Abstract

A waveguide scheme is constructed by coating the matrix of randomly distributed ZnSe nanosheet structures with a layer of dye-doped polymer, which provides strong feedback or gain channels for the emission from the dye molecules and enables successful running of a random laser with FWHM of ~0.65 nm. The strong scattering by the nanostructures and the strong confinement provided by the active waveguide layer are the key essentials for the narrow-band and low-threshold operation of this random laser. The random laser scheme reveals an obvious two-threshold behavior, which is corresponding to the thresholds of TM and TE modes. The feedback mechanisms for laser action are investigated by power Fourier transforming of the spectra. This kind of active waveguide not only provides high quality confinement of the radiation for efficient amplification, but also enables possible directional output of this kind of random laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement

Christian Tolentino Dominguez, Yvon Lacroute, Denis Chaumont, Marco Sacilotti, Cid B. de Araújo, and Anderson S. L. Gomes
Opt. Express 20(16) 17380-17385 (2012)

Laser emission from mirrorless waveguides based on photosensitized polymers incorporating POSS

L. Cerdán, A. Costela, I. García-Moreno, O. García, and R. Sastre
Opt. Express 18(10) 10247-10256 (2010)

Plasmonic random laser on the fiber facet

Songtao Li, Li Wang, Tianrui Zhai, Zhiyang Xu, Yonglu Wang, Jieyu Wang, and Xinping Zhang
Opt. Express 23(18) 23985-23991 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” Sov. Phys. JETP 26, 835–840 (1967).
  2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [Crossref]
  3. D. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
    [Crossref] [PubMed]
  4. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
    [Crossref] [PubMed]
  5. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  6. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  7. L. Cerdán, A. Costela, G. Durán-Sampedro, and I. García-Moreno, “Random lasing from sulforhodamine dye-doped polymer films with high surface roughness,” Appl. Phys. B 108(4), 839–850 (2012).
    [Crossref]
  8. A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “Random lasing from surface modified films of zinc oxide nanoparticles,” Appl. Surf. Sci. 247(1-4), 18–24 (2005).
    [Crossref]
  9. M. Bahoura, K. J. Morris, Guohua Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” Quantum Electron. 41(5), 677–685 (2005).
    [Crossref]
  10. O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
    [Crossref]
  11. C. J. De Matos, C. M. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15(18), 11207–11212 (2007).
    [Crossref] [PubMed]
  12. K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59(1), 50–53 (1999).
    [Crossref]
  13. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38(49), 10497–10535 (2005).
    [Crossref]
  14. G. D. Dice and A. Y. Elezzabi, “Random lasing from a nanoparticle-based metal–dielectric–dye medium,” J. Opt. A 9(2), 186–193 (2007).
    [Crossref]
  15. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  16. H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
    [Crossref]
  17. D. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 024005 (2010).
    [Crossref]
  18. T. Takahashi, T. Nakamura, and S. Adachi, “Blue-light-emitting ZnSe random laser,” Opt. Lett. 34(24), 3923–3925 (2009).
    [Crossref] [PubMed]
  19. C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
    [Crossref] [PubMed]
  20. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
    [Crossref]
  21. C. J. S. Matos, “Random laser action in the core of a photonic crystal fiber,” Opt. Photonics 19(12), 27 (2008).
  22. A. Kumar, S. Yu, and X. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
    [Crossref]
  23. H. Yang, S. Yu, J. Yan, and L. Zhang, “Random lasing action from randomly assembled ZnS nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
    [Crossref] [PubMed]
  24. C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
    [Crossref] [PubMed]
  25. R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random Lasing in pgr;-Conjugated Films and Infiltrated Opals,” Adv. Mater. 13(10), 760–764 (2001).
    [Crossref]
  26. E. Leong, S. F. Yu, A. P. Abiyasa, and S. P. Lau, “Polarization characteristics of ZnO rib waveguide random lasers,” Appl. Phys. Lett. 88(9), 091116 (2006).
    [Crossref]
  27. T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
    [Crossref] [PubMed]
  28. S. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
    [Crossref]
  29. C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
    [Crossref]
  30. C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
    [Crossref]
  31. B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
    [Crossref]
  32. S. Murai, K. Fujita, J. Konishi, K. Hirao, and K. Tanaka, “Random lasing from localized modes in strongly scattering systems consisting of macroporous titania monoliths infiltrated with dye solution,” Appl. Phys. Lett. 97(3), 031118 (2010).
    [Crossref]
  33. O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
    [Crossref]

2013 (1)

B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
[Crossref]

2012 (2)

C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
[Crossref] [PubMed]

L. Cerdán, A. Costela, G. Durán-Sampedro, and I. García-Moreno, “Random lasing from sulforhodamine dye-doped polymer films with high surface roughness,” Appl. Phys. B 108(4), 839–850 (2012).
[Crossref]

2011 (2)

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

2010 (4)

S. Murai, K. Fujita, J. Konishi, K. Hirao, and K. Tanaka, “Random lasing from localized modes in strongly scattering systems consisting of macroporous titania monoliths infiltrated with dye solution,” Appl. Phys. Lett. 97(3), 031118 (2010).
[Crossref]

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random lasing action from randomly assembled ZnS nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[Crossref]

D. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 024005 (2010).
[Crossref]

2009 (2)

T. Takahashi, T. Nakamura, and S. Adachi, “Blue-light-emitting ZnSe random laser,” Opt. Lett. 34(24), 3923–3925 (2009).
[Crossref] [PubMed]

A. Kumar, S. Yu, and X. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[Crossref]

2008 (2)

C. J. S. Matos, “Random laser action in the core of a photonic crystal fiber,” Opt. Photonics 19(12), 27 (2008).

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

2007 (4)

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

C. J. De Matos, C. M. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15(18), 11207–11212 (2007).
[Crossref] [PubMed]

G. D. Dice and A. Y. Elezzabi, “Random lasing from a nanoparticle-based metal–dielectric–dye medium,” J. Opt. A 9(2), 186–193 (2007).
[Crossref]

2006 (3)

E. Leong, S. F. Yu, A. P. Abiyasa, and S. P. Lau, “Polarization characteristics of ZnO rib waveguide random lasers,” Appl. Phys. Lett. 88(9), 091116 (2006).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

2005 (4)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38(49), 10497–10535 (2005).
[Crossref]

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “Random lasing from surface modified films of zinc oxide nanoparticles,” Appl. Surf. Sci. 247(1-4), 18–24 (2005).
[Crossref]

M. Bahoura, K. J. Morris, Guohua Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” Quantum Electron. 41(5), 677–685 (2005).
[Crossref]

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

2004 (1)

S. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[Crossref]

2001 (1)

R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random Lasing in pgr;-Conjugated Films and Infiltrated Opals,” Adv. Mater. 13(10), 760–764 (2001).
[Crossref]

2000 (1)

D. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
[Crossref] [PubMed]

1999 (3)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59(1), 50–53 (1999).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

1996 (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

1967 (1)

V. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” Sov. Phys. JETP 26, 835–840 (1967).

Abiyasa, A. P.

E. Leong, S. F. Yu, A. P. Abiyasa, and S. P. Lau, “Polarization characteristics of ZnO rib waveguide random lasers,” Appl. Phys. Lett. 88(9), 091116 (2006).
[Crossref]

Adachi, S.

Anastasiadis, S. H.

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “Random lasing from surface modified films of zinc oxide nanoparticles,” Appl. Surf. Sci. 247(1-4), 18–24 (2005).
[Crossref]

Anglos, D.

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “Random lasing from surface modified films of zinc oxide nanoparticles,” Appl. Surf. Sci. 247(1-4), 18–24 (2005).
[Crossref]

Bahoura, M.

M. Bahoura, K. J. Morris, Guohua Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” Quantum Electron. 41(5), 677–685 (2005).
[Crossref]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Bergren, M. R.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Bozolan, A.

Brito Cruz, C. H.

Brito-Silva, A. M.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Cao, H.

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38(49), 10497–10535 (2005).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Cao, J.

B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
[Crossref]

Cerdán, L.

L. Cerdán, A. Costela, G. Durán-Sampedro, and I. García-Moreno, “Random lasing from sulforhodamine dye-doped polymer films with high surface roughness,” Appl. Phys. B 108(4), 839–850 (2012).
[Crossref]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Chaumont, D.

Chen, N. S.

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Chipouline, A.

R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random Lasing in pgr;-Conjugated Films and Infiltrated Opals,” Adv. Mater. 13(10), 760–764 (2001).
[Crossref]

Collins, R. T.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Cordeiro, C. M.

Costela, A.

L. Cerdán, A. Costela, G. Durán-Sampedro, and I. García-Moreno, “Random lasing from sulforhodamine dye-doped polymer films with high surface roughness,” Appl. Phys. B 108(4), 839–850 (2012).
[Crossref]

Dahl, Ø.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Das, R. N.

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “Random lasing from surface modified films of zinc oxide nanoparticles,” Appl. Surf. Sci. 247(1-4), 18–24 (2005).
[Crossref]

Davidov, D.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

de Araújo, C. B.

C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
[Crossref] [PubMed]

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

de Matos, C. J.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

C. J. De Matos, C. M. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15(18), 11207–11212 (2007).
[Crossref] [PubMed]

de S Menezes, L.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Dice, G. D.

G. D. Dice and A. Y. Elezzabi, “Random lasing from a nanoparticle-based metal–dielectric–dye medium,” J. Opt. A 9(2), 186–193 (2007).
[Crossref]

Dominguez, C. T.

Dos Santos, E. M.

Durán-Sampedro, G.

L. Cerdán, A. Costela, G. Durán-Sampedro, and I. García-Moreno, “Random lasing from sulforhodamine dye-doped polymer films with high surface roughness,” Appl. Phys. B 108(4), 839–850 (2012).
[Crossref]

Elezzabi, A. Y.

G. D. Dice and A. Y. Elezzabi, “Random lasing from a nanoparticle-based metal–dielectric–dye medium,” J. Opt. A 9(2), 186–193 (2007).
[Crossref]

Fedorov, V. V.

D. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 024005 (2010).
[Crossref]

Feng, B.

B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
[Crossref]

Feng, S.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Fu, J.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

Fujita, K.

S. Murai, K. Fujita, J. Konishi, K. Hirao, and K. Tanaka, “Random lasing from localized modes in strongly scattering systems consisting of macroporous titania monoliths infiltrated with dye solution,” Appl. Phys. Lett. 97(3), 031118 (2010).
[Crossref]

Furtak, T. E.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Gao, M.

B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
[Crossref]

García-Moreno, I.

L. Cerdán, A. Costela, G. Durán-Sampedro, and I. García-Moreno, “Random lasing from sulforhodamine dye-doped polymer films with high surface roughness,” Appl. Phys. B 108(4), 839–850 (2012).
[Crossref]

Giannelis, E. P.

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “Random lasing from surface modified films of zinc oxide nanoparticles,” Appl. Surf. Sci. 247(1-4), 18–24 (2005).
[Crossref]

Gomes, A. S.

C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
[Crossref] [PubMed]

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Grepstad, J.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Guohua Zhu,

M. Bahoura, K. J. Morris, Guohua Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” Quantum Electron. 41(5), 677–685 (2005).
[Crossref]

Hirao, K.

S. Murai, K. Fujita, J. Konishi, K. Hirao, and K. Tanaka, “Random lasing from localized modes in strongly scattering systems consisting of macroporous titania monoliths infiltrated with dye solution,” Appl. Phys. Lett. 97(3), 031118 (2010).
[Crossref]

Hng, H. H.

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Holmestad, R.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Jiang, X.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

Kim, C.

D. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 024005 (2010).
[Crossref]

Konishi, J.

S. Murai, K. Fujita, J. Konishi, K. Hirao, and K. Tanaka, “Random lasing from localized modes in strongly scattering systems consisting of macroporous titania monoliths infiltrated with dye solution,” Appl. Phys. Lett. 97(3), 031118 (2010).
[Crossref]

Kumar, A.

A. Kumar, S. Yu, and X. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[Crossref]

Lacroute, Y.

Ladam, C.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Lagendijk, A.

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

Lau, S. P.

E. Leong, S. F. Yu, A. P. Abiyasa, and S. P. Lau, “Polarization characteristics of ZnO rib waveguide random lasers,” Appl. Phys. Lett. 88(9), 091116 (2006).
[Crossref]

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

S. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[Crossref]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Lee, H. W.

S. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[Crossref]

Leong, E.

E. Leong, S. F. Yu, A. P. Abiyasa, and S. P. Lau, “Polarization characteristics of ZnO rib waveguide random lasers,” Appl. Phys. Lett. 88(9), 091116 (2006).
[Crossref]

Leong, E. S. P.

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Letokhov, V.

V. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” Sov. Phys. JETP 26, 835–840 (1967).

Li, X.

A. Kumar, S. Yu, and X. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[Crossref]

Liang, H. K.

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[Crossref]

Liu, H.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Martinez Gámez, M. A.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Martyshkin, D.

D. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 024005 (2010).
[Crossref]

Matos, C. J. S.

C. J. S. Matos, “Random laser action in the core of a photonic crystal fiber,” Opt. Photonics 19(12), 27 (2008).

Matsumoto, M.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59(1), 50–53 (1999).
[Crossref]

Mirov, S. B.

D. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 024005 (2010).
[Crossref]

Morris, K. J.

M. Bahoura, K. J. Morris, Guohua Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” Quantum Electron. 41(5), 677–685 (2005).
[Crossref]

Moskalev, I. S.

D. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 024005 (2010).
[Crossref]

Murai, S.

S. Murai, K. Fujita, J. Konishi, K. Hirao, and K. Tanaka, “Random lasing from localized modes in strongly scattering systems consisting of macroporous titania monoliths infiltrated with dye solution,” Appl. Phys. Lett. 97(3), 031118 (2010).
[Crossref]

Nakamura, T.

Noginov, M. A.

M. Bahoura, K. J. Morris, Guohua Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” Quantum Electron. 41(5), 677–685 (2005).
[Crossref]

Ong, J. S.

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Polson, R. C.

R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random Lasing in pgr;-Conjugated Films and Infiltrated Opals,” Adv. Mater. 13(10), 760–764 (2001).
[Crossref]

Popov, O.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Sacilotti, M.

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Song, H.

B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
[Crossref]

Song, Q.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

Stassinopoulos, A.

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “Random lasing from surface modified films of zinc oxide nanoparticles,” Appl. Surf. Sci. 247(1-4), 18–24 (2005).
[Crossref]

Su, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Sun, Y.

B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
[Crossref]

Takahashi, T.

Talukder, M. A. I.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59(1), 50–53 (1999).
[Crossref]

Tanaka, K.

S. Murai, K. Fujita, J. Konishi, K. Hirao, and K. Tanaka, “Random lasing from localized modes in strongly scattering systems consisting of macroporous titania monoliths infiltrated with dye solution,” Appl. Phys. Lett. 97(3), 031118 (2010).
[Crossref]

Tomita, M.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59(1), 50–53 (1999).
[Crossref]

Tong, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

Totsuka, K.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59(1), 50–53 (1999).
[Crossref]

Tveit, J.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Vardeny, Z. V.

R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random Lasing in pgr;-Conjugated Films and Infiltrated Opals,” Adv. Mater. 13(10), 760–764 (2001).
[Crossref]

Vullum, P. E.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Walmsley, J. C.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Wang, L.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Wei, M.

B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
[Crossref]

Weigand, C.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Weman, H.

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

Wiersma, D.

D. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
[Crossref] [PubMed]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

Xu, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

Yan, J.

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random lasing action from randomly assembled ZnS nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

Yang, H.

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random lasing action from randomly assembled ZnS nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

Yang, H. Y.

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[Crossref]

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Yang, J.

B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
[Crossref]

Yang, L.

B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
[Crossref]

Yu, S.

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random lasing action from randomly assembled ZnS nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

A. Kumar, S. Yu, and X. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[Crossref]

S. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[Crossref]

Yu, S. F.

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[Crossref]

E. Leong, S. F. Yu, A. P. Abiyasa, and S. P. Lau, “Polarization characteristics of ZnO rib waveguide random lasers,” Appl. Phys. Lett. 88(9), 091116 (2006).
[Crossref]

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Yuen, C.

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

S. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[Crossref]

Zhai, H.

B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
[Crossref]

Zhai, T.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Zhang, L.

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random lasing action from randomly assembled ZnS nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

Zhang, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Zilbershtein, A.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Adv. Mater. (1)

R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random Lasing in pgr;-Conjugated Films and Infiltrated Opals,” Adv. Mater. 13(10), 760–764 (2001).
[Crossref]

Appl. Phys. B (1)

L. Cerdán, A. Costela, G. Durán-Sampedro, and I. García-Moreno, “Random lasing from sulforhodamine dye-doped polymer films with high surface roughness,” Appl. Phys. B 108(4), 839–850 (2012).
[Crossref]

Appl. Phys. Lett. (9)

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[Crossref]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

E. Leong, S. F. Yu, A. P. Abiyasa, and S. P. Lau, “Polarization characteristics of ZnO rib waveguide random lasers,” Appl. Phys. Lett. 88(9), 091116 (2006).
[Crossref]

A. Kumar, S. Yu, and X. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[Crossref]

S. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[Crossref]

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

S. Murai, K. Fujita, J. Konishi, K. Hirao, and K. Tanaka, “Random lasing from localized modes in strongly scattering systems consisting of macroporous titania monoliths infiltrated with dye solution,” Appl. Phys. Lett. 97(3), 031118 (2010).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Appl. Surf. Sci. (1)

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “Random lasing from surface modified films of zinc oxide nanoparticles,” Appl. Surf. Sci. 247(1-4), 18–24 (2005).
[Crossref]

Cryst. Growth Des. (1)

C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Cryst. Growth Des. 11(12), 5298–5304 (2011).
[Crossref]

J. Alloys Compd. (1)

B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, and H. Song, “Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanoparticles,” J. Alloys Compd. 555, 241–245 (2013).
[Crossref]

J. Opt. (1)

D. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 024005 (2010).
[Crossref]

J. Opt. A (1)

G. D. Dice and A. Y. Elezzabi, “Random lasing from a nanoparticle-based metal–dielectric–dye medium,” J. Opt. A 9(2), 186–193 (2007).
[Crossref]

J. Phys. A (1)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38(49), 10497–10535 (2005).
[Crossref]

Nano Lett. (1)

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random lasing action from randomly assembled ZnS nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Nature (2)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

D. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Photonics (1)

C. J. S. Matos, “Random laser action in the core of a photonic crystal fiber,” Opt. Photonics 19(12), 27 (2008).

Phys. Rev. B (1)

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59(1), 50–53 (1999).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Quantum Electron. (1)

M. Bahoura, K. J. Morris, Guohua Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” Quantum Electron. 41(5), 677–685 (2005).
[Crossref]

Sov. Phys. JETP (1)

V. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” Sov. Phys. JETP 26, 835–840 (1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of Silica/ZnSe-NS/PMMA-Rh6G/Silica waveguide random laser and diagram of optical experimental setup, the inset is a photograph of emission when the pump energy is above the threshold.

Fig. 2
Fig. 2

SEM images at different magnifications of ZnSe-NS grown on the surface of a quartz substrate using hydrothermal technique. The inset shows the XRD patterns of ZnSe bulk (Bottom blue line), ZnSe nanoparticle film fabricated by FPLD (Middle red line) and ZnSe-NS film (Top black line).

Fig. 3
Fig. 3

(a) Emission spectra measured along the pump stripe for different pump energy, inset in (a): emission spectra just below and above the pump threshold. (b) Evolution of emission intensity as a function of pump energy, inset in (b): three photographs of emission at different pump energy above threshold. Three lines are guides for the eyes, and circles represent two thresholds at ~20 μJ/pulse and ~53 μJ/pulse.

Fig. 4
Fig. 4

The normalized emission spectra of Silica/ZnSe-NS/PMMA-Rh6G/Silica waveguide (I), Silica/PMMA-Rh6G/Silica (II), and PMMA-Rh6G film (III), pumped at 532 nm with a fixed pumping energy. The inset is emission peak intensity of Silica/PMMA-Rh6G/Silica as a function of the pumping pulse energy.

Fig. 5
Fig. 5

The TM (a), TE (b) spectra and threshold curves (c) of Silica/ZnSe-NS/PMMA-Rh6G/ Silica waveguide, pumped at 532 nm.

Fig. 6
Fig. 6

The calculated PFT spectra of the TM and TE spectra. The inset diagrams explain the closed-loop cavity formed in the waveguide (a), F-P cavity (b) and ring cavity formed between the nanosheets.

Metrics