Abstract

Fiber-chip edge couplers are extensively used in integrated optics for coupling of light between planar waveguide circuits and optical fibers. In this work, we report on a new fiber-chip edge coupler concept with large mode size for silicon photonic wire waveguides. The coupler allows direct coupling with conventional cleaved optical fibers with large mode size while circumventing the need for lensed fibers. The coupler is designed for 220 nm silicon-on-insulator (SOI) platform. It exhibits an overall coupling efficiency exceeding 90%, as independently confirmed by 3D Finite-Difference Time-Domain (FDTD) and fully vectorial 3D Eigenmode Expansion (EME) calculations. We present two specific coupler designs, namely for a high numerical aperture single mode optical fiber with 6 µm mode field diameter (MFD) and a standard SMF-28 fiber with 10.4 µm MFD. An important advantage of our coupler concept is the ability to expand the mode at the chip edge without leading to high substrate leakage losses through buried oxide (BOX), which in our design is set to 3 µm. This remarkable feature is achieved by implementing in the SiO2 upper cladding thin high-index Si3N4 layers. The Si3N4 layers increase the effective refractive index of the upper cladding near the facet. The index is controlled along the taper by subwavelength refractive index engineering to facilitate adiabatic mode transformation to the silicon wire waveguide while the Si-wire waveguide is inversely tapered along the coupler. The mode overlap optimization at the chip facet is carried out with a full vectorial mode solver. The mode transformation along the coupler is studied using 3D-FDTD simulations and with fully-vectorial 3D-EME calculations. The couplers are optimized for operating with transverse electric (TE) polarization and the operating wavelength is centered at 1.55 µm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency

Pavel Cheben, Jens H. Schmid, Shurui Wang, Dan-Xia Xu, Martin Vachon, Siegfried Janz, Jean Lapointe, Yves Painchaud, and Marie-Josée Picard
Opt. Express 23(17) 22553-22563 (2015)

Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band

Daniel Benedikovic, Carlos Alonso-Ramos, Pavel Cheben, Jens H. Schmid, Shurui Wang, Robert Halir, Alejandro Ortega-Moñux, Dan-Xia Xu, Laurent Vivien, Jean Lapointe, Siegfried Janz, and Milan Dado
Opt. Express 24(12) 12893-12904 (2016)

Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution

Anatol Khilo, Miloš A. Popović, Mohammad Araghchini, and Franz X. Kärtner
Opt. Express 18(15) 15790-15806 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
    [Crossref]
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  3. D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [Crossref]
  4. A. Davidson, I. Glesk, and A. Buis, “Has silicon reached it’s limit?” Adv. Electr. Electron. Eng. 12(6), 590–598 (2014).
  5. D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
    [Crossref]
  6. R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
    [Crossref] [PubMed]
  7. C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D.-X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%,” Opt. Lett. 39(18), 5351–5354 (2014).
    [Crossref] [PubMed]
  8. P. Markov, J. G. Valentine, S. M. Weiss, F. X. Karter, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Fiber-to-chip coupler designed using an optical transformation,” Opt. Express 20(13), 14705–14713 (2012).
    [Crossref] [PubMed]
  9. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  10. P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14(11), 4695–4702 (2006).
    [Crossref] [PubMed]
  11. S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
    [Crossref]
  12. T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, P. Fortier, and W. M. J. Green, “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” in Optical Fiber Communication Conference, OSA technical Digest (online) (Optical Society of America, 2015), paper Th3F.3.
    [Crossref]
  13. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, T. J. Hall, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
    [Crossref] [PubMed]
  14. B. Bakir, A. G. De Vazquez, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Low-loss and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
    [Crossref]
  15. A. Khilo, M. A. Popović, M. Araghchini, F. X. Kärtner, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express 18(15), 15790–15806 (2010).
    [Crossref] [PubMed]
  16. R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultra narrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
    [Crossref]
  17. Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
    [Crossref] [PubMed]
  18. M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-μm-spot-size converter with double core for coupling polarization-independent silicon rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5, 22202 (2012).
  19. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).
  20. A. W. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  21. Photon Design [online]. Available: www.photond.com .
  22. Lumerical [online]. Available: www.lumerical.com .
  23. R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
    [Crossref]
  24. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. 2(3), 466–475 (1956).
  25. L. Zavargo-Peche, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
    [Crossref]
  26. P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
    [Crossref] [PubMed]
  27. M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in 41st European Conference on Optical Communications, (IEEE, 2015), pp. 1–3.
    [Crossref]

2015 (2)

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

2014 (4)

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D.-X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%,” Opt. Lett. 39(18), 5351–5354 (2014).
[Crossref] [PubMed]

A. Davidson, I. Glesk, and A. Buis, “Has silicon reached it’s limit?” Adv. Electr. Electron. Eng. 12(6), 590–598 (2014).

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
[Crossref]

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

2012 (4)

P. Markov, J. G. Valentine, S. M. Weiss, F. X. Karter, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Fiber-to-chip coupler designed using an optical transformation,” Opt. Express 20(13), 14705–14713 (2012).
[Crossref] [PubMed]

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultra narrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-μm-spot-size converter with double core for coupling polarization-independent silicon rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5, 22202 (2012).

L. Zavargo-Peche, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

2010 (4)

2009 (1)

2006 (2)

2005 (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

2003 (1)

2002 (1)

D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. 2(3), 466–475 (1956).

Almeida, V. R.

Alonso-Ramos, C.

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D.-X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%,” Opt. Lett. 39(18), 5351–5354 (2014).
[Crossref] [PubMed]

Araghchini, M.

Baets, R.

D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Bakir, B.

B. Bakir, A. G. De Vazquez, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Low-loss and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Barkai, A.

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

Benedikovic, D.

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
[Crossref]

Bienstman, P.

D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Bock, P.

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Bock, P. J.

Bogaerts, W.

D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Buis, A.

A. Davidson, I. Glesk, and A. Buis, “Has silicon reached it’s limit?” Adv. Electr. Electron. Eng. 12(6), 590–598 (2014).

Chang, H.-H.

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

Cheben, P.

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D.-X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%,” Opt. Lett. 39(18), 5351–5354 (2014).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, T. J. Hall, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14(11), 4695–4702 (2006).
[Crossref] [PubMed]

Cohen, R.

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

Dado, M.

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
[Crossref]

Davidson, A.

A. Davidson, I. Glesk, and A. Buis, “Has silicon reached it’s limit?” Adv. Electr. Electron. Eng. 12(6), 590–598 (2014).

De Mesel, K.

D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

De Vazquez, A. G.

B. Bakir, A. G. De Vazquez, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Low-loss and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Delâge, A.

Densmore, A.

Elek, N.

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

Fang, Q.

Fedeli, J.-M.

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

Gabay, R.

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

P. Markov, J. G. Valentine, S. M. Weiss, F. X. Karter, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Fiber-to-chip coupler designed using an optical transformation,” Opt. Express 20(13), 14705–14713 (2012).
[Crossref] [PubMed]

A. Khilo, M. A. Popović, M. Araghchini, F. X. Kärtner, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express 18(15), 15790–15806 (2010).
[Crossref] [PubMed]

B. Bakir, A. G. De Vazquez, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Low-loss and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

Glesk, I.

A. Davidson, I. Glesk, and A. Buis, “Has silicon reached it’s limit?” Adv. Electr. Electron. Eng. 12(6), 590–598 (2014).

Halir, R.

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
[Crossref]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

Hall, T. J.

Horikawa, T.

M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-μm-spot-size converter with double core for coupling polarization-independent silicon rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5, 22202 (2012).

Itabashi, S.-I.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

Izhaky, N.

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

P. Markov, J. G. Valentine, S. M. Weiss, F. X. Karter, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Fiber-to-chip coupler designed using an optical transformation,” Opt. Express 20(13), 14705–14713 (2012).
[Crossref] [PubMed]

A. Khilo, M. A. Popović, M. Araghchini, F. X. Kärtner, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express 18(15), 15790–15806 (2010).
[Crossref] [PubMed]

B. Bakir, A. G. De Vazquez, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Low-loss and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

Janz, S.

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, T. J. Hall, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14(11), 4695–4702 (2006).
[Crossref] [PubMed]

Jones, R.

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

P. Markov, J. G. Valentine, S. M. Weiss, F. X. Karter, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Fiber-to-chip coupler designed using an optical transformation,” Opt. Express 20(13), 14705–14713 (2012).
[Crossref] [PubMed]

A. Khilo, M. A. Popović, M. Araghchini, F. X. Kärtner, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express 18(15), 15790–15806 (2010).
[Crossref] [PubMed]

B. Bakir, A. G. De Vazquez, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Low-loss and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

Kamei, A.

M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-μm-spot-size converter with double core for coupling polarization-independent silicon rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5, 22202 (2012).

Kamei, T.

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultra narrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

Karter, F. X.

Kärtner, F. X.

Khilo, A.

Kim, D.

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

Krauss, T.

D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Kwong, D.-L.

Lamontagne, B.

Lapointe, J.

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, T. J. Hall, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

Larouche, C.

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in 41st European Conference on Optical Communications, (IEEE, 2015), pp. 1–3.
[Crossref]

Latrasse, C.

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in 41st European Conference on Optical Communications, (IEEE, 2015), pp. 1–3.
[Crossref]

Liow, T.-Y.

Lipson, M.

Liu, A.

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

Lo, G. Q.

Lyan, P.

B. Bakir, A. G. De Vazquez, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Low-loss and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Malik, B. H.

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

Manako, S.

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultra narrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

Markov, P.

Marzban, B.

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

Merget, F.

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

Moerman, I.

D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Molina-Fernandez, I.

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

L. Zavargo-Peche, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

Molina-Fernández, I.

Mori, M.

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultra narrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

Omoda, E.

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultra narrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

Orobtchouk, R.

B. Bakir, A. G. De Vazquez, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Low-loss and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Ortega-Monux, A.

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
[Crossref]

L. Zavargo-Peche, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

Ortega-Moñux, A.

Painchaud, Y.

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in 41st European Conference on Optical Communications, (IEEE, 2015), pp. 1–3.
[Crossref]

Panepucci, R. R.

Paniccia, M.

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

P. Markov, J. G. Valentine, S. M. Weiss, F. X. Karter, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Fiber-to-chip coupler designed using an optical transformation,” Opt. Express 20(13), 14705–14713 (2012).
[Crossref] [PubMed]

A. Khilo, M. A. Popović, M. Araghchini, F. X. Kärtner, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express 18(15), 15790–15806 (2010).
[Crossref] [PubMed]

B. Bakir, A. G. De Vazquez, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Low-loss and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

Pelletier, F.

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in 41st European Conference on Optical Communications, (IEEE, 2015), pp. 1–3.
[Crossref]

Picard, M.-J.

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in 41st European Conference on Optical Communications, (IEEE, 2015), pp. 1–3.
[Crossref]

Popovic, M. A.

Porzier, C.

Poulin, M.

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in 41st European Conference on Optical Communications, (IEEE, 2015), pp. 1–3.
[Crossref]

Roman, A.

Romero-Garcia, S.

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. 2(3), 466–475 (1956).

Sakakibara, Y.

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultra narrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

Schmid, J. H.

Shen, R. B.

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

Song, J. F.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Suzuki, M.

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultra narrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

Taillert, D.

D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Takahashi, J.-I.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

Takei, R.

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultra narrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

Tan, C. W.

Tokushima, M.

M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-μm-spot-size converter with double core for coupling polarization-independent silicon rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5, 22202 (2012).

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

Vachon, M.

Valentine, J. G.

Van Daele, P.

D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Verstuyft, S.

D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Wang, S.

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
[Crossref]

Wanguemert-Perez, J. G.

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

L. Zavargo-Peche, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

Wangüemert-Pérez, J. G.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

Weiss, S. M.

Xu, D. X.

Xu, D.-X.

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux, J. H. Schmid, D.-X. Xu, and I. Molina-Fernández, “Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%,” Opt. Lett. 39(18), 5351–5354 (2014).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
[Crossref]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14(11), 4695–4702 (2006).
[Crossref] [PubMed]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

Yu, M. B.

Zavargo-Peche, L.

L. Zavargo-Peche, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

Adv. Electr. Electron. Eng. (1)

A. Davidson, I. Glesk, and A. Buis, “Has silicon reached it’s limit?” Adv. Electr. Electron. Eng. 12(6), 590–598 (2014).

Appl. Phys. Express (2)

M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-μm-spot-size converter with double core for coupling polarization-independent silicon rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5, 22202 (2012).

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultra narrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, and H. Morita, “Microphotonic devices based on silicon microphotonic technology, IEEE J. Selected Topics in Quant,” Electron. 11(1), 232–240 (2005).

IEEE J. Quantum Electron. (1)

D. Taillert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Romero-Garcia, B. Marzban, F. Merget, R. B. Shen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Bakir, A. G. De Vazquez, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, J.-M. Fedeli, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Low-loss and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Laser Photonics Rev. (2)

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Monux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler with subwavelength structure,” Laser Photonics Rev. 8(6), 93–97 (2014).
[Crossref]

R. Halir, P. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Prog. Electromagnetics Res. (1)

L. Zavargo-Peche, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

Sov. Phys. (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. 2(3), 466–475 (1956).

Other (6)

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, P. Fortier, and W. M. J. Green, “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” in Optical Fiber Communication Conference, OSA technical Digest (online) (Optical Society of America, 2015), paper Th3F.3.
[Crossref]

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in 41st European Conference on Optical Communications, (IEEE, 2015), pp. 1–3.
[Crossref]

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” in Proceedings of 4th IEEE International Conference on Group IV Photonics (IEEE, 2007), pp. 1–3.
[Crossref]

A. W. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Photon Design [online]. Available: www.photond.com .

Lumerical [online]. Available: www.lumerical.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Cross-section schematics of the first coupler design near the chip facet.
Fig. 2
Fig. 2 Cross-section schematics of the second coupler design near the chip facet.
Fig. 3
Fig. 3 Fundamental TE mode at the coupler tip for the two considered coupler designs, namely for a) a high numerical aperture fiber with 6 µm mode size, and b) a standard SMF-28 fiber design with 10.4 µm mode size.
Fig. 4
Fig. 4 Schematic of the fiber-chip edge coupler. Design 1, for HNA fiber.
Fig. 5
Fig. 5 In-plane schematic (top view) of the sub-wavelength engineered Si3N4/SiO2 layer.
Fig. 6
Fig. 6 a) Calculation of the equivalent refractive index of the SWG structure as a function of grating duty-cycle (LSi3N4/Λ). a) Effective index of the fundamental Bloch mode propagating through the SWG engineered Si3N4/SiO2 layer as a function of its duty-cycle (see inset). b) Equivalent refractive index in the core of homoegenous slab waveguide (see inset) that yields a fundamental slab mode with the same effective index as the Bloch mode in Fig. 6(a).
Fig. 7
Fig. 7 Calculated modal field evolution along the coupler. a) Electric field evolution along the coupler (side view, field component Ex). Transverse mode distributions b) near the chip facet, at c) 40 µm and d) 80 µm from the facet, and e) highly-confined mode in the Si-wire waveguide positioned 260 µm from the facet. Quasi-TE polarization, wavelength λ = 1550 nm.
Fig. 8
Fig. 8 The electric field evolution along the coupler as calculated by a) FDTD for Design 1 (HNA), b) EME for Design 1 (HNA), and c) EME for Design 2 (SMF-28). d) The comparison of transmission to the fundamental mode as a function of length for Design 1 (EME and FDTD) and Design 2 (EME). For Design 1, the entire curve from 10 μm to 400 μm with 100 different lengths can be calculated in a few minutes on a single workstation with EME, while the FDTD simulations range from a few minutes (at the shortest lengths) to many hours for 260 μm length on a single workstation. For Design 2, the structure is too large to be simulated by 3D-FDTD on typical workstations. All simulations include the Si substrate.
Fig. 9
Fig. 9 The magnitude of the forward propagating mode coefficients as a function of position along the length of the edge coupler for the HNA fiber design (Design 1). The color bar is intentionally oversatured to emphasize the magnitudes of the higher order mode coefficients. In this EME simulation, 30 modes were calculated in each cross section.
Fig. 10
Fig. 10 Wavelength dependence of the two coupler designs.

Tables (1)

Tables Icon

Table 1 Optimized waveguide parameters for the two considered coupler designs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η 1 = | E 1 E 2 dA | 2 | E 1 | 2 dA | E 2 | 2 dA ,

Metrics