.

Y Kobayashi, K. Torizuka, A. Marandi, R.L. Byer, R.A. McCracken, Z. Zhang, and D.T. Reid, “Femtosecond optical parametric oscillator frequency combs,” J. Opt. 17, 094010 (2015).
[Crossref]

Marie, R.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Martens, A.

K. Dupraz, K. Cassou, A. Martens, and F. Zomer, “The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities,” Opt. Comm. 353, 178–183 (2015).
[Crossref]

Matsukevich, D. N.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy,” Phys. Rev. Lett. 102, 233004 (2009).
[Crossref] [PubMed]

McCracken, R.A.

Y Kobayashi, K. Torizuka, A. Marandi, R.L. Byer, R.A. McCracken, Z. Zhang, and D.T. Reid, “Femtosecond optical parametric oscillator frequency combs,” J. Opt. 17, 094010 (2015).
[Crossref]

Mercier, B.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Michel, C.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Mills, A.K.

A.K. Mills, T.J. Hammond, M.H.C. Lam, and D.J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45, 142001 (2012).
[Crossref]

Mohn, P.

P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm, “229Thorium-doped calcium fluoride for nuclear laser spectroscopy,” J. Phys.: Condens. Matter 26, 105402 (2014).

Moll, K.D.

R.J. Jones, K.D. Moll, M.J. Thorpe, and J. Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[Crossref] [PubMed]

Moody, K.

B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref] [PubMed]

Mörz, F.

F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 32(18), 23960–23967 (2015).
[Crossref]

Moses, J.

Muller, H. G.

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van Der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

Naylor, D. E.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy,” Phys. Rev. Lett. 102, 233004 (2009).
[Crossref] [PubMed]

Okhapkin, M.

E. Peik, K. Zimmermann, M. Okhapkin, and C. Tamm, “Prospects for a Nuclear Optical Frequency Standard based on Thorium-229,” in 7th Symp. on Frequency Standards and Metrology (2008), 532–538.

Omachi, J.

Ozawa, A.

Peer, A.

Peik, E.

E. Peik, K. Zimmermann, M. Okhapkin, and C. Tamm, “Prospects for a Nuclear Optical Frequency Standard based on Thorium-229,” in 7th Symp. on Frequency Standards and Metrology (2008), 532–538.

Peinaud, Y.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Pervak, V.

Pinard, L.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Porter, F.

B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref] [PubMed]

Prevost, C.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Pupeza, I.

Rauschenberger, J.

Ch. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, and T.W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Reid, D.T.

Y Kobayashi, K. Torizuka, A. Marandi, R.L. Byer, R.A. McCracken, Z. Zhang, and D.T. Reid, “Femtosecond optical parametric oscillator frequency combs,” J. Opt. 17, 094010 (2015).
[Crossref]

Romanenko, A. V.

G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm, “Performance of a 229 Thorium solid-state nuclear clock,” New J. Phys. 14, 083019 (2012).
[Crossref]

Romanenko, V. I.

G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm, “Performance of a 229 Thorium solid-state nuclear clock,” New J. Phys. 14, 083019 (2012).
[Crossref]

Schreitl, M.

P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm, “229Thorium-doped calcium fluoride for nuclear laser spectroscopy,” J. Phys.: Condens. Matter 26, 105402 (2014).

G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm, “Performance of a 229 Thorium solid-state nuclear clock,” New J. Phys. 14, 083019 (2012).
[Crossref]

Schuessler, H.A.

Ch. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, and T.W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Schumm, T.

P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm, “229Thorium-doped calcium fluoride for nuclear laser spectroscopy,” J. Phys.: Condens. Matter 26, 105402 (2014).

G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm, “Performance of a 229 Thorium solid-state nuclear clock,” New J. Phys. 14, 083019 (2012).
[Crossref]

Seres, E.

Seres, J.

Siddiqui, A.

Soskov, V.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Spielmann, C.

Steele, A. V.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy,” Phys. Rev. Lett. 102, 233004 (2009).
[Crossref] [PubMed]

Steinle, T.

F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 32(18), 23960–23967 (2015).
[Crossref]

Steinmann, A.

F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 32(18), 23960–23967 (2015).
[Crossref]

Tamm, C.

E. Peik, K. Zimmermann, M. Okhapkin, and C. Tamm, “Prospects for a Nuclear Optical Frequency Standard based on Thorium-229,” in 7th Symp. on Frequency Standards and Metrology (2008), 532–538.

Thorpe, M.J.

R.J. Jones, K.D. Moll, M.J. Thorpe, and J. Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[Crossref] [PubMed]

Torizuka, K.

Y Kobayashi, K. Torizuka, A. Marandi, R.L. Byer, R.A. McCracken, Z. Zhang, and D.T. Reid, “Femtosecond optical parametric oscillator frequency combs,” J. Opt. 17, 094010 (2015).
[Crossref]

Udem, T.

Ch. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, and T.W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

Van Der Wiel, M. J.

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van Der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

Variola, A.

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Wakui, K.

K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117, 957–967 (2014).
[Crossref]

Weitenberg, J.

Wilhelmy, J.

B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref] [PubMed]

Winkler, G.

P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm, “229Thorium-doped calcium fluoride for nuclear laser spectroscopy,” J. Phys.: Condens. Matter 26, 105402 (2014).

G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm, “Performance of a 229 Thorium solid-state nuclear clock,” New J. Phys. 14, 083019 (2012).
[Crossref]

Yatsenko, L. P.

G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm, “Performance of a 229 Thorium solid-state nuclear clock,” New J. Phys. 14, 083019 (2012).
[Crossref]

Ye, J.

R.J. Jones, K.D. Moll, M.J. Thorpe, and J. Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[Crossref] [PubMed]

Yefet, S.

Yoshioka, K.

Zhang, Z.

Y Kobayashi, K. Torizuka, A. Marandi, R.L. Byer, R.A. McCracken, Z. Zhang, and D.T. Reid, “Femtosecond optical parametric oscillator frequency combs,” J. Opt. 17, 094010 (2015).
[Crossref]

Zhao, Z.

Zimmermann, K.

E. Peik, K. Zimmermann, M. Okhapkin, and C. Tamm, “Prospects for a Nuclear Optical Frequency Standard based on Thorium-229,” in 7th Symp. on Frequency Standards and Metrology (2008), 532–538.

Zomer, F.

K. Dupraz, K. Cassou, A. Martens, and F. Zomer, “The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities,” Opt. Comm. 353, 178–183 (2015).
[Crossref]

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117, 957–967 (2014).
[Crossref]

J. Opt. (1)

Y Kobayashi, K. Torizuka, A. Marandi, R.L. Byer, R.A. McCracken, Z. Zhang, and D.T. Reid, “Femtosecond optical parametric oscillator frequency combs,” J. Opt. 17, 094010 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

A.K. Mills, T.J. Hammond, M.H.C. Lam, and D.J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45, 142001 (2012).
[Crossref]

J. Phys.: Condens. Matter (1)

P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm, “229Thorium-doped calcium fluoride for nuclear laser spectroscopy,” J. Phys.: Condens. Matter 26, 105402 (2014).

Journal of Instrumentation (1)

J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, and F. Zomer, “Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons,” Journal of Instrumentation 7, P01017 (2012).
[Crossref]

Nature (1)

Ch. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, and T.W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref] [PubMed]

New J. Phys. (1)

G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm, “Performance of a 229 Thorium solid-state nuclear clock,” New J. Phys. 14, 083019 (2012).
[Crossref]

Opt. Comm. (1)

K. Dupraz, K. Cassou, A. Martens, and F. Zomer, “The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities,” Opt. Comm. 353, 178–183 (2015).
[Crossref]

Opt. Commun. (1)

T.W. Haensch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3) 441–444 (1980).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. A (1)

P. Kruit, J. Kimman, H. G. Muller, and M. J. Van Der Wiel, “Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm,” Phys. Rev. A 28, 248–255 (1983).
[Crossref]

Phys. Rev. Lett. (3)

R.J. Jones, K.D. Moll, M.J. Thorpe, and J. Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[Crossref] [PubMed]

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy,” Phys. Rev. Lett. 102, 233004 (2009).
[Crossref] [PubMed]

B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. Moody, J. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, “Energy Splitting of the Ground-State Doublet in the Nucleus Th229,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref] [PubMed]

Other (1)

E. Peik, K. Zimmermann, M. Okhapkin, and C. Tamm, “Prospects for a Nuclear Optical Frequency Standard based on Thorium-229,” in 7th Symp. on Frequency Standards and Metrology (2008), 532–538.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of planar and three-dimensional resonator geometry. (a) Bow-tie resonator in standard planar layout. The primary and secondary foci are labeled F1 and F2. (b) Detailed view of the orthogonally folded beams around the two focusing mirrors of the non-planar geometry, with vertical (blue) and horizontal (red) optical planes.

Fig. 2
Fig. 2

Stability diagram and focus profiles. The calculation is based on the experimental parameters given in Section 3, that is f = 75 mm, λ = 800 nm, L = 2.77 m, AOI = 4.2°. (a) The primary and (b) secondary beam waist size is plotted over the entire stability region. The values for the horizontal and vertical plane differ in case of the planar layout (blue), whereas they are the same for the non-planar one (black), coinciding with the value for the ideal case of zero incidence angle (grey). (c) The corresponding Gaussian beam profiles are plotted at comparable positions close to the stability edge, indicated by dotted lines.

Fig. 3
Fig. 3

Comparison of primary focus geometries for increasing distance from the stability edge. The plot pairs, from left to right, correspond to distances of < 1 µm, 5 µm and 100 µm. The beam profiles are plotted solid for the vertical plane and dashed for the horizontal plane. The bottom cross sections apply to the symmetry point at position zero. All calculations are done based on the same parameters as in Fig. 2, except for a more typical AOI of 2.5°. For the configuration given by the left pair, a stable cavity lock would already be hard to achieve. The middle pair represents a configuration where the non-planar setup is performing optimally.

Fig. 4
Fig. 4

Schematic of the fsEC experimental setup. M1-M8: cavity mirrors (those depicted in blue are aligned on a second horizontal level), CM: chirped mirrors, L: lenses for mode-matching, PD: photodiode, OC: output coupler, PBS: polarizing beam splitter, QWP: quarter wave plate, HWP: half wave plate, G: grating.

Fig. 5
Fig. 5

Measured beam waists in vertical and horizontal planes for (a) both intracavity foci and (b) corresponding power enhancement. The enhancement factors are given for two different input beam configurations which were kept constant during the measurement. The depicted beam cross sections were measured at a constant distance of 11 cm from the primary focus.

Fig. 6
Fig. 6

Spectrum of the (a) fundamental mode and (b) harmonic output measured via the PMT. Amplitudes of outcoupled harmonics are not to scale for the latter, due to different filtering and detection efficiencies of the spectrometer. The inset circular beam profile of the 3rd harmonic was recorded on the Andor CCD.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 q = D A 2 B i 4 ( A + D ) 2 2 | B |
1 q = 1 R i λ π w 2
q = ( z z 0 ) + i π w 0 2 λ .
P circ P in = η spectral η spatial T M 1 ( 1 ( 1 T M 1 ) ( 1 L ) ) 2 .

Metrics