Abstract

We theoretically consider the possibility of using a few-mode fiber (FMF) and mode-division-multiplexing (MDM) to construct a quasi-distributed network of absorption-based fiber optical sensors. In this design, we utilize the low-attenuation fundamental linearly polarized (LP) mode for signal transmission, and a high-attenuation LP mode for absorption-based sensing. We develop a matrix formalism and use it to analyze the performance of such a MDM sensor network. We demonstrate that such a sensor network can indeed combine high sensitivity with large scale multiplexing, which is very difficult to achieve in traditional single-mode-fiber-based sensor networks.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-functional fiber optic sensors based on mode division multiplexing

Yi Weng, Ting Wang, and Zhongqi Pan
Opt. Mater. Express 7(6) 1917-1933 (2017)

Few-mode fiber based optical sensors

An Li, Yifei Wang, Qian Hu, and William Shieh
Opt. Express 23(2) 1139-1150 (2015)

Broadband mode division multiplexer using all-fiber mode selective couplers

Kyung Jun Park, Kwang Yong Song, Young Kie Kim, Jae Hyeon Lee, and Byoung Yoon Kim
Opt. Express 24(4) 3543-3549 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
    [Crossref]
  2. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  3. B. Gholamzadeh and H. Nabovati, “Fiber optic sensors,” World Acad. Sci. Eng. Technol. 42, 335–340 (2008).
  4. Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “'A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
    [Crossref]
  5. Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [Crossref]
  6. J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
    [Crossref]
  7. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  8. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
    [Crossref] [PubMed]
  9. H. L. Ho, W. Jin, and M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36(14), 1191–1193 (2000).
    [Crossref]
  10. B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realisation,” Sens. Actuator B-Chem. 51(1-3), 25–37 (1998).
    [Crossref]
  11. A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
    [Crossref] [PubMed]
  12. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Few-mode distributed optical fiber sensors,” Opt. Photonics News 26, 59 (2015).
  13. A. Li, Y. Wang, Q. Hu, D. Che, X. Chen, and W. Shieh, “Measurement of distributed mode coupling in a few-mode fiber using a reconfigurable Brillouin OTDR,” Opt. Lett. 39(22), 6418–6421 (2014).
    [Crossref] [PubMed]
  14. E. Ip, M.-J. Li, K. Bennett, Y.-K. Huang, A. Tanaka, A. Korolev, K. Koreshkov, W. Wood, E. Mateo, J. Hu, and Y. Yano, “146λ×6×19-Gbaud wavelength-and mode-division multiplexed transmission over 10× 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA,” J. Lightwave Technol. 32(4), 790–797 (2014).
    [Crossref]
  15. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
    [Crossref] [PubMed]
  16. A. Li, Y. Wang, J. Fang, M.-J. Li, B. Y. Kim, and W. Shieh, “Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination,” Opt. Lett. 40(7), 1488–1491 (2015).
    [Crossref] [PubMed]
  17. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46(13), 2516–2519 (2007).
    [Crossref] [PubMed]
  18. A. Sun and Z. Wu, “Multimode interference in single mode-multimode FBG for simultaneous measurement of strain and bending,” IEEE Sens. J. 15(6), 3390–3394 (2015).
    [Crossref]
  19. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. 18(2), 230–235 (2000).
    [Crossref]
  20. P. Lu, A. Wang, S. Soker, and Y. Xu, “Adaptive mode control based on a fiber Bragg grating,” Opt. Lett. 40(15), 3488–3491 (2015).
    [Crossref] [PubMed]
  21. P. Lu, M. Shipton, A. Wang, S. Soker, and Y. Xu, “Adaptive control of waveguide modes in a two-mode-fiber,” Opt. Express 22(3), 2955–2964 (2014).
    [Crossref] [PubMed]
  22. R. Kashyap, Fiber Bragg Gratings (Academic, 1999), Chap. 4.
  23. M. B. Shemirani, W. Mao, R. A. Panicker, and J. M. Kahn, “Principal modes in graded-index multimode fiber in presence of spatial- and polarization-mode coupling,” J. Lightwave Technol. 27(10), 1248–1261 (2009).
    [Crossref]
  24. K.-P. Ho and J. M. Kahn, Optical Fiber Telecommunications (Academic, 2013), Chap. 11.
  25. A. A. Juarez, E. Krune, S. Warm, C. A. Bunge, and K. Petermann, “Modeling of mode coupling in multimode fibers with respect to bandwidth and loss,” J. Lightwave Technol. 32(8), 1549–1558 (2014).
    [Crossref]
  26. M. M. Keshk, I. Ashry, M. H. Aly, and A. M. Okaz, “Analysis of different fiber Bragg gratings for use in a multi-wavelength Erbium doped fiber laser,” in Proceedings of IEEE Conference on Radio Science, (IEEE, 2007), pp. 1–13.
    [Crossref]
  27. K.-P. Ho and J. M. Kahn, “Mode-dependent loss and gain: statistics and effect on mode-division multiplexing,” Opt. Express 19(17), 16612–16635 (2011).
    [Crossref] [PubMed]
  28. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [Crossref]
  29. C. Lu and Y. Cui, “Fiber Bragg grating spectra in multimode optical fibers,” J. Lightwave Technol. 24(1), 598–604 (2006).
    [Crossref]
  30. I. P. Johnson, D. J. Webb, K. Kalli, M. C. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140D (2010).
    [Crossref]
  31. K. H. Wanser, K. F. Voss, and A. D. Kersey, “Novel fiber devices and sensors based on multimode fiber Bragg gratings,” Proc. SPIE 2360, 265–268 (1994).
    [Crossref]
  32. W. Zhao and R. O. Claus, “Optical fiber grating sensors in multimode fibers,” Smart Mater. Struct. 9(2), 212–214 (2000).
    [Crossref]
  33. J. Lim, Q. Yang, B. E. Jones, and P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing,” IEEE Trans. Instrum. Meas. 51(4), 622–627 (2002).
    [Crossref]
  34. C.-L. Zhao, X. Yang, M. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3 slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
    [Crossref]

2015 (6)

2014 (4)

2012 (2)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

2011 (3)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “'A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

K.-P. Ho and J. M. Kahn, “Mode-dependent loss and gain: statistics and effect on mode-division multiplexing,” Opt. Express 19(17), 16612–16635 (2011).
[Crossref] [PubMed]

2010 (1)

I. P. Johnson, D. J. Webb, K. Kalli, M. C. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

2009 (1)

2008 (2)

B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
[Crossref]

B. Gholamzadeh and H. Nabovati, “Fiber optic sensors,” World Acad. Sci. Eng. Technol. 42, 335–340 (2008).

2007 (1)

2006 (4)

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

C. Lu and Y. Cui, “Fiber Bragg grating spectra in multimode optical fibers,” J. Lightwave Technol. 24(1), 598–604 (2006).
[Crossref]

C.-L. Zhao, X. Yang, M. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3 slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
[Crossref]

2002 (1)

J. Lim, Q. Yang, B. E. Jones, and P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing,” IEEE Trans. Instrum. Meas. 51(4), 622–627 (2002).
[Crossref]

2000 (3)

W. Zhao and R. O. Claus, “Optical fiber grating sensors in multimode fibers,” Smart Mater. Struct. 9(2), 212–214 (2000).
[Crossref]

H. L. Ho, W. Jin, and M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36(14), 1191–1193 (2000).
[Crossref]

T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. 18(2), 230–235 (2000).
[Crossref]

1998 (1)

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realisation,” Sens. Actuator B-Chem. 51(1-3), 25–37 (1998).
[Crossref]

1994 (1)

K. H. Wanser, K. F. Voss, and A. D. Kersey, “Novel fiber devices and sensors based on multimode fiber Bragg gratings,” Proc. SPIE 2360, 265–268 (1994).
[Crossref]

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Aly, M. H.

M. M. Keshk, I. Ashry, M. H. Aly, and A. M. Okaz, “Analysis of different fiber Bragg gratings for use in a multi-wavelength Erbium doped fiber laser,” in Proceedings of IEEE Conference on Radio Science, (IEEE, 2007), pp. 1–13.
[Crossref]

Argyros, A.

I. P. Johnson, D. J. Webb, K. Kalli, M. C. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

Ashry, I.

M. M. Keshk, I. Ashry, M. H. Aly, and A. M. Okaz, “Analysis of different fiber Bragg gratings for use in a multi-wavelength Erbium doped fiber laser,” in Proceedings of IEEE Conference on Radio Science, (IEEE, 2007), pp. 1–13.
[Crossref]

Bao, X.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

Bennett, K.

Bi, W.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “'A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Bunge, C. A.

Che, D.

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

Chen, X.

Claus, R. O.

W. Zhao and R. O. Claus, “Optical fiber grating sensors in multimode fibers,” Smart Mater. Struct. 9(2), 212–214 (2000).
[Crossref]

Cui, Y.

Culshaw, B.

B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
[Crossref]

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realisation,” Sens. Actuator B-Chem. 51(1-3), 25–37 (1998).
[Crossref]

Demokan, M.

Demokan, M. S.

H. L. Ho, W. Jin, and M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36(14), 1191–1193 (2000).
[Crossref]

Djambova, T. V.

Dong, B.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “'A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Dong, F.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realisation,” Sens. Actuator B-Chem. 51(1-3), 25–37 (1998).
[Crossref]

Fang, J.

Gholamzadeh, B.

B. Gholamzadeh and H. Nabovati, “Fiber optic sensors,” World Acad. Sci. Eng. Technol. 42, 335–340 (2008).

Gong, J.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “'A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Gupta, S.

Ho, H. L.

H. L. Ho, W. Jin, and M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36(14), 1191–1193 (2000).
[Crossref]

Ho, K.-P.

Hu, J.

Hu, Q.

Huang, Y.-K.

Huwald, H.

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

Ip, E.

Jackson, P. R.

J. Lim, Q. Yang, B. E. Jones, and P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing,” IEEE Trans. Instrum. Meas. 51(4), 622–627 (2002).
[Crossref]

Jin, W.

C.-L. Zhao, X. Yang, M. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3 slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
[Crossref]

H. L. Ho, W. Jin, and M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36(14), 1191–1193 (2000).
[Crossref]

Johnson, I. P.

I. P. Johnson, D. J. Webb, K. Kalli, M. C. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

Jones, B. E.

J. Lim, Q. Yang, B. E. Jones, and P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing,” IEEE Trans. Instrum. Meas. 51(4), 622–627 (2002).
[Crossref]

Juarez, A. A.

Kahn, J. M.

Kalli, K.

I. P. Johnson, D. J. Webb, K. Kalli, M. C. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

Kersey, A.

Kersey, A. D.

K. H. Wanser, K. F. Voss, and A. D. Kersey, “Novel fiber devices and sensors based on multimode fiber Bragg gratings,” Proc. SPIE 2360, 265–268 (1994).
[Crossref]

Keshk, M. M.

M. M. Keshk, I. Ashry, M. H. Aly, and A. M. Okaz, “Analysis of different fiber Bragg gratings for use in a multi-wavelength Erbium doped fiber laser,” in Proceedings of IEEE Conference on Radio Science, (IEEE, 2007), pp. 1–13.
[Crossref]

Kim, B. Y.

Koreshkov, K.

Korolev, A.

Krune, E.

Large, M. C.

I. P. Johnson, D. J. Webb, K. Kalli, M. C. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

Li, A.

Li, M.-J.

Lim, J.

J. Lim, Q. Yang, B. E. Jones, and P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing,” IEEE Trans. Instrum. Meas. 51(4), 622–627 (2002).
[Crossref]

Liu, Y.

Lu, C.

Lu, P.

Luxemburg, W.

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

Mallet, A.

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

Mao, W.

Mateo, E.

Mizunami, T.

Moodie, D.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realisation,” Sens. Actuator B-Chem. 51(1-3), 25–37 (1998).
[Crossref]

Nabovati, H.

B. Gholamzadeh and H. Nabovati, “Fiber optic sensors,” World Acad. Sci. Eng. Technol. 42, 335–340 (2008).

Niiho, T.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Okaz, A. M.

M. M. Keshk, I. Ashry, M. H. Aly, and A. M. Okaz, “Analysis of different fiber Bragg gratings for use in a multi-wavelength Erbium doped fiber laser,” in Proceedings of IEEE Conference on Radio Science, (IEEE, 2007), pp. 1–13.
[Crossref]

Pan, Z.

Panicker, R. A.

Parlange, M. B.

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

Petermann, K.

Rao, Y.-J.

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Selker, J. S.

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

Shemirani, M. B.

Shieh, W.

Shipton, M.

Soker, S.

Stejskal, M.

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

Stewart, G.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realisation,” Sens. Actuator B-Chem. 51(1-3), 25–37 (1998).
[Crossref]

Sun, A.

A. Sun and Z. Wu, “Multimode interference in single mode-multimode FBG for simultaneous measurement of strain and bending,” IEEE Sens. J. 15(6), 3390–3394 (2015).
[Crossref]

Tanaka, A.

Tandy, C.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realisation,” Sens. Actuator B-Chem. 51(1-3), 25–37 (1998).
[Crossref]

Thévenaz, L.

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

van de Giesen, N.

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

Voss, K. F.

K. H. Wanser, K. F. Voss, and A. D. Kersey, “Novel fiber devices and sensors based on multimode fiber Bragg gratings,” Proc. SPIE 2360, 265–268 (1994).
[Crossref]

Wang, A.

Wang, D. Y.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “'A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Wang, T.

Wang, Y.

Wanser, K. H.

K. H. Wanser, K. F. Voss, and A. D. Kersey, “Novel fiber devices and sensors based on multimode fiber Bragg gratings,” Proc. SPIE 2360, 265–268 (1994).
[Crossref]

Warm, S.

Webb, D. J.

I. P. Johnson, D. J. Webb, K. Kalli, M. C. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

Wei, L.

Weng, Y.

Westhoff, M.

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

Wood, W.

Wu, Z.

A. Sun and Z. Wu, “Multimode interference in single mode-multimode FBG for simultaneous measurement of strain and bending,” IEEE Sens. J. 15(6), 3390–3394 (2015).
[Crossref]

Xu, Y.

Yang, Q.

J. Lim, Q. Yang, B. E. Jones, and P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing,” IEEE Trans. Instrum. Meas. 51(4), 622–627 (2002).
[Crossref]

Yang, X.

Yano, Y.

Zeman, J.

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

Zhao, C.-L.

Zhao, W.

W. Zhao and R. O. Claus, “Optical fiber grating sensors in multimode fibers,” Smart Mater. Struct. 9(2), 212–214 (2000).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

H. L. Ho, W. Jin, and M. S. Demokan, “Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy,” Electron. Lett. 36(14), 1191–1193 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “'A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

IEEE Sens. J. (1)

A. Sun and Z. Wu, “Multimode interference in single mode-multimode FBG for simultaneous measurement of strain and bending,” IEEE Sens. J. 15(6), 3390–3394 (2015).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

J. Lim, Q. Yang, B. E. Jones, and P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing,” IEEE Trans. Instrum. Meas. 51(4), 622–627 (2002).
[Crossref]

J. Lightwave Technol. (8)

C.-L. Zhao, X. Yang, M. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3 slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
[Crossref]

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

C. Lu and Y. Cui, “Fiber Bragg grating spectra in multimode optical fibers,” J. Lightwave Technol. 24(1), 598–604 (2006).
[Crossref]

M. B. Shemirani, W. Mao, R. A. Panicker, and J. M. Kahn, “Principal modes in graded-index multimode fiber in presence of spatial- and polarization-mode coupling,” J. Lightwave Technol. 27(10), 1248–1261 (2009).
[Crossref]

A. A. Juarez, E. Krune, S. Warm, C. A. Bunge, and K. Petermann, “Modeling of mode coupling in multimode fibers with respect to bandwidth and loss,” J. Lightwave Technol. 32(8), 1549–1558 (2014).
[Crossref]

T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. 18(2), 230–235 (2000).
[Crossref]

E. Ip, M.-J. Li, K. Bennett, Y.-K. Huang, A. Tanaka, A. Korolev, K. Koreshkov, W. Wood, E. Mateo, J. Hu, and Y. Yano, “146λ×6×19-Gbaud wavelength-and mode-division multiplexed transmission over 10× 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA,” J. Lightwave Technol. 32(4), 790–797 (2014).
[Crossref]

B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Opt. Lett. (3)

Opt. Photonics News (1)

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Few-mode distributed optical fiber sensors,” Opt. Photonics News 26, 59 (2015).

Proc. SPIE (2)

I. P. Johnson, D. J. Webb, K. Kalli, M. C. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

K. H. Wanser, K. F. Voss, and A. D. Kersey, “Novel fiber devices and sensors based on multimode fiber Bragg gratings,” Proc. SPIE 2360, 265–268 (1994).
[Crossref]

Sens. Actuator B-Chem. (1)

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection—from concept to system realisation,” Sens. Actuator B-Chem. 51(1-3), 25–37 (1998).
[Crossref]

Sensors (Basel) (3)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

W. Zhao and R. O. Claus, “Optical fiber grating sensors in multimode fibers,” Smart Mater. Struct. 9(2), 212–214 (2000).
[Crossref]

Water Resour. Res. (1)

J. S. Selker, L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange, “Distributed fiber-optic temperature sensing for hydrologic systems,” Water Resour. Res. 42(12), 1–8 (2006).
[Crossref]

World Acad. Sci. Eng. Technol. (1)

B. Gholamzadeh and H. Nabovati, “Fiber optic sensors,” World Acad. Sci. Eng. Technol. 42, 335–340 (2008).

Other (3)

M. M. Keshk, I. Ashry, M. H. Aly, and A. M. Okaz, “Analysis of different fiber Bragg gratings for use in a multi-wavelength Erbium doped fiber laser,” in Proceedings of IEEE Conference on Radio Science, (IEEE, 2007), pp. 1–13.
[Crossref]

R. Kashyap, Fiber Bragg Gratings (Academic, 1999), Chap. 4.

K.-P. Ho and J. M. Kahn, Optical Fiber Telecommunications (Academic, 2013), Chap. 11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) A schematic drawing of the single sensor design. For any interrogation pulse, FBG 1, 3, and 4 will produce three reflection pulses shown in (b). Pulse 1 is for AO-based mode control [20], pulse 2 and 3 are for sensing. (c) Simplify the sensor design in (a) for transfer matrix analysis. The presence of FBG 1 is ignored.
Fig. 2
Fig. 2 Matrix approach of the designed MDM quasi-distributed sensing network.
Fig. 3
Fig. 3 Schematic drawing for using silica fiber taper as a sensing-segment in (a) gas and (b) plasmon-based sensing networks. (c) The radial distributions of the LP01 and the LP02 field intensity when propagating inside a silica fiber taper of 1 μm radius at 1550 nm wavelength. (d) The ratio of α02 / α01 at different values of fiber taper radius.
Fig. 4
Fig. 4 (a) Maximum number of sensors allowed for the ideal quasi-distributed sensing network, calculated using different r g3 02 and r g4 02 . κg2 is fixed at 1%. (b) Maximum sensor number versus input power.
Fig. 5
Fig. 5 Change of the power of (a) LP01, (b) LP11a, LP02, and LP21a modes at the end of the 5-m-long connection fiber at different s values. (c) Phase shifts of different LP modes at the end of the 5-m-long fiber at different s values.
Fig. 6
Fig. 6 (a) The maximum number of sensors in the quasi-distributed network at different intermodal coupling strength. (b) and (c) give the power of the forward-propagating (b) LP01, LP02, (c) LP11a, and LP21a modes at the nth sensor. (d) The normalized power of the back-propagating optical signal at the network input, produced by different sensor number (n) and calculated using different intermodal coupling strength (s). (e) The power of optical signals reflected by the Nmax sensor, at different sensor locations.
Fig. 7
Fig. 7 The percentage error defined in Eq. (33), at different sensor location (n) and calculated for network with different s values: (a) s = 0, (b) s = 0.4 m‒1, s = 0.8 m‒1, and s = 1 m‒1.

Tables (1)

Tables Icon

Table 1 Parameters of the four mode fiber used in our analysis.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

E(x,y)= lm a lm E lm (x,y), l=0,1,... and m=1,2,...
A= [ a 01 a 11a a 11b a 02 a 21a a 21b ] T .
T ^ s2 ± =diag( e j β 01 d g e j β 11 d g e j β 11 d g e j β 02 d g e j β 21 d g e j β 21 d g ),
T ^ s4 ± =diag( α 01 e j β 01 d g α 11 e j β 11 d g α 11 e j β 11 d g α 02 e j β 02 d g α 21 e j β 21 d g α 21 e j β 21 d g ),
T ^ s1 ± ==[ cos( q g2 l g2 ) 0 0 jsin( q g2 l g2 ) 0 0 0 1 0 0 0 0 0 0 1 0 0 0 jsin( q g2 l g2 ) 0 0 cos( q g2 l g2 ) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ],
T ^ s3 ± =diag( 1 1 1 sech( q g 3 l g 3 ) 1 1 ),
R ^ s3 ± =diag( 0 0 0 jtanh( q g 3 l g 3 ) 0 0 ),
T ^ s5 ± =diag( 1 1 1 sech( q g 4 l g 4 ) 1 1 ),
R ^ s5 ± =diag( 0 0 0 jtanh( q g 4 l g 4 ) 0 0 ),
T ^ + = T ^ s5 + T ^ s4 + T ^ s3 + T ^ s2 + T ^ s1 + , T ^ = T ^ s1 T ^ s2 T ^ s3 T ^ s4 T ^ s5 , R ^ g3 + = T ^ s1 T ^ s2 R ^ s3 + T ^ s2 + T ^ s1 + , R ^ g4 + = T ^ s1 T ^ s2 T ^ s3 T ^ s4 R ^ s5 + T ^ s4 + T ^ s3 + T ^ s2 + T ^ s1 + .
p g4 p g3 = ( A g4 ) A g4 ( A g3 ) A g3 = ( t g3 02 ) 2 r g4 02 r g3 02 α 02 2 .
A n + =( P ^ n1 + X ^ n1 + T ^ n1 + )( P ^ 1 + X ^ 1 + T ^ 1 + ) A 1 + .
A n,ng3 = R ^ n,g3 + ( P ^ n1 + X ^ n1 + T ^ n1 + )( P ^ 1 + X ^ 1 + T ^ 1 + ) A 1 + ,
A n,ng4 = R ^ n,g4 + ( P ^ n1 + X ^ n1 + T ^ n1 + )( P ^ 1 + X ^ 1 + T ^ 1 + ) A 1 + .
A 1,ng3 =( T ^ 1 X ^ 1 P ^ 1 )( T ^ n1 X ^ n1 P ^ n1 ) R ^ n,g3 + ( P ^ n1 + X ^ n1 + T ^ n1 + )( P ^ 1 + X ^ 1 + T ^ 1 + ) A 1 + .
A 1,ng4 =( T ^ 1 X ^ 1 P ^ 1 )( T ^ n1 X ^ n1 P ^ n1 ) R ^ n,g4 + ( P ^ n1 + X ^ n1 + T ^ n1 + )( P ^ 1 + X ^ 1 + T ^ 1 + ) A 1 + .
p 1,ng4 p 1,ng3 = ( A 1,ng4 ) A 1,ng4 ( A 1,ng3 ) A 1,ng3 .
α lm α 01 = core | E lm (x,y) | 2 dxdy core | E 01 (x,y) | 2 dxdy = 1 air | E lm (x,y) | 2 dxdy 1 air | E 01 (x,y) | 2 dxdy .
d a lm dz =j β lm a lm + l ' m ' lm C lm, l ' m ' a l ' m ' .
C lm, l ' m ' = k o c ε o 4j Δ n 2 (x,y) E l,m * (x,y) E l ' , m ' (x,y)dxdy,
Δ n 2 (x,y)2 n 1 2 (x σ x +y σ y ),
A( L seg )=exp(( Γ ^ + C ^ ) L seg )A(0),
Γ ^ =diag[ j β 01 j β 11 j β 11 j β 02 j β 21 j β 21 ],
C ^ =[ 0 C 01,11a C 01,11b C 01,02 C 01,21a C 01,21b C 11a,01 0 C 11a,11b C 11a,02 C 11a,21a C 11a,21b C 11b,01 C 11b,11a 0 C 11b,02 C 11b,21a C 11b,21b C 02,01 C 02,11a C 02,11b 0 C 02,21a C 02,21b C 21a,01 C 21a,11a C 21a,11b C 21a,02 0 C 21a,21b C 21b,01 C 21b,11a C 21b,11b C 21b,02 C 21b,21a 0 ],
P ^ n1 + = i=1 M [ exp(( Γ ^ + C ^ i ) L seg ) ] ,
P ^ n1 = i=M 1 [ exp(( Γ ^ + C ^ i ) L seg ) ] ,
T ^ s3 ± =diag( t g3 01 t g3 11 t g3 11 t g3 02 t g3 21 t g3 21 ),
R ^ s3 ± =diag( j r g3 01 j r g3 11 j r g3 11 j r g3 02 j r g3 21 j r g3 21 ),
T ^ s5 ± =diag( t g4 01 t g4 11 t g4 11 t g4 02 t g4 21 t g4 21 ),
R ^ s5 ± =diag( j r g4 01 j r g4 11 j r g4 11 j r g4 02 j r g4 21 j r g4 21 ),
T ^ + = T ^ s5 + T ^ s4 + T ^ s3 + T ^ s2 + T ^ s1 + , T ^ = T ^ s1 T ^ s2 T ^ s3 T ^ s4 T ^ s5 , R ^ g3 + = T ^ s1 T ^ s2 R ^ s3 + T ^ s2 + T ^ s1 + , R ^ g4 + = T ^ s1 T ^ s2 T ^ s3 T ^ s4 R ^ s5 + T ^ s4 + T ^ s3 + T ^ s2 + T ^ s1 + .
X ^ n ± =diag( x a1 e j x p1 x a2 e j x p2 x a3 e j x p3 x a4 e j x p4 x a5 e j x p5 x a6 e j x p6 ),
ε%=| [ ( t g3 02 ) 2 r g4 02 r g3 02 α 02 2 ][ p 1,ng4 p 1,ng3 ] [ ( t g3 02 ) 2 r g4 02 r g3 02 α 02 2 ] |.100%.

Metrics