Abstract

Frequently-used subsurface nano-imaging techniques have limitations in interference, stability, complexity, timeliness and cost reduction on account of the combination of excited ultrasound signal or probed cantilever tip. Though some improved optical methods can directly and visually obtain subsurface nanofeatures, the high refractive index difference (RID) between introduced superlens and subsurface object will inevitably degenerate the image quality. In this paper, a simple and reliable experimental technique is presented to self-assemble spherical cap optical nanoscopy (SCON) subsurface nano-imaging system (SNIS) with two low RID materials. By using SCON-SNIS, subsurface objects with a spacing as small as 0.16 times of illumination wavelength, and involving wider field of views (nearly one-half of SCON’s great-circle diameter in the direction of the equator) and deeper depth (several micrometers) can be imaged. In order to get insights into the imaging mechanism, a finite element simulation and a ray-optics analytical study are performed, in which the imaging process is elucidated both theoretically and experimentally. This non-invasive, label-free and real-time subsurface nano-imaging paradigm could be a promising tool in life, material, biology and engineering sciences.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-assembled on-chip spherical-cap-shaped microresonators for high sensitivity temperature sensing

Ming Chen, Guoqiang Gu, Baoping Zhang, Zhiping Cai, and Lei Wei
Opt. Express 24(23) 26948-26955 (2016)

Spatial control of photonic nanojets

Jinlong Zhu and Lynford L. Goddard
Opt. Express 24(26) 30444-30464 (2016)

Nanoscopy on-a-chip: super-resolution imaging on the millimeter scale

Øystein I. Helle, David A. Coucheron, Jean-Claude Tinguely, Cristina I. Øie, and Balpreet S. Ahluwalia
Opt. Express 27(5) 6700-6710 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Reineke, Applications of Subsurface Microscopy (Humana Press, 2012).
  2. R. Garcia, “Probe microscopy: images from below the surface,” Nat. Nanotechnol. 5(2), 101–102 (2010).
    [Crossref] [PubMed]
  3. A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, and M. Welland, “Direct imaging of single-walled carbon nanotubes in cells,” Nat. Nanotechnol. 2(11), 713–717 (2007).
    [Crossref] [PubMed]
  4. G. S. Shekhawat and V. P. Dravid, “Nanoscale imaging of buried structures via scanning near-field ultrasound holography,” Science 310(5745), 89–92 (2005).
    [Crossref] [PubMed]
  5. R. Garcia and E. T. Herruzo, “The emergence of multifrequency force microscopy,” Nat. Nanotechnol. 7(4), 217–226 (2012).
    [Crossref] [PubMed]
  6. G. J. Verbiest, T. H. Oosterkamp, and M. J. Rost, “Subsurface-AFM: sensitivity to the heterodyne signal,” Nanotechnology 24(36), 365701 (2013).
    [Crossref] [PubMed]
  7. P. Vitry, E. Bourillot, C. Plassard, Y. Lacroute, L. Tetard, and E. Lesniewska, “Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy,” Appl. Phys. Lett. 105(5), 053110 (2014).
    [Crossref]
  8. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
    [Crossref] [PubMed]
  9. N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, “Subsurface Raman imaging with nanoscale resolution,” Nano Lett. 6(4), 744–749 (2006).
    [Crossref] [PubMed]
  10. P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
    [Crossref] [PubMed]
  11. X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
    [Crossref]
  12. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
    [Crossref]
  13. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
    [Crossref]
  14. L. Hu, R. Chen, K. Agarwal, C. J. Sheppard, J. C. Phang, and X. Chen, “Dyadic Green’s function for aplanatic solid immersion lens based sub-surface microscopy,” Opt. Express 19(20), 19280–19295 (2011).
    [Crossref] [PubMed]
  15. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  16. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref] [PubMed]
  17. R. Ye, Y. H. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Y. Zhang, “Experimental far-field imaging properties of a ~5-μm diameter spherical lens,” Opt. Lett. 38(11), 1829–1831 (2013).
    [Crossref] [PubMed]
  18. R. Ye, Y. H. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
    [Crossref] [PubMed]
  19. S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
    [Crossref]
  20. A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
    [Crossref]
  21. H. Zhu, B. Yan, S. Zhou, Z. Wang, and L. Wu, “Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(41), 10907–10915 (2015).
    [Crossref]
  22. A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
    [Crossref] [PubMed]
  23. D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
    [Crossref] [PubMed]
  24. G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295(5564), 2418–2421 (2002).
    [Crossref] [PubMed]
  25. R. R. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface tension-powered self-assembly of microstructures-the state-of-the-art,” J. Microelectromech. Syst. 12(4), 387–417 (2003).
    [Crossref]
  26. E. McLeod and A. Ozcan, “Nano-imaging enabled via self-assembly,” Nano Today 9(5), 560–573 (2014).
    [Crossref] [PubMed]
  27. M. S. Kim, T. Scharf, M. T. Haq, W. Nakagawa, and H. P. Herzig, “Subwavelength-size solid immersion lens,” Opt. Lett. 36(19), 3930–3932 (2011).
    [Crossref] [PubMed]
  28. H. Ren, S. Xu, Y. Liu, and S. T. Wu, “A plano-convex/biconvex microlens array based on self-assembled photocurable polymer droplets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7453–7458 (2013).
    [Crossref]
  29. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  30. A. Lafuma and D. Quéré, “Superhydrophobic states,” Nat. Mater. 2(7), 457–460 (2003).
    [Crossref] [PubMed]
  31. M. Ma and R. M. Hill, “Superhydrophobic surfaces,” Curr. Opin. Colloid Interface Sci. 11(4), 193–202 (2006).
    [Crossref]
  32. J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
    [Crossref]
  33. M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun. 26(22), 1805–1809 (2005).
    [Crossref]
  34. G. Gu, C. Guo, Z. Cai, H. Xu, L. Chen, H. Fu, K. Che, M. Hong, S. Sun, and F. Li, “Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring,” Appl. Opt. 53(32), 7819–7824 (2014).
    [Crossref] [PubMed]
  35. A. Bietsch and B. Michel, “Conformal contact and pattern stability of stamps used for soft lithography,” J. Appl. Phys. 88(7), 4310–4318 (2000).
    [Crossref]
  36. S. M. Langelier, L. Y. Yeo, and J. Friend, “UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration,” Lab Chip 12(16), 2970–2976 (2012).
    [Crossref] [PubMed]
  37. H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
    [Crossref] [PubMed]
  38. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
    [Crossref] [PubMed]
  39. G. M. Whitesides and P. E. Laibinis, “Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface,” Langmuir 6(1), 87–96 (1990).
    [Crossref]
  40. C. M. Chan, Polymer Surface Modification and Characterization (Hanser Gardner Publications, 1994).
  41. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  42. K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
    [Crossref]
  43. A. J. den Dekker and A. Van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14(3), 547–557 (1997).
    [Crossref]
  44. A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40(1), 5–8 (2015).
    [Crossref] [PubMed]
  45. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
    [Crossref]
  46. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
    [Crossref]

2015 (4)

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

H. Zhu, B. Yan, S. Zhou, Z. Wang, and L. Wu, “Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(41), 10907–10915 (2015).
[Crossref]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40(1), 5–8 (2015).
[Crossref] [PubMed]

2014 (8)

E. McLeod and A. Ozcan, “Nano-imaging enabled via self-assembly,” Nano Today 9(5), 560–573 (2014).
[Crossref] [PubMed]

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

G. Gu, C. Guo, Z. Cai, H. Xu, L. Chen, H. Fu, K. Che, M. Hong, S. Sun, and F. Li, “Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring,” Appl. Opt. 53(32), 7819–7824 (2014).
[Crossref] [PubMed]

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

R. Ye, Y. H. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref] [PubMed]

P. Vitry, E. Bourillot, C. Plassard, Y. Lacroute, L. Tetard, and E. Lesniewska, “Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy,” Appl. Phys. Lett. 105(5), 053110 (2014).
[Crossref]

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

2013 (5)

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

G. J. Verbiest, T. H. Oosterkamp, and M. J. Rost, “Subsurface-AFM: sensitivity to the heterodyne signal,” Nanotechnology 24(36), 365701 (2013).
[Crossref] [PubMed]

R. Ye, Y. H. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Y. Zhang, “Experimental far-field imaging properties of a ~5-μm diameter spherical lens,” Opt. Lett. 38(11), 1829–1831 (2013).
[Crossref] [PubMed]

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “A plano-convex/biconvex microlens array based on self-assembled photocurable polymer droplets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7453–7458 (2013).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

2012 (5)

S. M. Langelier, L. Y. Yeo, and J. Friend, “UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration,” Lab Chip 12(16), 2970–2976 (2012).
[Crossref] [PubMed]

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[Crossref] [PubMed]

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

R. Garcia and E. T. Herruzo, “The emergence of multifrequency force microscopy,” Nat. Nanotechnol. 7(4), 217–226 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

R. Garcia, “Probe microscopy: images from below the surface,” Nat. Nanotechnol. 5(2), 101–102 (2010).
[Crossref] [PubMed]

2009 (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

2007 (1)

A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, and M. Welland, “Direct imaging of single-walled carbon nanotubes in cells,” Nat. Nanotechnol. 2(11), 713–717 (2007).
[Crossref] [PubMed]

2006 (2)

N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, “Subsurface Raman imaging with nanoscale resolution,” Nano Lett. 6(4), 744–749 (2006).
[Crossref] [PubMed]

M. Ma and R. M. Hill, “Superhydrophobic surfaces,” Curr. Opin. Colloid Interface Sci. 11(4), 193–202 (2006).
[Crossref]

2005 (5)

M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun. 26(22), 1805–1809 (2005).
[Crossref]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[Crossref]

G. S. Shekhawat and V. P. Dravid, “Nanoscale imaging of buried structures via scanning near-field ultrasound holography,” Science 310(5745), 89–92 (2005).
[Crossref] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

2003 (3)

R. R. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface tension-powered self-assembly of microstructures-the state-of-the-art,” J. Microelectromech. Syst. 12(4), 387–417 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

A. Lafuma and D. Quéré, “Superhydrophobic states,” Nat. Mater. 2(7), 457–460 (2003).
[Crossref] [PubMed]

2002 (1)

G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295(5564), 2418–2421 (2002).
[Crossref] [PubMed]

2001 (1)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[Crossref]

2000 (1)

A. Bietsch and B. Michel, “Conformal contact and pattern stability of stamps used for soft lithography,” J. Appl. Phys. 88(7), 4310–4318 (2000).
[Crossref]

1997 (1)

1990 (1)

G. M. Whitesides and P. E. Laibinis, “Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface,” Langmuir 6(1), 87–96 (1990).
[Crossref]

Agarwal, K.

Allen, K. W.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

Anderson, N.

N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, “Subsurface Raman imaging with nanoscale resolution,” Nano Lett. 6(4), 744–749 (2006).
[Crossref] [PubMed]

Anger, P.

N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, “Subsurface Raman imaging with nanoscale resolution,” Nano Lett. 6(4), 744–749 (2006).
[Crossref] [PubMed]

Astratov, V. N.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Auwerx, J.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Backman, V.

Bietsch, A.

A. Bietsch and B. Michel, “Conformal contact and pattern stability of stamps used for soft lithography,” J. Appl. Phys. 88(7), 4310–4318 (2000).
[Crossref]

Böckmann, H.

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

Bose, R.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Bourillot, E.

P. Vitry, E. Bourillot, C. Plassard, Y. Lacroute, L. Tetard, and E. Lesniewska, “Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy,” Appl. Phys. Lett. 105(5), 053110 (2014).
[Crossref]

Bright, V. M.

R. R. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface tension-powered self-assembly of microstructures-the state-of-the-art,” J. Microelectromech. Syst. 12(4), 387–417 (2003).
[Crossref]

Cai, Z.

Cao, L.

R. Ye, Y. H. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref] [PubMed]

R. Ye, Y. H. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Y. Zhang, “Experimental far-field imaging properties of a ~5-μm diameter spherical lens,” Opt. Lett. 38(11), 1829–1831 (2013).
[Crossref] [PubMed]

Cárabe, A.

Che, K.

Chen, L.

Chen, R.

Chen, X.

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Cho, H. S.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Cho, K.

M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun. 26(22), 1805–1809 (2005).
[Crossref]

Choi, Y. W.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Dal Negro, L.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Darafsheh, A.

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40(1), 5–8 (2015).
[Crossref] [PubMed]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

den Dekker, A. J.

Dravid, V. P.

G. S. Shekhawat and V. P. Dravid, “Nanoscale imaging of buried structures via scanning near-field ultrasound holography,” Science 310(5745), 89–92 (2005).
[Crossref] [PubMed]

Farahi, N.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

Feng, C.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Feng, L.

M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun. 26(22), 1805–1809 (2005).
[Crossref]

Feng, X.

M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun. 26(22), 1805–1809 (2005).
[Crossref]

Finlay, J. C.

Friend, J.

S. M. Langelier, L. Y. Yeo, and J. Friend, “UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration,” Lab Chip 12(16), 2970–2976 (2012).
[Crossref] [PubMed]

Fu, H.

Garcia, R.

R. Garcia and E. T. Herruzo, “The emergence of multifrequency force microscopy,” Nat. Nanotechnol. 7(4), 217–226 (2012).
[Crossref] [PubMed]

R. Garcia, “Probe microscopy: images from below the surface,” Nat. Nanotechnol. 5(2), 101–102 (2010).
[Crossref] [PubMed]

Gass, M.

A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, and M. Welland, “Direct imaging of single-walled carbon nanotubes in cells,” Nat. Nanotechnol. 2(11), 713–717 (2007).
[Crossref] [PubMed]

Ge, J.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Gijs, M. A.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Goldberg, B. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[Crossref]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[Crossref]

Grzybowski, B.

G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295(5564), 2418–2421 (2002).
[Crossref] [PubMed]

Gu, G.

Gu, Z.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Guardiola, C.

Guo, C.

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Hao, X.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Haq, M. T.

Hartschuh, A.

N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, “Subsurface Raman imaging with nanoscale resolution,” Nano Lett. 6(4), 744–749 (2006).
[Crossref] [PubMed]

Herruzo, E. T.

R. Garcia and E. T. Herruzo, “The emergence of multifrequency force microscopy,” Nat. Nanotechnol. 7(4), 217–226 (2012).
[Crossref] [PubMed]

Herzig, H. P.

Hill, R. M.

M. Ma and R. M. Hill, “Superhydrophobic surfaces,” Curr. Opin. Colloid Interface Sci. 11(4), 193–202 (2006).
[Crossref]

Hillenbrand, R.

Ho, G. W.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Hong, B. H.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Hong, M.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

G. Gu, C. Guo, Z. Cai, H. Xu, L. Chen, H. Fu, K. Che, M. Hong, S. Sun, and F. Li, “Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring,” Appl. Opt. 53(32), 7819–7824 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Hu, L.

Huynen, I.

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[Crossref] [PubMed]

Hwang, I. C.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Ippolito, S. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[Crossref]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[Crossref]

Jiang, L.

M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun. 26(22), 1805–1809 (2005).
[Crossref]

Jin, M.

M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun. 26(22), 1805–1809 (2005).
[Crossref]

Jouravlev, M. V.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kang, D.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Kao, T. S.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Kaufman, L. J.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Keilmann, F.

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Kim, K. S.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, M. S.

Kim, P.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, S. M.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Ku, Y.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Kuang, C.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Lacroute, Y.

P. Vitry, E. Bourillot, C. Plassard, Y. Lacroute, L. Tetard, and E. Lesniewska, “Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy,” Appl. Phys. Lett. 105(5), 053110 (2014).
[Crossref]

Lafuma, A.

A. Lafuma and D. Quéré, “Superhydrophobic states,” Nat. Mater. 2(7), 457–460 (2003).
[Crossref] [PubMed]

Laibinis, P. E.

G. M. Whitesides and P. E. Laibinis, “Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface,” Langmuir 6(1), 87–96 (1990).
[Crossref]

Langelier, S. M.

S. M. Langelier, L. Y. Yeo, and J. Friend, “UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration,” Lab Chip 12(16), 2970–2976 (2012).
[Crossref] [PubMed]

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Lee, S.

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Lesniewska, E.

P. Vitry, E. Bourillot, C. Plassard, Y. Lacroute, L. Tetard, and E. Lesniewska, “Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy,” Appl. Phys. Lett. 105(5), 053110 (2014).
[Crossref]

Li, F.

Li, L.

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Li, P.

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

Li, S.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Li, X.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Li, Y.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Liberman, V.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

Limberopoulos, N. I.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

Liu, S.

Liu, X.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Liu, Y.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “A plano-convex/biconvex microlens array based on self-assembled photocurable polymer droplets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7453–7458 (2013).
[Crossref]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Luo, F.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Luo, X.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Ma, H. F.

R. Ye, Y. H. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref] [PubMed]

R. Ye, Y. H. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Y. Zhang, “Experimental far-field imaging properties of a ~5-μm diameter spherical lens,” Opt. Lett. 38(11), 1829–1831 (2013).
[Crossref] [PubMed]

Ma, J.

R. Ye, Y. H. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref] [PubMed]

R. Ye, Y. H. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Y. Zhang, “Experimental far-field imaging properties of a ~5-μm diameter spherical lens,” Opt. Lett. 38(11), 1829–1831 (2013).
[Crossref] [PubMed]

Ma, M.

M. Ma and R. M. Hill, “Superhydrophobic surfaces,” Curr. Opin. Colloid Interface Sci. 11(4), 193–202 (2006).
[Crossref]

McLeod, E.

E. McLeod and A. Ozcan, “Nano-imaging enabled via self-assembly,” Nano Today 9(5), 560–573 (2014).
[Crossref] [PubMed]

Melinte, S.

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[Crossref] [PubMed]

Michel, B.

A. Bietsch and B. Michel, “Conformal contact and pattern stability of stamps used for soft lithography,” J. Appl. Phys. 88(7), 4310–4318 (2000).
[Crossref]

Midgley, P. A.

A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, and M. Welland, “Direct imaging of single-walled carbon nanotubes in cells,” Nat. Nanotechnol. 2(11), 713–717 (2007).
[Crossref] [PubMed]

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Moullan, N.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Muller, K.

A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, and M. Welland, “Direct imaging of single-walled carbon nanotubes in cells,” Nat. Nanotechnol. 2(11), 713–717 (2007).
[Crossref] [PubMed]

Nakagawa, W.

Novotny, L.

N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, “Subsurface Raman imaging with nanoscale resolution,” Nano Lett. 6(4), 744–749 (2006).
[Crossref] [PubMed]

Oosterkamp, T. H.

G. J. Verbiest, T. H. Oosterkamp, and M. J. Rost, “Subsurface-AFM: sensitivity to the heterodyne signal,” Nanotechnology 24(36), 365701 (2013).
[Crossref] [PubMed]

Ozcan, A.

E. McLeod and A. Ozcan, “Nano-imaging enabled via self-assembly,” Nano Today 9(5), 560–573 (2014).
[Crossref] [PubMed]

Palovcak, A.

Pang, C.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Phang, J. C.

Plassard, C.

P. Vitry, E. Bourillot, C. Plassard, Y. Lacroute, L. Tetard, and E. Lesniewska, “Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy,” Appl. Phys. Lett. 105(5), 053110 (2014).
[Crossref]

Porter, A. E.

A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, and M. Welland, “Direct imaging of single-walled carbon nanotubes in cells,” Nat. Nanotechnol. 2(11), 713–717 (2007).
[Crossref] [PubMed]

Quéré, D.

A. Lafuma and D. Quéré, “Superhydrophobic states,” Nat. Mater. 2(7), 457–460 (2003).
[Crossref] [PubMed]

Ren, H.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “A plano-convex/biconvex microlens array based on self-assembled photocurable polymer droplets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7453–7458 (2013).
[Crossref]

Rost, M. J.

G. J. Verbiest, T. H. Oosterkamp, and M. J. Rost, “Subsurface-AFM: sensitivity to the heterodyne signal,” Nanotechnology 24(36), 365701 (2013).
[Crossref] [PubMed]

Scharf, T.

Shekhawat, G. S.

G. S. Shekhawat and V. P. Dravid, “Nanoscale imaging of buried structures via scanning near-field ultrasound holography,” Science 310(5745), 89–92 (2005).
[Crossref] [PubMed]

Sheppard, C. J.

Shi, R.

R. Ye, Y. H. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref] [PubMed]

Skepper, J. N.

A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, and M. Welland, “Direct imaging of single-walled carbon nanotubes in cells,” Nat. Nanotechnol. 2(11), 713–717 (2007).
[Crossref] [PubMed]

Suh, K. Y.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Sun, S.

Syms, R. R.

R. R. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface tension-powered self-assembly of microstructures-the state-of-the-art,” J. Microelectromech. Syst. 12(4), 387–417 (2003).
[Crossref]

Taflove, A.

Taubner, T.

Teng, J.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Tetard, L.

P. Vitry, E. Bourillot, C. Plassard, Y. Lacroute, L. Tetard, and E. Lesniewska, “Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy,” Appl. Phys. Lett. 105(5), 053110 (2014).
[Crossref]

Um, H. S.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Ünlü, M. S.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[Crossref]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[Crossref]

Urbas, A. M.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Van den Bos, A.

Verbiest, G. J.

G. J. Verbiest, T. H. Oosterkamp, and M. J. Rost, “Subsurface-AFM: sensitivity to the heterodyne signal,” Nanotechnology 24(36), 365701 (2013).
[Crossref] [PubMed]

Vitry, P.

P. Vitry, E. Bourillot, C. Plassard, Y. Lacroute, L. Tetard, and E. Lesniewska, “Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy,” Appl. Phys. Lett. 105(5), 053110 (2014).
[Crossref]

Vlad, A.

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[Crossref] [PubMed]

Walker, D. E.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Wang, B.

Wang, T.

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Wang, Y.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Wang, Z.

H. Zhu, B. Yan, S. Zhou, Z. Wang, and L. Wu, “Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(41), 10907–10915 (2015).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Welland, M.

A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, and M. Welland, “Direct imaging of single-walled carbon nanotubes in cells,” Nat. Nanotechnol. 2(11), 713–717 (2007).
[Crossref] [PubMed]

Whitesides, G. M.

R. R. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface tension-powered self-assembly of microstructures-the state-of-the-art,” J. Microelectromech. Syst. 12(4), 387–417 (2003).
[Crossref]

G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295(5564), 2418–2421 (2002).
[Crossref] [PubMed]

G. M. Whitesides and P. E. Laibinis, “Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface,” Langmuir 6(1), 87–96 (1990).
[Crossref]

Wong, C. W.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Wu, L.

H. Zhu, B. Yan, S. Zhou, Z. Wang, and L. Wu, “Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(41), 10907–10915 (2015).
[Crossref]

Wu, S. T.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “A plano-convex/biconvex microlens array based on self-assembled photocurable polymer droplets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7453–7458 (2013).
[Crossref]

Wyrowski, F.

R. Ye, Y. H. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref] [PubMed]

Xi, J.

M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun. 26(22), 1805–1809 (2005).
[Crossref]

Xu, H.

Xu, S.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “A plano-convex/biconvex microlens array based on self-assembled photocurable polymer droplets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7453–7458 (2013).
[Crossref]

Yan, B.

H. Zhu, B. Yan, S. Zhou, Z. Wang, and L. Wu, “Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(41), 10907–10915 (2015).
[Crossref]

Yan, Y.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Yang, H.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Yang, J.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Yao, J.

Ye, R.

R. Ye, Y. H. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref] [PubMed]

R. Ye, Y. H. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Y. Zhang, “Experimental far-field imaging properties of a ~5-μm diameter spherical lens,” Opt. Lett. 38(11), 1829–1831 (2013).
[Crossref] [PubMed]

Ye, Y. H.

R. Ye, Y. H. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref] [PubMed]

R. Ye, Y. H. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Y. Zhang, “Experimental far-field imaging properties of a ~5-μm diameter spherical lens,” Opt. Lett. 38(11), 1829–1831 (2013).
[Crossref] [PubMed]

Yeatman, E. M.

R. R. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface tension-powered self-assembly of microstructures-the state-of-the-art,” J. Microelectromech. Syst. 12(4), 387–417 (2003).
[Crossref]

Yeo, L. Y.

S. M. Langelier, L. Y. Yeo, and J. Friend, “UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration,” Lab Chip 12(16), 2970–2976 (2012).
[Crossref] [PubMed]

Zhai, J.

M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun. 26(22), 1805–1809 (2005).
[Crossref]

Zhang, J. Y.

R. Ye, Y. H. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref] [PubMed]

R. Ye, Y. H. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Y. Zhang, “Experimental far-field imaging properties of a ~5-μm diameter spherical lens,” Opt. Lett. 38(11), 1829–1831 (2013).
[Crossref] [PubMed]

Zhou, S.

H. Zhu, B. Yan, S. Zhou, Z. Wang, and L. Wu, “Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(41), 10907–10915 (2015).
[Crossref]

Zhu, H.

H. Zhu, B. Yan, S. Zhou, Z. Wang, and L. Wu, “Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(41), 10907–10915 (2015).
[Crossref]

ACS Nano (1)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Ann. Phys. (1)

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

P. Vitry, E. Bourillot, C. Plassard, Y. Lacroute, L. Tetard, and E. Lesniewska, “Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy,” Appl. Phys. Lett. 105(5), 053110 (2014).
[Crossref]

Curr. Opin. Colloid Interface Sci. (1)

M. Ma and R. M. Hill, “Superhydrophobic surfaces,” Curr. Opin. Colloid Interface Sci. 11(4), 193–202 (2006).
[Crossref]

J. Appl. Phys. (2)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[Crossref]

A. Bietsch and B. Michel, “Conformal contact and pattern stability of stamps used for soft lithography,” J. Appl. Phys. 88(7), 4310–4318 (2000).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “A plano-convex/biconvex microlens array based on self-assembled photocurable polymer droplets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7453–7458 (2013).
[Crossref]

H. Zhu, B. Yan, S. Zhou, Z. Wang, and L. Wu, “Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(41), 10907–10915 (2015).
[Crossref]

J. Microelectromech. Syst. (1)

R. R. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface tension-powered self-assembly of microstructures-the state-of-the-art,” J. Microelectromech. Syst. 12(4), 387–417 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

Lab Chip (1)

S. M. Langelier, L. Y. Yeo, and J. Friend, “UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration,” Lab Chip 12(16), 2970–2976 (2012).
[Crossref] [PubMed]

Langmuir (1)

G. M. Whitesides and P. E. Laibinis, “Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface,” Langmuir 6(1), 87–96 (1990).
[Crossref]

Light Sci. Appl. (3)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Macromol. Rapid Commun. (1)

M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun. 26(22), 1805–1809 (2005).
[Crossref]

Nano Lett. (2)

N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, “Subsurface Raman imaging with nanoscale resolution,” Nano Lett. 6(4), 744–749 (2006).
[Crossref] [PubMed]

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

Nano Today (1)

E. McLeod and A. Ozcan, “Nano-imaging enabled via self-assembly,” Nano Today 9(5), 560–573 (2014).
[Crossref] [PubMed]

Nanotechnology (2)

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[Crossref] [PubMed]

G. J. Verbiest, T. H. Oosterkamp, and M. J. Rost, “Subsurface-AFM: sensitivity to the heterodyne signal,” Nanotechnology 24(36), 365701 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

A. Lafuma and D. Quéré, “Superhydrophobic states,” Nat. Mater. 2(7), 457–460 (2003).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

R. Garcia, “Probe microscopy: images from below the surface,” Nat. Nanotechnol. 5(2), 101–102 (2010).
[Crossref] [PubMed]

A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, and M. Welland, “Direct imaging of single-walled carbon nanotubes in cells,” Nat. Nanotechnol. 2(11), 713–717 (2007).
[Crossref] [PubMed]

R. Garcia and E. T. Herruzo, “The emergence of multifrequency force microscopy,” Nat. Nanotechnol. 7(4), 217–226 (2012).
[Crossref] [PubMed]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Opt. Commun. (1)

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Sci. Rep. (1)

R. Ye, Y. H. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref] [PubMed]

Science (2)

G. S. Shekhawat and V. P. Dravid, “Nanoscale imaging of buried structures via scanning near-field ultrasound holography,” Science 310(5745), 89–92 (2005).
[Crossref] [PubMed]

G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295(5564), 2418–2421 (2002).
[Crossref] [PubMed]

Small (1)

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Other (3)

C. M. Chan, Polymer Surface Modification and Characterization (Hanser Gardner Publications, 1994).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

J. Reineke, Applications of Subsurface Microscopy (Humana Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Diagram illustrating the process used to fabricate SCON-SNIS. (b) Self-assembling process of SCON on PDMS substrate as a function of time.
Fig. 2
Fig. 2 Schematic illustration of the experimental setup. Imaging of subsurface objects by a SCON-SNIS in combination with a conventional far-field optical microscope under reflection mode.
Fig. 3
Fig. 3 (a)-i Microscopic image of an Si-nanodisk array with periodic sizes of 480 nm consisting of 260-nm-diameters disk separated by 220 nm spaces; (a)-ii Self-assembled SCON with equatorial diameter (ED) of 7.6 μm and 1 μm above the subsurface object of Si-nanodisk array; (a)-iii Image of the subsurface Si-nanodisk array generated by 7.6 μm SCON at the position of d = −0.5 μm. (b)-i SEM image of a Blu-ray disk with a line width of 200 nm and a spacing of 100 nm; (b)-ii Self-assembled SCON with ED of 20 μm and 3 μm above the subsurface object of Blu-ray disk; (b)-iii Image of the subsurface Blu-ray disk generated by 20 μm SCON at the position of d = −6 μm.
Fig. 4
Fig. 4 (a) Ray tracing analysis of plane wave transmitting through SCON-SNIS. (b) Full-wave simulation of SCON-SNIS illuminated by a monochromatic plane wave. The arrows denote the distribution of Poynting vector field. (c) Illumination sizes comparison of SCON with (c)-i θ = 90° and (c)-ii θ> 90°. ED: equatorial diameter, r: half of ED, h (height): distance from bottom surface to top vertex of face-down SCON, θ: contact angle, t: thickness, O: center of SCON. The regions within the black dashed boxes stand for the illumination area. Insert: principle scheme of a liquid NOA 61 SCON in contact with the PDMS substrate surface in the state of equilibrium, the contact angle is related to the surface energy of gas/solid (σg-s), solid/liquid (σs-l) and gas/liquid (σg-l). (d) Ray-tracing and FEM-simulation results of illumination sizes with respect to the height (h) in the cases of (d)-i ED = 20 μm and (d)-ii ED = 7.6 μm. Transparent green rectangular boxes: the observed experimental FOVs, Grey dotted line: illumination size at h = r.
Fig. 5
Fig. 5 Virtual image formation of subsurface specimen with a SCON-SNIS by ray tracing method. (b)-i and (b)-ii Magnification factors with (r, t, h) = (10, 3, 11.4) and (r, t, h) = (3.8, 1, 4.1) at different position range of −6.7 to −4.8 μm and −2.78 to −2.62 μm of calculated image planes. Red asterisks show the observed magnification factors at the experimental image plane. m1∼1.2 is the calculated magnification factor with a comparatively small value.
Fig. 6
Fig. 6 Virtual images of subsurface Blu-ray disk with a SCON-SNIS of ED = 21.4 μm and t = 4.1 μm at the image plane positions of (a)-i de = −5 μm, (a)-ii de = −5.4 μm and (a)-iii de = −6 μm. The insets in (a)-i, (a)-ii and (a)-iii, respectively, are the irradiance intensity distributions along the red, green and blue short lines. The white arc-shaped lines are artificial markers for more clearly indicating the virtual images formed unearth the specimen surface and pincushion distortion to a certain degree. Virtual images of subsurface Si-nanodisk array with a SCON-SNIS of ED = 20.9 μm and t = 6 μm at the image plane positions of (b)-i de = −7.4 μm, (b)-ii de = −9 μm and (b)-iii de = −11 μm. (b)-iv to (b)-vi are the intensity distribution profiles along the red, green and blue dashed lines.
Fig. 7
Fig. 7 (a) Experimental measurement values (me) of magnification factors as a function of equatorial diameter (ED) and substrate thickness (t) with the specimens of Si-nanodisk array and Blu-ray disk. (b) Two dimensional univariate graph of me relative to EDs for these two cases. (c) The changing relationship of magnification factors (me) and curvature (1/r) under a fixed substrate thickness (t) in the case of Blu-ray disk. Insets: Relationship of me and 1/r with t = 3 μm and t = 4.2 μm. (d) Theoretical analysis of magnification factors (mc) versus to curvature (1/r) with the heights equalling r + 0.1, r + 0.3, r + 0.6, r + 0.9 and r + 1.2, respectively.

Metrics