Abstract

Plasmon-enhanced in situ spectroscopic ellipsometry was realized using the Kretschmann geometry. A 10-μL flow cell was designed for multi-channel measurements using a semi-cylindrical lens. Dual-channel monitoring of the layer formation of different organic structures has been demonstrated on titania nanoparticle thin films supported by gold. Complex modeling capabilities as well as a sensitivity of ~40 pg/mm2 with a time resolution of 1 s was achieved. The surface adsorption was enhanced by the titania nanoparticles due to the larger specific surface and nanoroughness, which is consistent with our previous results on titanate nanotubes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening

Daniel Patko, Kaspar Cottier, Andras Hamori, and Robert Horvath
Opt. Express 20(21) 23162-23173 (2012)

Total internal reflection ellipsometry: ultrahigh sensitivity for protein adsorption on metal surfaces

Michal Poksinski and Hans Arwin
Opt. Lett. 32(10) 1308-1310 (2007)

Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells

Diana Viegas, Elisabete Fernandes, Raquel Queirós, Dmitri Y. Petrovykh, and Pieter De Beule
Biomed. Opt. Express 8(8) 3538-3550 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Déjardin, ed., Proteins at Solid-Liquid Interfaces (Springer, 2006).
  2. M. Rabe, D. Verdes, and S. Seeger, “Understanding protein adsorption phenomena at solid surfaces,” Adv. Colloid Interface Sci. 162(1-2), 87–106 (2011).
    [Crossref] [PubMed]
  3. A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films 516(24), 8993–9001 (2008).
    [Crossref]
  4. R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: Immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
    [Crossref] [PubMed]
  5. N. Trummer, N. Adányi, M. Váradi, and I. Szendrö, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371(1), 21–24 (2001).
    [Crossref] [PubMed]
  6. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
    [Crossref] [PubMed]
  7. S. Kurunczi, R. Horvath, Y. P. Yeh, A. Muskotál, A. Sebestyén, F. Vonderviszt, and J. J. Ramsden, “Self-assembly of rodlike receptors from bulk solution,” J. Chem. Phys. 130(1), 011101 (2009).
    [Crossref] [PubMed]
  8. P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys,” B Lasers Opt. 97(1), 5–8 (2009).
    [Crossref]
  9. P. Kozma, A. Hámori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem. 155(2), 446–450 (2011).
    [Crossref]
  10. D. Patko, K. Cottier, A. Hamori, and R. Horvath, “Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening,” Opt. Express 20(21), 23162–23173 (2012).
    [Crossref] [PubMed]
  11. J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
    [Crossref] [PubMed]
  12. F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
    [Crossref]
  13. N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
    [Crossref]
  14. N. Orgovan, B. Kovacs, E. Farkas, B. Szabó, N. Zaytseva, Y. Fang, and R. Horvath, “Bulk and surface sensitivity of a resonant waveguide grating imager,” Appl. Phys. Lett. 104(8), 083506 (2014).
    [Crossref]
  15. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Ltd, 2007).
  16. H. Arwin, “Optical Properties of Thin Layers of Bovine Serum Albumin, γ-Globulin, and Hemoglobin,” Appl. Spectrosc. 40(3), 313–318 (1986).
    [Crossref]
  17. H. Arwin, S. Welin-Klintstrom, and R. Jansson, “Off-Null Ellipsometry Revisited: Basic Considerations for Measuring Surface Concentrations at Solid/Liquid Interfaces,” J. Colloid Interface Sci. 156(2), 377–382 (1993).
    [Crossref]
  18. H. Arwin, “Ellipsometry on thin organic layers of biological interest: Characterization and applications,” Thin Solid Films 377–378, 48–56 (2000).
    [Crossref]
  19. Y. Chen, Y. Meng, and G. Jin, “Optimization of off-null ellipsometry for air/solid interfaces,” Appl. Opt. 46(35), 8475–8481 (2007).
    [Crossref] [PubMed]
  20. P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
    [Crossref]
  21. P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
    [Crossref] [PubMed]
  22. R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1(8), 1264–1268 (2010).
    [Crossref]
  23. S. Lousinian and S. Logothetidis, “In-situ and real-time protein adsorption study by Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 8002–8008 (2008).
    [Crossref]
  24. P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).
  25. S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
    [Crossref]
  26. A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
    [Crossref]
  27. G. Gyulai, C. B. Pénzes, M. Mohai, T. Lohner, P. Petrik, S. Kurunczi, and É. Kiss, “Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses,” J. Colloid Interface Sci. 362(2), 600–606 (2011).
    [Crossref] [PubMed]
  28. A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
    [Crossref]
  29. P. A. Cuypers, W. T. Hermens, and H. C. Hemker, “Ellipsometry as a Tool to Study Protein Interfaces Films at,” Anal. Biochem. 67, 56–67 (1978).
    [Crossref] [PubMed]
  30. P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B Chem. 84(2-3), 278–282 (2002).
    [Crossref]
  31. M. Poksinski and H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–721 (2004).
    [Crossref]
  32. L. Liu, Y. Y. Chen, Y. H. Meng, S. Chen, and G. Jin, “Improvement for sensitivity of biosensor with total internal reflection imaging ellipsometry (TIRIE),” Thin Solid Films 519(9), 2758–2762 (2011).
    [Crossref]
  33. N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36(1), 250–256 (2012).
    [Crossref] [PubMed]
  34. L. Liu, A. Viallat, and G. Jin, “Vesicle adhesion visualized with total internal reflection imaging ellipsometry biosensor,” Sens. Actuators B Chem. 190, 221–226 (2014).
    [Crossref]
  35. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  36. T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
    [Crossref]
  37. K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, and R. Volkmer, “Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry,” Anal. Bioanal. Chem. 387(5), 1823–1829 (2007).
    [Crossref] [PubMed]
  38. P. Petrik, E. Agocs, B. Kalas, P. Kozma, B. Fodor, J. Nador, C. Major, and M. Fried, “Multiple angle of incidence, spectroscopic, plasmon-enhanced, internal reflection ellipsometry for the characterization of solid-liquid interface processes,” SPIE Proc. 9529, 95290W (2015).
  39. P. G. Schultz and X.-D. Xiang, “Combinatorial approaches to materials science,” Curr. Opin. Solid State Mater. Sci. 3(2), 153–158 (1998).
    [Crossref]
  40. G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites,” Science 277(80), 1232–1237 (1997).
    [Crossref]
  41. S. Schwarz, K. J. Eichhorn, E. Wischerhoff, and A. Laschewsky, “Polyelectrolyte adsorption onto planar surfaces: a study by streaming potential and ellipsometry measurements,” Eng. Asp. 159(2-3), 491–501 (1999).
    [Crossref]
  42. D. L. Elbert, C. B. Herbert, and J. Hubbell, “Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces,” Langmuir 15(16), 5355–5362 (1999).
    [Crossref]
  43. L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
    [Crossref]
  44. K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher, “Enhancement of protein adsorption induced by surface roughness,” Langmuir 22(26), 10885–10888 (2006).
    [Crossref] [PubMed]
  45. P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, and P. Milani, “The effect of surface nanometre-scale morphology on protein adsorption,” PLoS One 5(7), e11862 (2010).
    [Crossref] [PubMed]
  46. J. Nador, N. Orgovan, M. Fried, P. Petrik, A. Sulyok, J. J. Ramsden, L. Korosi, and R. Horvath, “Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips,” Colloids Surf. B Biointerfaces 122, 491–497 (2014).
    [Crossref] [PubMed]
  47. L. Kőrösi, M. Prato, A. Scarpellini, A. Riedinger, J. Kovács, M. Kus, V. Meynen, and S. Papp, “Hydrothermal synthesis, structure and photocatalytic activity of PF-co-doped TiO2,” Mater. Sci. Semicond. Process. 30, 442–450 (2015).
    [Crossref]
  48. L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
    [Crossref]
  49. L. Kőrösi, A. Scarpellini, P. Petrik, S. Papp, and I. Dékány, “Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity,” Appl. Surf. Sci. 320, 725–731 (2014).
    [Crossref]
  50. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(8), 665–674 (1935).
    [Crossref]
  51. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997).
  52. J. J. Ramsden, Y. M. Lvov, and G. Decher, “Determination of optical constants of molecular films assembled via alternate polyion adsorption,” Thin Solid Films 254(1-2), 246–251 (1995).
    [Crossref]
  53. J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a tool to study the adsorption behavior of syntetic and biopolyers at the air water interface,” Biopolymers 17(7), 1759–1772 (1978).
    [Crossref]
  54. L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
    [Crossref]
  55. M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “pH-responsive drug delivery system based on hollow silicon dioxide micropillars coated with polyelectrolyte multilayers,” Nanoscale Res. Lett. 9(1), 411 (2014).
    [Crossref] [PubMed]

2015 (1)

L. Kőrösi, M. Prato, A. Scarpellini, A. Riedinger, J. Kovács, M. Kus, V. Meynen, and S. Papp, “Hydrothermal synthesis, structure and photocatalytic activity of PF-co-doped TiO2,” Mater. Sci. Semicond. Process. 30, 442–450 (2015).
[Crossref]

2014 (6)

L. Kőrösi, A. Scarpellini, P. Petrik, S. Papp, and I. Dékány, “Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity,” Appl. Surf. Sci. 320, 725–731 (2014).
[Crossref]

J. Nador, N. Orgovan, M. Fried, P. Petrik, A. Sulyok, J. J. Ramsden, L. Korosi, and R. Horvath, “Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips,” Colloids Surf. B Biointerfaces 122, 491–497 (2014).
[Crossref] [PubMed]

L. Liu, A. Viallat, and G. Jin, “Vesicle adhesion visualized with total internal reflection imaging ellipsometry biosensor,” Sens. Actuators B Chem. 190, 221–226 (2014).
[Crossref]

M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “pH-responsive drug delivery system based on hollow silicon dioxide micropillars coated with polyelectrolyte multilayers,” Nanoscale Res. Lett. 9(1), 411 (2014).
[Crossref] [PubMed]

N. Orgovan, B. Kovacs, E. Farkas, B. Szabó, N. Zaytseva, Y. Fang, and R. Horvath, “Bulk and surface sensitivity of a resonant waveguide grating imager,” Appl. Phys. Lett. 104(8), 083506 (2014).
[Crossref]

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

2013 (2)

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

2012 (4)

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36(1), 250–256 (2012).
[Crossref] [PubMed]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

D. Patko, K. Cottier, A. Hamori, and R. Horvath, “Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening,” Opt. Express 20(21), 23162–23173 (2012).
[Crossref] [PubMed]

2011 (6)

M. Rabe, D. Verdes, and S. Seeger, “Understanding protein adsorption phenomena at solid surfaces,” Adv. Colloid Interface Sci. 162(1-2), 87–106 (2011).
[Crossref] [PubMed]

P. Kozma, A. Hámori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem. 155(2), 446–450 (2011).
[Crossref]

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
[Crossref]

G. Gyulai, C. B. Pénzes, M. Mohai, T. Lohner, P. Petrik, S. Kurunczi, and É. Kiss, “Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses,” J. Colloid Interface Sci. 362(2), 600–606 (2011).
[Crossref] [PubMed]

L. Liu, Y. Y. Chen, Y. H. Meng, S. Chen, and G. Jin, “Improvement for sensitivity of biosensor with total internal reflection imaging ellipsometry (TIRIE),” Thin Solid Films 519(9), 2758–2762 (2011).
[Crossref]

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
[Crossref]

2010 (4)

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1(8), 1264–1268 (2010).
[Crossref]

P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, and P. Milani, “The effect of surface nanometre-scale morphology on protein adsorption,” PLoS One 5(7), e11862 (2010).
[Crossref] [PubMed]

2009 (2)

S. Kurunczi, R. Horvath, Y. P. Yeh, A. Muskotál, A. Sebestyén, F. Vonderviszt, and J. J. Ramsden, “Self-assembly of rodlike receptors from bulk solution,” J. Chem. Phys. 130(1), 011101 (2009).
[Crossref] [PubMed]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys,” B Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

2008 (4)

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films 516(24), 8993–9001 (2008).
[Crossref]

S. Lousinian and S. Logothetidis, “In-situ and real-time protein adsorption study by Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 8002–8008 (2008).
[Crossref]

P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

2007 (2)

K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, and R. Volkmer, “Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry,” Anal. Bioanal. Chem. 387(5), 1823–1829 (2007).
[Crossref] [PubMed]

Y. Chen, Y. Meng, and G. Jin, “Optimization of off-null ellipsometry for air/solid interfaces,” Appl. Opt. 46(35), 8475–8481 (2007).
[Crossref] [PubMed]

2006 (1)

K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher, “Enhancement of protein adsorption induced by surface roughness,” Langmuir 22(26), 10885–10888 (2006).
[Crossref] [PubMed]

2005 (1)

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
[Crossref]

2004 (2)

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref] [PubMed]

M. Poksinski and H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–721 (2004).
[Crossref]

2002 (3)

P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B Chem. 84(2-3), 278–282 (2002).
[Crossref]

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

2001 (1)

N. Trummer, N. Adányi, M. Váradi, and I. Szendrö, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371(1), 21–24 (2001).
[Crossref] [PubMed]

2000 (1)

H. Arwin, “Ellipsometry on thin organic layers of biological interest: Characterization and applications,” Thin Solid Films 377–378, 48–56 (2000).
[Crossref]

1999 (2)

S. Schwarz, K. J. Eichhorn, E. Wischerhoff, and A. Laschewsky, “Polyelectrolyte adsorption onto planar surfaces: a study by streaming potential and ellipsometry measurements,” Eng. Asp. 159(2-3), 491–501 (1999).
[Crossref]

D. L. Elbert, C. B. Herbert, and J. Hubbell, “Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces,” Langmuir 15(16), 5355–5362 (1999).
[Crossref]

1998 (1)

P. G. Schultz and X.-D. Xiang, “Combinatorial approaches to materials science,” Curr. Opin. Solid State Mater. Sci. 3(2), 153–158 (1998).
[Crossref]

1997 (1)

G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites,” Science 277(80), 1232–1237 (1997).
[Crossref]

1996 (1)

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: Immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[Crossref] [PubMed]

1995 (1)

J. J. Ramsden, Y. M. Lvov, and G. Decher, “Determination of optical constants of molecular films assembled via alternate polyion adsorption,” Thin Solid Films 254(1-2), 246–251 (1995).
[Crossref]

1993 (1)

H. Arwin, S. Welin-Klintstrom, and R. Jansson, “Off-Null Ellipsometry Revisited: Basic Considerations for Measuring Surface Concentrations at Solid/Liquid Interfaces,” J. Colloid Interface Sci. 156(2), 377–382 (1993).
[Crossref]

1986 (1)

1978 (2)

P. A. Cuypers, W. T. Hermens, and H. C. Hemker, “Ellipsometry as a Tool to Study Protein Interfaces Films at,” Anal. Biochem. 67, 56–67 (1978).
[Crossref] [PubMed]

J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a tool to study the adsorption behavior of syntetic and biopolyers at the air water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(8), 665–674 (1935).
[Crossref]

Aalto, T.

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

Adányi, N.

N. Trummer, N. Adányi, M. Váradi, and I. Szendrö, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371(1), 21–24 (2001).
[Crossref] [PubMed]

Agócs, E.

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

Alba, M.

M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “pH-responsive drug delivery system based on hollow silicon dioxide micropillars coated with polyelectrolyte multilayers,” Nanoscale Res. Lett. 9(1), 411 (2014).
[Crossref] [PubMed]

Arwin, H.

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
[Crossref]

M. Poksinski and H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–721 (2004).
[Crossref]

H. Arwin, “Ellipsometry on thin organic layers of biological interest: Characterization and applications,” Thin Solid Films 377–378, 48–56 (2000).
[Crossref]

H. Arwin, S. Welin-Klintstrom, and R. Jansson, “Off-Null Ellipsometry Revisited: Basic Considerations for Measuring Surface Concentrations at Solid/Liquid Interfaces,” J. Colloid Interface Sci. 156(2), 377–382 (1993).
[Crossref]

H. Arwin, “Optical Properties of Thin Layers of Bovine Serum Albumin, γ-Globulin, and Hemoglobin,” Appl. Spectrosc. 40(3), 313–318 (1986).
[Crossref]

Barry, T.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36(1), 250–256 (2012).
[Crossref] [PubMed]

Bársony, I.

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).

Beke, S.

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

Benjamins, J.

J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a tool to study the adsorption behavior of syntetic and biopolyers at the air water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

Besenbacher, F.

K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher, “Enhancement of protein adsorption induced by surface roughness,” Langmuir 22(26), 10885–10888 (2006).
[Crossref] [PubMed]

Bier, F. F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Biert, F. F.

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: Immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[Crossref] [PubMed]

Bilitewski, U.

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: Immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[Crossref] [PubMed]

Bongiorno, G.

P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, and P. Milani, “The effect of surface nanometre-scale morphology on protein adsorption,” PLoS One 5(7), e11862 (2010).
[Crossref] [PubMed]

Böni, P.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

Borgonovo, A.

P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, and P. Milani, “The effect of surface nanometre-scale morphology on protein adsorption,” PLoS One 5(7), e11862 (2010).
[Crossref] [PubMed]

Bornmann, A.

P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B Chem. 84(2-3), 278–282 (2002).
[Crossref]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(8), 665–674 (1935).
[Crossref]

Carbone, R.

P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, and P. Milani, “The effect of surface nanometre-scale morphology on protein adsorption,” PLoS One 5(7), e11862 (2010).
[Crossref] [PubMed]

Chen, S.

L. Liu, Y. Y. Chen, Y. H. Meng, S. Chen, and G. Jin, “Improvement for sensitivity of biosensor with total internal reflection imaging ellipsometry (TIRIE),” Thin Solid Films 519(9), 2758–2762 (2011).
[Crossref]

Chen, Y.

Chen, Y. Y.

L. Liu, Y. Y. Chen, Y. H. Meng, S. Chen, and G. Jin, “Improvement for sensitivity of biosensor with total internal reflection imaging ellipsometry (TIRIE),” Thin Solid Films 519(9), 2758–2762 (2011).
[Crossref]

Clancy, E.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36(1), 250–256 (2012).
[Crossref] [PubMed]

Cottier, K.

D. Patko, K. Cottier, A. Hamori, and R. Horvath, “Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening,” Opt. Express 20(21), 23162–23173 (2012).
[Crossref] [PubMed]

P. Kozma, A. Hámori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem. 155(2), 446–450 (2011).
[Crossref]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys,” B Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

Csúcs, G.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Cuypers, P. A.

P. A. Cuypers, W. T. Hermens, and H. C. Hemker, “Ellipsometry as a Tool to Study Protein Interfaces Films at,” Anal. Biochem. 67, 56–67 (1978).
[Crossref] [PubMed]

De Feijter, J.

J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a tool to study the adsorption behavior of syntetic and biopolyers at the air water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

De Paul, S. M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Decher, G.

G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites,” Science 277(80), 1232–1237 (1997).
[Crossref]

J. J. Ramsden, Y. M. Lvov, and G. Decher, “Determination of optical constants of molecular films assembled via alternate polyion adsorption,” Thin Solid Films 254(1-2), 246–251 (1995).
[Crossref]

Dekany, I.

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

Dékány, I.

L. Kőrösi, A. Scarpellini, P. Petrik, S. Papp, and I. Dékány, “Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity,” Appl. Surf. Sci. 320, 725–731 (2014).
[Crossref]

Dömötör, D.

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

Ehrentreich-Förster, E.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Eichhorn, K. J.

S. Schwarz, K. J. Eichhorn, E. Wischerhoff, and A. Laschewsky, “Polyelectrolyte adsorption onto planar surfaces: a study by streaming potential and ellipsometry measurements,” Eng. Asp. 159(2-3), 491–501 (1999).
[Crossref]

Elbert, D. L.

D. L. Elbert, C. B. Herbert, and J. Hubbell, “Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces,” Langmuir 15(16), 5355–5362 (1999).
[Crossref]

Esser, N.

K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, and R. Volkmer, “Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry,” Anal. Bioanal. Chem. 387(5), 1823–1829 (2007).
[Crossref] [PubMed]

Fang, Y.

N. Orgovan, B. Kovacs, E. Farkas, B. Szabó, N. Zaytseva, Y. Fang, and R. Horvath, “Bulk and surface sensitivity of a resonant waveguide grating imager,” Appl. Phys. Lett. 104(8), 083506 (2014).
[Crossref]

Farkas, E.

N. Orgovan, B. Kovacs, E. Farkas, B. Szabó, N. Zaytseva, Y. Fang, and R. Horvath, “Bulk and surface sensitivity of a resonant waveguide grating imager,” Appl. Phys. Lett. 104(8), 083506 (2014).
[Crossref]

Ferré-Borrull, J.

M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “pH-responsive drug delivery system based on hollow silicon dioxide micropillars coated with polyelectrolyte multilayers,” Nanoscale Res. Lett. 9(1), 411 (2014).
[Crossref] [PubMed]

Flaherty, D. W.

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1(8), 1264–1268 (2010).
[Crossref]

Fodor, B.

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

Formentín, P.

M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “pH-responsive drug delivery system based on hollow silicon dioxide micropillars coated with polyelectrolyte multilayers,” Nanoscale Res. Lett. 9(1), 411 (2014).
[Crossref] [PubMed]

Foss, M.

K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher, “Enhancement of protein adsorption induced by surface roughness,” Langmuir 22(26), 10885–10888 (2006).
[Crossref] [PubMed]

Fried, M.

J. Nador, N. Orgovan, M. Fried, P. Petrik, A. Sulyok, J. J. Ramsden, L. Korosi, and R. Horvath, “Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips,” Colloids Surf. B Biointerfaces 122, 491–497 (2014).
[Crossref] [PubMed]

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
[Crossref]

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).

Fürjes, P.

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

Gensch, M.

K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, and R. Volkmer, “Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry,” Anal. Bioanal. Chem. 387(5), 1823–1829 (2007).
[Crossref] [PubMed]

Giorgetti, L.

P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, and P. Milani, “The effect of surface nanometre-scale morphology on protein adsorption,” PLoS One 5(7), e11862 (2010).
[Crossref] [PubMed]

Gold, J.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

Gubala, V.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36(1), 250–256 (2012).
[Crossref] [PubMed]

Gyulai, G.

G. Gyulai, C. B. Pénzes, M. Mohai, T. Lohner, P. Petrik, S. Kurunczi, and É. Kiss, “Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses,” J. Colloid Interface Sci. 362(2), 600–606 (2011).
[Crossref] [PubMed]

Gyulai, J.

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

Hamori, A.

D. Patko, K. Cottier, A. Hamori, and R. Horvath, “Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening,” Opt. Express 20(21), 23162–23173 (2012).
[Crossref] [PubMed]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys,” B Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

Hámori, A.

P. Kozma, A. Hámori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem. 155(2), 446–450 (2011).
[Crossref]

P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).

Hemker, H. C.

P. A. Cuypers, W. T. Hermens, and H. C. Hemker, “Ellipsometry as a Tool to Study Protein Interfaces Films at,” Anal. Biochem. 67, 56–67 (1978).
[Crossref] [PubMed]

Herbert, C. B.

D. L. Elbert, C. B. Herbert, and J. Hubbell, “Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces,” Langmuir 15(16), 5355–5362 (1999).
[Crossref]

Hermens, W. T.

P. A. Cuypers, W. T. Hermens, and H. C. Hemker, “Ellipsometry as a Tool to Study Protein Interfaces Films at,” Anal. Biochem. 67, 56–67 (1978).
[Crossref] [PubMed]

Hinrichs, K.

K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, and R. Volkmer, “Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry,” Anal. Bioanal. Chem. 387(5), 1823–1829 (2007).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Höök, F.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

Hornok, V.

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

Horvath, R.

J. Nador, N. Orgovan, M. Fried, P. Petrik, A. Sulyok, J. J. Ramsden, L. Korosi, and R. Horvath, “Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips,” Colloids Surf. B Biointerfaces 122, 491–497 (2014).
[Crossref] [PubMed]

N. Orgovan, B. Kovacs, E. Farkas, B. Szabó, N. Zaytseva, Y. Fang, and R. Horvath, “Bulk and surface sensitivity of a resonant waveguide grating imager,” Appl. Phys. Lett. 104(8), 083506 (2014).
[Crossref]

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

D. Patko, K. Cottier, A. Hamori, and R. Horvath, “Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening,” Opt. Express 20(21), 23162–23173 (2012).
[Crossref] [PubMed]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

P. Kozma, A. Hámori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem. 155(2), 446–450 (2011).
[Crossref]

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
[Crossref]

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

S. Kurunczi, R. Horvath, Y. P. Yeh, A. Muskotál, A. Sebestyén, F. Vonderviszt, and J. J. Ramsden, “Self-assembly of rodlike receptors from bulk solution,” J. Chem. Phys. 130(1), 011101 (2009).
[Crossref] [PubMed]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys,” B Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
[Crossref]

Hos, C.

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

Hovgaard, M. B.

K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher, “Enhancement of protein adsorption induced by surface roughness,” Langmuir 22(26), 10885–10888 (2006).
[Crossref] [PubMed]

Hubbell, J.

D. L. Elbert, C. B. Herbert, and J. Hubbell, “Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces,” Langmuir 15(16), 5355–5362 (1999).
[Crossref]

Hülber, T.

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

Indrieri, M.

P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, and P. Milani, “The effect of surface nanometre-scale morphology on protein adsorption,” PLoS One 5(7), e11862 (2010).
[Crossref] [PubMed]

Jankovics, H.

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
[Crossref]

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

Jansson, R.

H. Arwin, S. Welin-Klintstrom, and R. Jansson, “Off-Null Ellipsometry Revisited: Basic Considerations for Measuring Surface Concentrations at Solid/Liquid Interfaces,” J. Colloid Interface Sci. 156(2), 377–382 (1993).
[Crossref]

Jin, G.

L. Liu, A. Viallat, and G. Jin, “Vesicle adhesion visualized with total internal reflection imaging ellipsometry biosensor,” Sens. Actuators B Chem. 190, 221–226 (2014).
[Crossref]

L. Liu, Y. Y. Chen, Y. H. Meng, S. Chen, and G. Jin, “Improvement for sensitivity of biosensor with total internal reflection imaging ellipsometry (TIRIE),” Thin Solid Films 519(9), 2758–2762 (2011).
[Crossref]

Y. Chen, Y. Meng, and G. Jin, “Optimization of off-null ellipsometry for air/solid interfaces,” Appl. Opt. 46(35), 8475–8481 (2007).
[Crossref] [PubMed]

Kasemo, B.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

Kehl, F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Kiss, É.

G. Gyulai, C. B. Pénzes, M. Mohai, T. Lohner, P. Petrik, S. Kurunczi, and É. Kiss, “Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses,” J. Colloid Interface Sci. 362(2), 600–606 (2011).
[Crossref] [PubMed]

Kolari, K.

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

Korosi, L.

J. Nador, N. Orgovan, M. Fried, P. Petrik, A. Sulyok, J. J. Ramsden, L. Korosi, and R. Horvath, “Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips,” Colloids Surf. B Biointerfaces 122, 491–497 (2014).
[Crossref] [PubMed]

Korösi, L.

L. Kőrösi, M. Prato, A. Scarpellini, A. Riedinger, J. Kovács, M. Kus, V. Meynen, and S. Papp, “Hydrothermal synthesis, structure and photocatalytic activity of PF-co-doped TiO2,” Mater. Sci. Semicond. Process. 30, 442–450 (2015).
[Crossref]

L. Kőrösi, A. Scarpellini, P. Petrik, S. Papp, and I. Dékány, “Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity,” Appl. Surf. Sci. 320, 725–731 (2014).
[Crossref]

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

Koschinski, W.

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: Immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[Crossref] [PubMed]

Kovacs, B.

N. Orgovan, B. Kovacs, E. Farkas, B. Szabó, N. Zaytseva, Y. Fang, and R. Horvath, “Bulk and surface sensitivity of a resonant waveguide grating imager,” Appl. Phys. Lett. 104(8), 083506 (2014).
[Crossref]

Kovács, Á.

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

Kovács, J.

L. Kőrösi, M. Prato, A. Scarpellini, A. Riedinger, J. Kovács, M. Kus, V. Meynen, and S. Papp, “Hydrothermal synthesis, structure and photocatalytic activity of PF-co-doped TiO2,” Mater. Sci. Semicond. Process. 30, 442–450 (2015).
[Crossref]

Kovács, T.

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

Kozma, D.

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
[Crossref]

Kozma, P.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
[Crossref]

P. Kozma, A. Hámori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem. 155(2), 446–450 (2011).
[Crossref]

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys,” B Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).

Kröning, S.

K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, and R. Volkmer, “Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry,” Anal. Bioanal. Chem. 387(5), 1823–1829 (2007).
[Crossref] [PubMed]

Kurrat, R.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

Kurunczi, S.

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

G. Gyulai, C. B. Pénzes, M. Mohai, T. Lohner, P. Petrik, S. Kurunczi, and É. Kiss, “Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses,” J. Colloid Interface Sci. 362(2), 600–606 (2011).
[Crossref] [PubMed]

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
[Crossref]

P. Kozma, A. Hámori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem. 155(2), 446–450 (2011).
[Crossref]

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys,” B Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

S. Kurunczi, R. Horvath, Y. P. Yeh, A. Muskotál, A. Sebestyén, F. Vonderviszt, and J. J. Ramsden, “Self-assembly of rodlike receptors from bulk solution,” J. Chem. Phys. 130(1), 011101 (2009).
[Crossref] [PubMed]

P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).

Kus, M.

L. Kőrösi, M. Prato, A. Scarpellini, A. Riedinger, J. Kovács, M. Kus, V. Meynen, and S. Papp, “Hydrothermal synthesis, structure and photocatalytic activity of PF-co-doped TiO2,” Mater. Sci. Semicond. Process. 30, 442–450 (2015).
[Crossref]

Laschewsky, A.

S. Schwarz, K. J. Eichhorn, E. Wischerhoff, and A. Laschewsky, “Polyelectrolyte adsorption onto planar surfaces: a study by streaming potential and ellipsometry measurements,” Eng. Asp. 159(2-3), 491–501 (1999).
[Crossref]

Le, N. C. H.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36(1), 250–256 (2012).
[Crossref] [PubMed]

Liu, L.

L. Liu, A. Viallat, and G. Jin, “Vesicle adhesion visualized with total internal reflection imaging ellipsometry biosensor,” Sens. Actuators B Chem. 190, 221–226 (2014).
[Crossref]

L. Liu, Y. Y. Chen, Y. H. Meng, S. Chen, and G. Jin, “Improvement for sensitivity of biosensor with total internal reflection imaging ellipsometry (TIRIE),” Thin Solid Films 519(9), 2758–2762 (2011).
[Crossref]

Logothetidis, S.

S. Lousinian and S. Logothetidis, “In-situ and real-time protein adsorption study by Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 8002–8008 (2008).
[Crossref]

Lohner, T.

G. Gyulai, C. B. Pénzes, M. Mohai, T. Lohner, P. Petrik, S. Kurunczi, and É. Kiss, “Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses,” J. Colloid Interface Sci. 362(2), 600–606 (2011).
[Crossref] [PubMed]

Lousinian, S.

S. Lousinian and S. Logothetidis, “In-situ and real-time protein adsorption study by Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 8002–8008 (2008).
[Crossref]

Lvov, Y. M.

J. J. Ramsden, Y. M. Lvov, and G. Decher, “Determination of optical constants of molecular films assembled via alternate polyion adsorption,” Thin Solid Films 254(1-2), 246–251 (1995).
[Crossref]

Marsal, L. F.

M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “pH-responsive drug delivery system based on hollow silicon dioxide micropillars coated with polyelectrolyte multilayers,” Nanoscale Res. Lett. 9(1), 411 (2014).
[Crossref] [PubMed]

May, R. A.

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1(8), 1264–1268 (2010).
[Crossref]

Meczker, K.

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

Meng, Y.

Meng, Y. H.

L. Liu, Y. Y. Chen, Y. H. Meng, S. Chen, and G. Jin, “Improvement for sensitivity of biosensor with total internal reflection imaging ellipsometry (TIRIE),” Thin Solid Films 519(9), 2758–2762 (2011).
[Crossref]

Meynen, V.

L. Kőrösi, M. Prato, A. Scarpellini, A. Riedinger, J. Kovács, M. Kus, V. Meynen, and S. Papp, “Hydrothermal synthesis, structure and photocatalytic activity of PF-co-doped TiO2,” Mater. Sci. Semicond. Process. 30, 442–450 (2015).
[Crossref]

Milani, P.

P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, and P. Milani, “The effect of surface nanometre-scale morphology on protein adsorption,” PLoS One 5(7), e11862 (2010).
[Crossref] [PubMed]

Mohai, M.

G. Gyulai, C. B. Pénzes, M. Mohai, T. Lohner, P. Petrik, S. Kurunczi, and É. Kiss, “Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses,” J. Colloid Interface Sci. 362(2), 600–606 (2011).
[Crossref] [PubMed]

Mullins, C. B.

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1(8), 1264–1268 (2010).
[Crossref]

Muskotál, A.

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

S. Kurunczi, R. Horvath, Y. P. Yeh, A. Muskotál, A. Sebestyén, F. Vonderviszt, and J. J. Ramsden, “Self-assembly of rodlike receptors from bulk solution,” J. Chem. Phys. 130(1), 011101 (2009).
[Crossref] [PubMed]

P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).

Nabok, A.

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films 516(24), 8993–9001 (2008).
[Crossref]

Nador, J.

J. Nador, N. Orgovan, M. Fried, P. Petrik, A. Sulyok, J. J. Ramsden, L. Korosi, and R. Horvath, “Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips,” Colloids Surf. B Biointerfaces 122, 491–497 (2014).
[Crossref] [PubMed]

Nagy, N.

P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).

Nemeth, A.

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
[Crossref]

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

Németh, A.

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

Oates, T. W. H.

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
[Crossref]

Orgovan, N.

J. Nador, N. Orgovan, M. Fried, P. Petrik, A. Sulyok, J. J. Ramsden, L. Korosi, and R. Horvath, “Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips,” Colloids Surf. B Biointerfaces 122, 491–497 (2014).
[Crossref] [PubMed]

N. Orgovan, B. Kovacs, E. Farkas, B. Szabó, N. Zaytseva, Y. Fang, and R. Horvath, “Bulk and surface sensitivity of a resonant waveguide grating imager,” Appl. Phys. Lett. 104(8), 083506 (2014).
[Crossref]

Oszko, A.

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

Pallarès, J.

M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “pH-responsive drug delivery system based on hollow silicon dioxide micropillars coated with polyelectrolyte multilayers,” Nanoscale Res. Lett. 9(1), 411 (2014).
[Crossref] [PubMed]

Papp, S.

L. Kőrösi, M. Prato, A. Scarpellini, A. Riedinger, J. Kovács, M. Kus, V. Meynen, and S. Papp, “Hydrothermal synthesis, structure and photocatalytic activity of PF-co-doped TiO2,” Mater. Sci. Semicond. Process. 30, 442–450 (2015).
[Crossref]

L. Kőrösi, A. Scarpellini, P. Petrik, S. Papp, and I. Dékány, “Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity,” Appl. Surf. Sci. 320, 725–731 (2014).
[Crossref]

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

Patko, D.

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

D. Patko, K. Cottier, A. Hamori, and R. Horvath, “Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening,” Opt. Express 20(21), 23162–23173 (2012).
[Crossref] [PubMed]

Patkó, D.

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

Pedersen, H. C.

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
[Crossref]

Pénzes, C. B.

G. Gyulai, C. B. Pénzes, M. Mohai, T. Lohner, P. Petrik, S. Kurunczi, and É. Kiss, “Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses,” J. Colloid Interface Sci. 362(2), 600–606 (2011).
[Crossref] [PubMed]

Petrik, P.

L. Kőrösi, A. Scarpellini, P. Petrik, S. Papp, and I. Dékány, “Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity,” Appl. Surf. Sci. 320, 725–731 (2014).
[Crossref]

J. Nador, N. Orgovan, M. Fried, P. Petrik, A. Sulyok, J. J. Ramsden, L. Korosi, and R. Horvath, “Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips,” Colloids Surf. B Biointerfaces 122, 491–497 (2014).
[Crossref] [PubMed]

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

G. Gyulai, C. B. Pénzes, M. Mohai, T. Lohner, P. Petrik, S. Kurunczi, and É. Kiss, “Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses,” J. Colloid Interface Sci. 362(2), 600–606 (2011).
[Crossref] [PubMed]

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
[Crossref]

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).

Podestà, A.

P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, and P. Milani, “The effect of surface nanometre-scale morphology on protein adsorption,” PLoS One 5(7), e11862 (2010).
[Crossref] [PubMed]

Poksinski, M.

M. Poksinski and H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–721 (2004).
[Crossref]

Polzius, R.

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: Immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[Crossref] [PubMed]

Portwich, M.

K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, and R. Volkmer, “Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry,” Anal. Bioanal. Chem. 387(5), 1823–1829 (2007).
[Crossref] [PubMed]

Prato, M.

L. Kőrösi, M. Prato, A. Scarpellini, A. Riedinger, J. Kovács, M. Kus, V. Meynen, and S. Papp, “Hydrothermal synthesis, structure and photocatalytic activity of PF-co-doped TiO2,” Mater. Sci. Semicond. Process. 30, 442–450 (2015).
[Crossref]

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

Rabe, M.

M. Rabe, D. Verdes, and S. Seeger, “Understanding protein adsorption phenomena at solid surfaces,” Adv. Colloid Interface Sci. 162(1-2), 87–106 (2011).
[Crossref] [PubMed]

Ramsden, J. J.

J. Nador, N. Orgovan, M. Fried, P. Petrik, A. Sulyok, J. J. Ramsden, L. Korosi, and R. Horvath, “Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips,” Colloids Surf. B Biointerfaces 122, 491–497 (2014).
[Crossref] [PubMed]

S. Kurunczi, R. Horvath, Y. P. Yeh, A. Muskotál, A. Sebestyén, F. Vonderviszt, and J. J. Ramsden, “Self-assembly of rodlike receptors from bulk solution,” J. Chem. Phys. 130(1), 011101 (2009).
[Crossref] [PubMed]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

J. J. Ramsden, Y. M. Lvov, and G. Decher, “Determination of optical constants of molecular films assembled via alternate polyion adsorption,” Thin Solid Films 254(1-2), 246–251 (1995).
[Crossref]

Rappich, J.

K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, and R. Volkmer, “Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry,” Anal. Bioanal. Chem. 387(5), 1823–1829 (2007).
[Crossref] [PubMed]

Rechendorff, K.

K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher, “Enhancement of protein adsorption induced by surface roughness,” Langmuir 22(26), 10885–10888 (2006).
[Crossref] [PubMed]

Riedinger, A.

L. Kőrösi, M. Prato, A. Scarpellini, A. Riedinger, J. Kovács, M. Kus, V. Meynen, and S. Papp, “Hydrothermal synthesis, structure and photocatalytic activity of PF-co-doped TiO2,” Mater. Sci. Semicond. Process. 30, 442–450 (2015).
[Crossref]

Rodahl, M.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

Saftics, A.

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

Scarpellini, A.

L. Kőrösi, M. Prato, A. Scarpellini, A. Riedinger, J. Kovács, M. Kus, V. Meynen, and S. Papp, “Hydrothermal synthesis, structure and photocatalytic activity of PF-co-doped TiO2,” Mater. Sci. Semicond. Process. 30, 442–450 (2015).
[Crossref]

L. Kőrösi, A. Scarpellini, P. Petrik, S. Papp, and I. Dékány, “Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity,” Appl. Surf. Sci. 320, 725–731 (2014).
[Crossref]

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

Schade, U.

K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, and R. Volkmer, “Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry,” Anal. Bioanal. Chem. 387(5), 1823–1829 (2007).
[Crossref] [PubMed]

Schneider, G.

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

Schneider, T.

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: Immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[Crossref] [PubMed]

Schultz, P. G.

P. G. Schultz and X.-D. Xiang, “Combinatorial approaches to materials science,” Curr. Opin. Solid State Mater. Sci. 3(2), 153–158 (1998).
[Crossref]

Schwarz, S.

S. Schwarz, K. J. Eichhorn, E. Wischerhoff, and A. Laschewsky, “Polyelectrolyte adsorption onto planar surfaces: a study by streaming potential and ellipsometry measurements,” Eng. Asp. 159(2-3), 491–501 (1999).
[Crossref]

Scopelliti, P. E.

P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, and P. Milani, “The effect of surface nanometre-scale morphology on protein adsorption,” PLoS One 5(7), e11862 (2010).
[Crossref] [PubMed]

Sebestyén, A.

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

S. Kurunczi, R. Horvath, Y. P. Yeh, A. Muskotál, A. Sebestyén, F. Vonderviszt, and J. J. Ramsden, “Self-assembly of rodlike receptors from bulk solution,” J. Chem. Phys. 130(1), 011101 (2009).
[Crossref] [PubMed]

Seeger, S.

M. Rabe, D. Verdes, and S. Seeger, “Understanding protein adsorption phenomena at solid surfaces,” Adv. Colloid Interface Sci. 162(1-2), 87–106 (2011).
[Crossref] [PubMed]

Skivesen, N.

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
[Crossref]

Smith, T. J.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36(1), 250–256 (2012).
[Crossref] [PubMed]

Spencer, N. D.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Stamm, C.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Stevenson, K. J.

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1(8), 1264–1268 (2010).
[Crossref]

Sulyok, A.

J. Nador, N. Orgovan, M. Fried, P. Petrik, A. Sulyok, J. J. Ramsden, L. Korosi, and R. Horvath, “Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips,” Colloids Surf. B Biointerfaces 122, 491–497 (2014).
[Crossref] [PubMed]

Szabó, B.

N. Orgovan, B. Kovacs, E. Farkas, B. Szabó, N. Zaytseva, Y. Fang, and R. Horvath, “Bulk and surface sensitivity of a resonant waveguide grating imager,” Appl. Phys. Lett. 104(8), 083506 (2014).
[Crossref]

Szendro, I.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Szendrö, I.

N. Trummer, N. Adányi, M. Váradi, and I. Szendrö, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371(1), 21–24 (2001).
[Crossref] [PubMed]

Tengvall, P.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

Textor, M.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Trummer, N.

N. Trummer, N. Adányi, M. Váradi, and I. Szendrö, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371(1), 21–24 (2001).
[Crossref] [PubMed]

Tsargorodskaya, A.

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films 516(24), 8993–9001 (2008).
[Crossref]

Váradi, M.

N. Trummer, N. Adányi, M. Váradi, and I. Szendrö, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371(1), 21–24 (2001).
[Crossref] [PubMed]

Veer, F.

J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a tool to study the adsorption behavior of syntetic and biopolyers at the air water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

Verdes, D.

M. Rabe, D. Verdes, and S. Seeger, “Understanding protein adsorption phenomena at solid surfaces,” Adv. Colloid Interface Sci. 162(1-2), 87–106 (2011).
[Crossref] [PubMed]

Viallat, A.

L. Liu, A. Viallat, and G. Jin, “Vesicle adhesion visualized with total internal reflection imaging ellipsometry biosensor,” Sens. Actuators B Chem. 190, 221–226 (2014).
[Crossref]

Volkmer, R.

K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, and R. Volkmer, “Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry,” Anal. Bioanal. Chem. 387(5), 1823–1829 (2007).
[Crossref] [PubMed]

Vonderviszt, F.

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
[Crossref]

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

S. Kurunczi, R. Horvath, Y. P. Yeh, A. Muskotál, A. Sebestyén, F. Vonderviszt, and J. J. Ramsden, “Self-assembly of rodlike receptors from bulk solution,” J. Chem. Phys. 130(1), 011101 (2009).
[Crossref] [PubMed]

P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).

Vörös, J.

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref] [PubMed]

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Welin-Klintstrom, S.

H. Arwin, S. Welin-Klintstrom, and R. Jansson, “Off-Null Ellipsometry Revisited: Basic Considerations for Measuring Surface Concentrations at Solid/Liquid Interfaces,” J. Colloid Interface Sci. 156(2), 377–382 (1993).
[Crossref]

Westphal, P.

P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B Chem. 84(2-3), 278–282 (2002).
[Crossref]

Williams, D. E.

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36(1), 250–256 (2012).
[Crossref] [PubMed]

Wischerhoff, E.

S. Schwarz, K. J. Eichhorn, E. Wischerhoff, and A. Laschewsky, “Polyelectrolyte adsorption onto planar surfaces: a study by streaming potential and ellipsometry measurements,” Eng. Asp. 159(2-3), 491–501 (1999).
[Crossref]

Wormeester, H.

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
[Crossref]

Xiang, X.-D.

P. G. Schultz and X.-D. Xiang, “Combinatorial approaches to materials science,” Curr. Opin. Solid State Mater. Sci. 3(2), 153–158 (1998).
[Crossref]

Yeh, Y. P.

S. Kurunczi, R. Horvath, Y. P. Yeh, A. Muskotál, A. Sebestyén, F. Vonderviszt, and J. J. Ramsden, “Self-assembly of rodlike receptors from bulk solution,” J. Chem. Phys. 130(1), 011101 (2009).
[Crossref] [PubMed]

Zaytseva, N.

N. Orgovan, B. Kovacs, E. Farkas, B. Szabó, N. Zaytseva, Y. Fang, and R. Horvath, “Bulk and surface sensitivity of a resonant waveguide grating imager,” Appl. Phys. Lett. 104(8), 083506 (2014).
[Crossref]

Zhdanov, V. P.

K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher, “Enhancement of protein adsorption induced by surface roughness,” Langmuir 22(26), 10885–10888 (2006).
[Crossref] [PubMed]

Adv. Colloid Interface Sci. (1)

M. Rabe, D. Verdes, and S. Seeger, “Understanding protein adsorption phenomena at solid surfaces,” Adv. Colloid Interface Sci. 162(1-2), 87–106 (2011).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, and R. Volkmer, “Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry,” Anal. Bioanal. Chem. 387(5), 1823–1829 (2007).
[Crossref] [PubMed]

Anal. Biochem. (1)

P. A. Cuypers, W. T. Hermens, and H. C. Hemker, “Ellipsometry as a Tool to Study Protein Interfaces Films at,” Anal. Biochem. 67, 56–67 (1978).
[Crossref] [PubMed]

Ann. Phys. (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(8), 665–674 (1935).
[Crossref]

Appl. Opt. (1)

Appl. Phys,” B Lasers Opt. (1)

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys,” B Lasers Opt. 97(1), 5–8 (2009).
[Crossref]

Appl. Phys. Lett. (1)

N. Orgovan, B. Kovacs, E. Farkas, B. Szabó, N. Zaytseva, Y. Fang, and R. Horvath, “Bulk and surface sensitivity of a resonant waveguide grating imager,” Appl. Phys. Lett. 104(8), 083506 (2014).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (4)

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, and P. Petrik, “In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements,” Appl. Surf. Sci. 257(16), 7160–7166 (2011).
[Crossref]

S. Kurunczi, A. Németh, T. Hülber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyén, F. Vonderviszt, M. Fried, and I. Bársony, “In situ ellipsometric study of surface immobilization of flagellar filaments,” Appl. Surf. Sci. 257(1), 319–324 (2010).
[Crossref]

L. Kőrösi, A. Scarpellini, P. Petrik, S. Papp, and I. Dékány, “Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity,” Appl. Surf. Sci. 320, 725–731 (2014).
[Crossref]

A. Saftics, E. Agócs, B. Fodor, D. Patkó, P. Petrik, K. Kolari, T. Aalto, P. Fürjes, R. Horvath, and S. Kurunczi, “Investigation of thin polymer layers for biosensor applications,” Appl. Surf. Sci. 281, 66–72 (2013).
[Crossref]

Biomaterials (1)

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Biophys. J. (1)

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref] [PubMed]

Biopolymers (1)

J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a tool to study the adsorption behavior of syntetic and biopolyers at the air water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

Biosens. Bioelectron. (3)

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: Immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[Crossref] [PubMed]

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

N. C. H. Le, V. Gubala, E. Clancy, T. Barry, T. J. Smith, and D. E. Williams, “Ultrathin and smooth poly(methyl methacrylate) (PMMA) films for label-free biomolecule detection with total internal reflection ellipsometry (TIRE),” Biosens. Bioelectron. 36(1), 250–256 (2012).
[Crossref] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Colloids Surf. B Biointerfaces (2)

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B Biointerfaces 24(2), 155–170 (2002).
[Crossref]

J. Nador, N. Orgovan, M. Fried, P. Petrik, A. Sulyok, J. J. Ramsden, L. Korosi, and R. Horvath, “Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips,” Colloids Surf. B Biointerfaces 122, 491–497 (2014).
[Crossref] [PubMed]

Curr. Opin. Solid State Mater. Sci. (1)

P. G. Schultz and X.-D. Xiang, “Combinatorial approaches to materials science,” Curr. Opin. Solid State Mater. Sci. 3(2), 153–158 (1998).
[Crossref]

Eng. Asp. (1)

S. Schwarz, K. J. Eichhorn, E. Wischerhoff, and A. Laschewsky, “Polyelectrolyte adsorption onto planar surfaces: a study by streaming potential and ellipsometry measurements,” Eng. Asp. 159(2-3), 491–501 (1999).
[Crossref]

Fresenius J. Anal. Chem. (1)

N. Trummer, N. Adányi, M. Váradi, and I. Szendrö, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371(1), 21–24 (2001).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. Kurunczi, R. Horvath, Y. P. Yeh, A. Muskotál, A. Sebestyén, F. Vonderviszt, and J. J. Ramsden, “Self-assembly of rodlike receptors from bulk solution,” J. Chem. Phys. 130(1), 011101 (2009).
[Crossref] [PubMed]

J. Colloid Interface Sci. (2)

H. Arwin, S. Welin-Klintstrom, and R. Jansson, “Off-Null Ellipsometry Revisited: Basic Considerations for Measuring Surface Concentrations at Solid/Liquid Interfaces,” J. Colloid Interface Sci. 156(2), 377–382 (1993).
[Crossref]

G. Gyulai, C. B. Pénzes, M. Mohai, T. Lohner, P. Petrik, S. Kurunczi, and É. Kiss, “Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses,” J. Colloid Interface Sci. 362(2), 600–606 (2011).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1(8), 1264–1268 (2010).
[Crossref]

J. Solid State Chem. (2)

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

L. Kőrösi, S. Papp, V. Hornok, A. Oszko, P. Petrik, D. Patko, R. Horvath, and I. Dekany, “Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols,” J. Solid State Chem. 192, 342–350 (2012).
[Crossref]

Langmuir (2)

D. L. Elbert, C. B. Herbert, and J. Hubbell, “Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces,” Langmuir 15(16), 5355–5362 (1999).
[Crossref]

K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher, “Enhancement of protein adsorption induced by surface roughness,” Langmuir 22(26), 10885–10888 (2006).
[Crossref] [PubMed]

Mater. Sci. Semicond. Process. (1)

L. Kőrösi, M. Prato, A. Scarpellini, A. Riedinger, J. Kovács, M. Kus, V. Meynen, and S. Papp, “Hydrothermal synthesis, structure and photocatalytic activity of PF-co-doped TiO2,” Mater. Sci. Semicond. Process. 30, 442–450 (2015).
[Crossref]

Nanoscale Res. Lett. (1)

M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “pH-responsive drug delivery system based on hollow silicon dioxide micropillars coated with polyelectrolyte multilayers,” Nanoscale Res. Lett. 9(1), 411 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Status Solidi Curr. Top. Solid State Phys. (1)

P. Kozma, N. Nagy, S. Kurunczi, P. Petrik, A. Hámori, A. Muskotál, F. Vonderviszt, M. Fried, and I. Bársony, “Ellipsometric characterization of flagellin films for biosensor applications,” Phys. Status Solidi Curr. Top. Solid State Phys. 5, 1427–1430 (2008).

PLoS One (1)

P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, and P. Milani, “The effect of surface nanometre-scale morphology on protein adsorption,” PLoS One 5(7), e11862 (2010).
[Crossref] [PubMed]

Prog. Surf. Sci. (1)

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
[Crossref]

Sci. Adv. Mater. (1)

L. Kőrösi, D. Dömötör, S. Beke, M. Prato, A. Scarpellini, K. Meczker, G. Schneider, T. Kovács, Á. Kovács, and S. Papp, “Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains,” Sci. Adv. Mater. 5(9), 1184–1192 (2013).
[Crossref]

Science (1)

G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites,” Science 277(80), 1232–1237 (1997).
[Crossref]

Sens. Actuators B Chem. (4)

L. Liu, A. Viallat, and G. Jin, “Vesicle adhesion visualized with total internal reflection imaging ellipsometry biosensor,” Sens. Actuators B Chem. 190, 221–226 (2014).
[Crossref]

P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B Chem. 84(2-3), 278–282 (2002).
[Crossref]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
[Crossref]

P. Kozma, A. Hámori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem. 155(2), 446–450 (2011).
[Crossref]

Sens. Lett. (1)

A. Nemeth, P. Kozma, T. Hülber, S. Kurunczi, R. Horvath, P. Petrik, A. Muskotál, F. Vonderviszt, C. Hős, M. Fried, J. Gyulai, and I. Bársony, “In Situ Spectroscopic Ellipsometry Study of Protein Immobilization on Different Substrates Using Liquid Cells,” Sens. Lett. 8(5), 730–735 (2010).
[Crossref]

Thin Solid Films (6)

S. Lousinian and S. Logothetidis, “In-situ and real-time protein adsorption study by Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 8002–8008 (2008).
[Crossref]

M. Poksinski and H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–721 (2004).
[Crossref]

L. Liu, Y. Y. Chen, Y. H. Meng, S. Chen, and G. Jin, “Improvement for sensitivity of biosensor with total internal reflection imaging ellipsometry (TIRIE),” Thin Solid Films 519(9), 2758–2762 (2011).
[Crossref]

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films 516(24), 8993–9001 (2008).
[Crossref]

H. Arwin, “Ellipsometry on thin organic layers of biological interest: Characterization and applications,” Thin Solid Films 377–378, 48–56 (2000).
[Crossref]

J. J. Ramsden, Y. M. Lvov, and G. Decher, “Determination of optical constants of molecular films assembled via alternate polyion adsorption,” Thin Solid Films 254(1-2), 246–251 (1995).
[Crossref]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997).

P. Petrik, E. Agocs, B. Kalas, P. Kozma, B. Fodor, J. Nador, C. Major, and M. Fried, “Multiple angle of incidence, spectroscopic, plasmon-enhanced, internal reflection ellipsometry for the characterization of solid-liquid interface processes,” SPIE Proc. 9529, 95290W (2015).

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Ltd, 2007).

P. Déjardin, ed., Proteins at Solid-Liquid Interfaces (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 AFM image of a TiO2 coating deposited on glass substrate. The TNPs homogeneously covered the whole surface. The magnified area is 300 nm × 300 nm.
Fig. 2
Fig. 2 (a) A photo of the assembled glass semicylinder with the gold substrate. (b) A schematic image and a photo (c) of the measurement geometry. (d) The 10 µl flow–cell is surrounded by an O-ring.
Fig. 3
Fig. 3 The physical layers in the protein adsorption measurement and the corresponding layers of the ellipsometric model.
Fig. 4
Fig. 4 A map of the complex reflection coefficients measured on a sample with a gold layer thickness of 30 nm as a function of the wavelength and the angle of incidence. The lowest values of the map correspond to the positions (in terms of angle of incidence and wavelength) of the largest plasmon resonance.
Fig. 5
Fig. 5 (a) Spectra of the measured ellipsometric angles, psi and delta, at the beginning of the measurement at the nanostructured and the uncoated surface, and the fitted spectra. (b) The typical curves of a representative in situ ellipsometric measurement of Fgn adsorption on TNP-coated and uncoated surfaces.
Fig. 6
Fig. 6 (a) The changes in the Δ (ellipsometric angle) during the preosteoblast adhesion and washing experiment on the TiO2-coated and uncoated surfaces at the wavelengths where the plasmonic effect was the largest. (b) Phase-contrast microscopic images of the preosteoblast cells at the border of the nanoparticle-coated and uncoated surfaces on the substrate used for the ellipsometric measurement, (c) and the control substrate after being incubated for 4 days.
Fig. 7
Fig. 7 (a) The adsorbed mass density and the thickness of the deposited 10 pairs of PSS/PAH layers at pH 8 on TNP-coated and uncoated surfaces, (b) and on TNP-coated surface at pH 8 and pH 4.

Metrics