Abstract

We demonstrate a compact fibre-based laser system at 2.05 microns stabilized to a CO2 transition using frequency modulation spectroscopy of a gas-filled hollow-core fibre. The laser exhibits an absolute frequency accuracy of 5 MHz, a frequency stability noise floor of better than 7 kHz or 5 × 10−11 and is tunable within ±200 MHz from the molecular resonance frequency while retaining roughly this stability and accuracy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact iodine-stabilized laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module

Takumi Kobayashi, Daisuke Akamatsu, Kazumoto Hosaka, Hajime Inaba, Sho Okubo, Takehiko Tanabe, Masami Yasuda, Atsushi Onae, and Feng-Lei Hong
Opt. Express 23(16) 20749-20759 (2015)

10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers

Kevin Knabe, Shun Wu, Jinkang Lim, Karl A. Tillman, Philip S. Light, Francois Couny, Natalie Wheeler, Rajesh Thapa, Andrew M. Jones, Jeffrey W. Nicholson, Brian R. Washburn, Fetah Benabid, and Kristan L. Corwin
Opt. Express 17(18) 16017-16026 (2009)

Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation

Pablo Pineda-Vadillo, Michael Lynch, Christy Charlton, John F. Donegan, and Vincent Weldon
Opt. Express 17(25) 23309-23315 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23, 11227–11241 (2015).
    [Crossref] [PubMed]
  2. A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Opt. Lett. 36, 4776–4778 (2011).
    [Crossref] [PubMed]
  3. C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52, 5430–5439 (2013).
    [Crossref] [PubMed]
  4. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
    [Crossref] [PubMed]
  5. P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell,” Proc. SPIE 7677, 767713 (2010).
    [Crossref]
  6. G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
    [Crossref]
  7. M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
    [Crossref]
  8. J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753(1), 77533Q (2011).
    [Crossref]
  9. R. M. Gerosa, D. H. Spadoti, L. d. S. Menezes, and C. J. S. de Matos, “In-fiber modal Mach–Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express 19, 3124–3129 (2011).
    [Crossref] [PubMed]

2015 (2)

M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23, 11227–11241 (2015).
[Crossref] [PubMed]

M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
[Crossref]

2013 (1)

2011 (3)

2010 (1)

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

2005 (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

1981 (1)

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[Crossref]

Anstie, J. D.

Bang, O.

Baynes, F. N.

Benabid, F.

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Bjorklund, G. C.

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[Crossref]

Bradley, T. D.

Broeng, J.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753(1), 77533Q (2011).
[Crossref]

Brusch, A.

M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
[Crossref]

Chang, D. H.

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

Corwin, K. L.

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

de Matos, C. J. S.

Fourcade-Dutin, C.

Gerosa, R. M.

Grogan, M.

Hald, J.

M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
[Crossref]

M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23, 11227–11241 (2015).
[Crossref] [PubMed]

Jakobsen, C.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753(1), 77533Q (2011).
[Crossref]

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Lægsgaard, J.

Levenson, M. D.

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[Crossref]

Light, P. S.

Luiten, A. N.

Lurie, A.

Lyngsø, J. K.

M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23, 11227–11241 (2015).
[Crossref] [PubMed]

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753(1), 77533Q (2011).
[Crossref]

Menezes, L. d. S.

Meras, P.

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

Michieletto, M.

Poberezhskiy, I. Y.

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

Russell, P. S. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Simonsen, H. R.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753(1), 77533Q (2011).
[Crossref]

Spadoti, D. H.

Spiers, G. D.

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

Stace, T. M.

Triches, M.

M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23, 11227–11241 (2015).
[Crossref] [PubMed]

M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
[Crossref]

Wang, C.

Washburn, B. R.

Wheeler, N. V.

Appl. Opt. (1)

Appl. Phys. B (1)

M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
[Crossref]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[Crossref]

Proc. SPIE (2)

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753(1), 77533Q (2011).
[Crossref]

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

An overview of the experimental setup. OI: Optical Isolator, HC-PCF: Hollow-Core Photonic Crystal Fiber. The dashed lines indicate electronic DC or RF signal paths.

Fig. 2
Fig. 2

Characteristics of the fabricated HC-PCF. Transmission measurement through 1 m fiber. The inset shows a microscope image of the end face of the HC-PCF.

Fig. 3
Fig. 3

Higher order mode characterization of the HC-PCF using Windowed Fourier Transform method. The figure shows the mode content of the differential group indices with red being the densest and blue the thinnest. Dense mode content for non-zero differential group index indicates the presence of higher order modes in the fiber.

Fig. 4
Fig. 4

An overview of the optical setup inside a box with outer dimensions (25 × 25 × 5) cm3. The numbered items are described in Table 1.

Fig. 5
Fig. 5

The absorption signal (red curve) derived from the photo detector DC level, and the corresponding FM spectroscopy error signal (blue curve). The sweep time was 2 seconds without any averaging.

Fig. 6
Fig. 6

The time series of the beat note frequency between the system investigated here and a reference laser locked at resonance to a CO2-filled Brewster angled glass cell. The offset frequency is changed every two hours with a re-calibration taking place before changing the offset frequency. The initial offset is +50 MHz and is increased in steps of +50 MHz after each re-calibration. After reaching +200 MHz the offset is set to −200 MHz. Note that negative offset frequencies are also recorded as a positive beat note frequency. The numbers (1) and (2) refer to selected periods for which the Allan deviation is plotted in Fig. 7.

Fig. 7
Fig. 7

The Allan deviation obtained at two different offset frequencies (marked with (1) and (2) in Fig. 6).

Fig. 8
Fig. 8

Measurements over more than two weeks of the actual offset frequency value for +50 MHz and +200 MHz set points. The solid coloured lines show the average value and the colored dashed lines show +/− one standard deviation from the average value.

Tables (1)

Tables Icon

Table 1 Explanations of the numbered items in Fig. 4.

Metrics