Abstract

We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 21+3×1011 C/m.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber

Markus Gregor, Alexander Kuhlicke, and Oliver Benson
Opt. Express 17(26) 24234-24243 (2009)

Using a slightly tapered optical fiber to attract and transport microparticles

Fang-Wen Sheu, Hong-Yu Wu, and Sy-Hann Chen
Opt. Express 18(6) 5574-5579 (2010)

Dual-trap system to study charged graphene nanoplatelets in high vacuum

Joyce E. Coppock, Pavel Nagornykh, Jacob P. J. Murphy, I. S. McAdams, Saimouli Katragadda, and B. E. Kane
J. Opt. Soc. Am. B 34(6) C36-C43 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
    [Crossref] [PubMed]
  2. V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70(1), 011401 (2004).
    [Crossref]
  3. F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70(6), 063403 (2004).
    [Crossref]
  4. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express 15(9), 5431–5438 (2007).
    [Crossref] [PubMed]
  5. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
    [Crossref] [PubMed]
  6. A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
    [Crossref] [PubMed]
  7. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
    [Crossref] [PubMed]
  8. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19(9), 8596–8601 (2011).
    [Crossref] [PubMed]
  9. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
    [Crossref] [PubMed]
  10. H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity QED using diamond NV centers,” Opt. Express 18(14), 15169–15173 (2010).
    [Crossref] [PubMed]
  11. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
    [Crossref] [PubMed]
  12. A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Sci. Rep. 5, 9619 (2015).
    [Crossref] [PubMed]
  13. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  14. G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
    [Crossref]
  15. F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
    [Crossref]
  16. M. Fujiwara, H.-Q. Zhao, T. Noda, K. Ikeda, H. Sumiya, and S. Takeuchi, “Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures,” Opt. Lett. 40(24), 5702–5705 (2015).
    [Crossref] [PubMed]
  17. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  18. M. Brownnutt, Instuitute for Experimental Physics, University of Innsbruck, (personal communication).
  19. M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17(26), 24234–24243 (2009).
    [Crossref] [PubMed]
  20. A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105(10), 101101 (2010).
    [Crossref] [PubMed]
  21. J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9(12), 806–810 (2013).
    [Crossref]
  22. J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114(12), 123602 (2015).
    [Crossref] [PubMed]
  23. J. D. Prestage, G. J. Dick, and L. Maleki, “New ion trap for frequency standard applications,” J. Appl. Phys. 66(3), 1013 (1989).
    [Crossref]
  24. W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62(3), 531–540 (1990).
    [Crossref]
  25. M. Nasse and C. Foot, “Influence of background pressure on the stability region of a Paul trap,” Eur. J. Phys. 22(6), 563–573 (2001).
    [Crossref]
  26. D. S. Lapitsky, V. S. Filinov, L. V. Deputatova, L. M. Vasilyak, V. I. Vladimirov, and V. Y. Pecherkin, “Dust particles behavior in an electrodynamic trap,” Contrib. Plasma Phys. 53(4–5), 450–456 (2013).
    [Crossref]
  27. G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
    [Crossref] [PubMed]
  28. L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G. Meyer, “Measuring the charge state of an adatom with noncontact atomic force microscopy,” Science 324(5933), 1428–1431 (2009).
    [Crossref] [PubMed]
  29. F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, and P. Jelínek, “Probing charges on the atomic scale by means of atomic force microscopy,” Phys. Rev. Lett. 115(7), 076101 (2015).
    [Crossref] [PubMed]
  30. M. Ohta, K. Umeda, K. Kobayashi, and H. Yamada, “Surface charge density measureing device using atomic force microscope,” Patent no. PCT/JP2013/055002.
  31. W. F. Heinz and J. H. Hoh, “Relative surface charge density mapping with the atomic force microscope,” Biophys. J. 76(1), 528–538 (1999).
    [Crossref] [PubMed]
  32. C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339(6124), 1164–1169 (2013).
    [Crossref] [PubMed]
  33. F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
    [Crossref] [PubMed]

2015 (4)

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114(12), 123602 (2015).
[Crossref] [PubMed]

F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, and P. Jelínek, “Probing charges on the atomic scale by means of atomic force microscopy,” Phys. Rev. Lett. 115(7), 076101 (2015).
[Crossref] [PubMed]

M. Fujiwara, H.-Q. Zhao, T. Noda, K. Ikeda, H. Sumiya, and S. Takeuchi, “Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures,” Opt. Lett. 40(24), 5702–5705 (2015).
[Crossref] [PubMed]

2014 (1)

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

2013 (3)

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339(6124), 1164–1169 (2013).
[Crossref] [PubMed]

D. S. Lapitsky, V. S. Filinov, L. V. Deputatova, L. M. Vasilyak, V. I. Vladimirov, and V. Y. Pecherkin, “Dust particles behavior in an electrodynamic trap,” Contrib. Plasma Phys. 53(4–5), 450–456 (2013).
[Crossref]

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9(12), 806–810 (2013).
[Crossref]

2012 (3)

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref] [PubMed]

2011 (2)

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19(9), 8596–8601 (2011).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

2010 (4)

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[Crossref]

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105(10), 101101 (2010).
[Crossref] [PubMed]

H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity QED using diamond NV centers,” Opt. Express 18(14), 15169–15173 (2010).
[Crossref] [PubMed]

2009 (2)

M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17(26), 24234–24243 (2009).
[Crossref] [PubMed]

L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G. Meyer, “Measuring the charge state of an adatom with noncontact atomic force microscopy,” Science 324(5933), 1428–1431 (2009).
[Crossref] [PubMed]

2008 (1)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

2007 (1)

2004 (3)

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70(1), 011401 (2004).
[Crossref]

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70(6), 063403 (2004).
[Crossref]

2003 (2)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

2001 (1)

M. Nasse and C. Foot, “Influence of background pressure on the stability region of a Paul trap,” Eur. J. Phys. 22(6), 563–573 (2001).
[Crossref]

1999 (1)

W. F. Heinz and J. H. Hoh, “Relative surface charge density mapping with the atomic force microscope,” Biophys. J. 76(1), 528–538 (1999).
[Crossref] [PubMed]

1990 (1)

W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62(3), 531–540 (1990).
[Crossref]

1989 (1)

J. D. Prestage, G. J. Dick, and L. Maleki, “New ion trap for frequency standard applications,” J. Appl. Phys. 66(3), 1013 (1989).
[Crossref]

1986 (1)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[Crossref] [PubMed]

Albrecht, F.

F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, and P. Jelínek, “Probing charges on the atomic scale by means of atomic force microscopy,” Phys. Rev. Lett. 115(7), 076101 (2015).
[Crossref] [PubMed]

Alton, D. J.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
[Crossref] [PubMed]

Asai, T.

Balykin, V. I.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express 15(9), 5431–5438 (2007).
[Crossref] [PubMed]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70(1), 011401 (2004).
[Crossref]

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70(6), 063403 (2004).
[Crossref]

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

Barker, P. F.

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114(12), 123602 (2015).
[Crossref] [PubMed]

Benson, O.

Binnig, G.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[Crossref] [PubMed]

Brambilla, G.

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[Crossref]

Choi, K. S.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
[Crossref] [PubMed]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Deputatova, L. V.

D. S. Lapitsky, V. S. Filinov, L. V. Deputatova, L. M. Vasilyak, V. I. Vladimirov, and V. Y. Pecherkin, “Dust particles behavior in an electrodynamic trap,” Contrib. Plasma Phys. 53(4–5), 450–456 (2013).
[Crossref]

Dick, G. J.

J. D. Prestage, G. J. Dick, and L. Maleki, “New ion trap for frequency standard applications,” J. Appl. Phys. 66(3), 1013 (1989).
[Crossref]

Ding, D.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
[Crossref] [PubMed]

Doherty, M. W.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

Dolde, F.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

Filinov, V. S.

D. S. Lapitsky, V. S. Filinov, L. V. Deputatova, L. M. Vasilyak, V. I. Vladimirov, and V. Y. Pecherkin, “Dust particles behavior in an electrodynamic trap,” Contrib. Plasma Phys. 53(4–5), 450–456 (2013).
[Crossref]

Fleischmann, M.

F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, and P. Jelínek, “Probing charges on the atomic scale by means of atomic force microscopy,” Phys. Rev. Lett. 115(7), 076101 (2015).
[Crossref] [PubMed]

Fonseca, P. Z. G.

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114(12), 123602 (2015).
[Crossref] [PubMed]

Foot, C.

M. Nasse and C. Foot, “Influence of background pressure on the stability region of a Paul trap,” Eur. J. Phys. 22(6), 563–573 (2001).
[Crossref]

Fujiwara, M.

Geraci, A. A.

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105(10), 101101 (2010).
[Crossref] [PubMed]

Gerber, C.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[Crossref] [PubMed]

Gieseler, J.

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9(12), 806–810 (2013).
[Crossref]

Giessibl, F. J.

L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G. Meyer, “Measuring the charge state of an adatom with noncontact atomic force microscopy,” Science 324(5933), 1428–1431 (2009).
[Crossref] [PubMed]

Goban, A.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
[Crossref] [PubMed]

Gregor, M.

Gross, L.

L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G. Meyer, “Measuring the charge state of an adatom with noncontact atomic force microscopy,” Science 324(5933), 1428–1431 (2009).
[Crossref] [PubMed]

Hakuta, K.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express 15(9), 5431–5438 (2007).
[Crossref] [PubMed]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70(1), 011401 (2004).
[Crossref]

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70(6), 063403 (2004).
[Crossref]

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

Heinz, W. F.

W. F. Heinz and J. H. Hoh, “Relative surface charge density mapping with the atomic force microscope,” Biophys. J. 76(1), 528–538 (1999).
[Crossref] [PubMed]

Hoh, J. H.

W. F. Heinz and J. H. Hoh, “Relative surface charge density mapping with the atomic force microscope,” Biophys. J. 76(1), 528–538 (1999).
[Crossref] [PubMed]

Ikeda, K.

Jakobi, I.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

Jelezko, F.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

Jelínek, P.

F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, and P. Jelínek, “Probing charges on the atomic scale by means of atomic force microscopy,” Phys. Rev. Lett. 115(7), 076101 (2015).
[Crossref] [PubMed]

Kamioka, S.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

Kien, F. L.

Kim, J.

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339(6124), 1164–1169 (2013).
[Crossref] [PubMed]

Kimble, H. J.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Kitching, J.

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105(10), 101101 (2010).
[Crossref] [PubMed]

Kuhlicke, A.

Lacroûte, C.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
[Crossref] [PubMed]

Lapitsky, D. S.

D. S. Lapitsky, V. S. Filinov, L. V. Deputatova, L. M. Vasilyak, V. I. Vladimirov, and V. Y. Pecherkin, “Dust particles behavior in an electrodynamic trap,” Contrib. Plasma Phys. 53(4–5), 450–456 (2013).
[Crossref]

Le Kien, F.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70(1), 011401 (2004).
[Crossref]

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70(6), 063403 (2004).
[Crossref]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Liang, J. Q.

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70(1), 011401 (2004).
[Crossref]

Liljeroth, P.

L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G. Meyer, “Measuring the charge state of an adatom with noncontact atomic force microscopy,” Science 324(5933), 1428–1431 (2009).
[Crossref] [PubMed]

Maleki, L.

J. D. Prestage, G. J. Dick, and L. Maleki, “New ion trap for frequency standard applications,” J. Appl. Phys. 66(3), 1013 (1989).
[Crossref]

Manson, N. B.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

Mavrogordatos, T.

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114(12), 123602 (2015).
[Crossref] [PubMed]

Meijer, J.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

Melentiev, P. N.

Meyer, G.

L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G. Meyer, “Measuring the charge state of an adatom with noncontact atomic force microscopy,” Science 324(5933), 1428–1431 (2009).
[Crossref] [PubMed]

Michl, J.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

Millen, J.

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114(12), 123602 (2015).
[Crossref] [PubMed]

Mohn, F.

L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G. Meyer, “Measuring the charge state of an adatom with noncontact atomic force microscopy,” Science 324(5933), 1428–1431 (2009).
[Crossref] [PubMed]

Monroe, C.

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339(6124), 1164–1169 (2013).
[Crossref] [PubMed]

Monteiro, T. S.

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114(12), 123602 (2015).
[Crossref] [PubMed]

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express 15(9), 5431–5438 (2007).
[Crossref] [PubMed]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70(1), 011401 (2004).
[Crossref]

Nasse, M.

M. Nasse and C. Foot, “Influence of background pressure on the stability region of a Paul trap,” Eur. J. Phys. 22(6), 563–573 (2001).
[Crossref]

Nayak, K. P.

Naydenov, B.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

Neumann, P.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

Noda, T.

Novotny, L.

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9(12), 806–810 (2013).
[Crossref]

Oe, Y.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

Ondrácek, M.

F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, and P. Jelínek, “Probing charges on the atomic scale by means of atomic force microscopy,” Phys. Rev. Lett. 115(7), 076101 (2015).
[Crossref] [PubMed]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Papp, S. B.

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105(10), 101101 (2010).
[Crossref] [PubMed]

Paul, W.

W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62(3), 531–540 (1990).
[Crossref]

Pecherkin, V. Y.

D. S. Lapitsky, V. S. Filinov, L. V. Deputatova, L. M. Vasilyak, V. I. Vladimirov, and V. Y. Pecherkin, “Dust particles behavior in an electrodynamic trap,” Contrib. Plasma Phys. 53(4–5), 450–456 (2013).
[Crossref]

Pezzagna, S.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

Pototschnig, M.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
[Crossref] [PubMed]

Prestage, J. D.

J. D. Prestage, G. J. Dick, and L. Maleki, “New ion trap for frequency standard applications,” J. Appl. Phys. 66(3), 1013 (1989).
[Crossref]

Quate, C. F.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[Crossref] [PubMed]

Quidant, R.

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9(12), 806–810 (2013).
[Crossref]

Rauschenbeutel, A.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Repp, J.

F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, and P. Jelínek, “Probing charges on the atomic scale by means of atomic force microscopy,” Phys. Rev. Lett. 115(7), 076101 (2015).
[Crossref] [PubMed]

L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G. Meyer, “Measuring the charge state of an adatom with noncontact atomic force microscopy,” Science 324(5933), 1428–1431 (2009).
[Crossref] [PubMed]

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Sasaki, K.

Scheer, M.

F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, and P. Jelínek, “Probing charges on the atomic scale by means of atomic force microscopy,” Phys. Rev. Lett. 115(7), 076101 (2015).
[Crossref] [PubMed]

Schell, A. W.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Schröder, T.

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Stern, N. P.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
[Crossref] [PubMed]

Sumiya, H.

Takashima, H.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity QED using diamond NV centers,” Opt. Express 18(14), 15169–15173 (2010).
[Crossref] [PubMed]

Takeuchi, S.

Thiele, T.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
[Crossref] [PubMed]

Toubaru, K.

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Vasilyak, L. M.

D. S. Lapitsky, V. S. Filinov, L. V. Deputatova, L. M. Vasilyak, V. I. Vladimirov, and V. Y. Pecherkin, “Dust particles behavior in an electrodynamic trap,” Contrib. Plasma Phys. 53(4–5), 450–456 (2013).
[Crossref]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Vladimirov, V. I.

D. S. Lapitsky, V. S. Filinov, L. V. Deputatova, L. M. Vasilyak, V. I. Vladimirov, and V. Y. Pecherkin, “Dust particles behavior in an electrodynamic trap,” Contrib. Plasma Phys. 53(4–5), 450–456 (2013).
[Crossref]

Wrachtrup, J.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

Yalla, R.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

Zhao, H.-Q.

Biophys. J. (1)

W. F. Heinz and J. H. Hoh, “Relative surface charge density mapping with the atomic force microscope,” Biophys. J. 76(1), 528–538 (1999).
[Crossref] [PubMed]

Contrib. Plasma Phys. (1)

D. S. Lapitsky, V. S. Filinov, L. V. Deputatova, L. M. Vasilyak, V. I. Vladimirov, and V. Y. Pecherkin, “Dust particles behavior in an electrodynamic trap,” Contrib. Plasma Phys. 53(4–5), 450–456 (2013).
[Crossref]

Eur. J. Phys. (1)

M. Nasse and C. Foot, “Influence of background pressure on the stability region of a Paul trap,” Eur. J. Phys. 22(6), 563–573 (2001).
[Crossref]

J. Appl. Phys. (1)

J. D. Prestage, G. J. Dick, and L. Maleki, “New ion trap for frequency standard applications,” J. Appl. Phys. 66(3), 1013 (1989).
[Crossref]

Nano Lett. (1)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Nat. Phys. (1)

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9(12), 806–810 (2013).
[Crossref]

Nature (1)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (2)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (2)

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70(1), 011401 (2004).
[Crossref]

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70(6), 063403 (2004).
[Crossref]

Phys. Rev. Lett. (9)

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109(3), 033603 (2012).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114(12), 123602 (2015).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105(10), 101101 (2010).
[Crossref] [PubMed]

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond,” Phys. Rev. Lett. 112(9), 097603 (2014).
[Crossref] [PubMed]

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[Crossref] [PubMed]

F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, and P. Jelínek, “Probing charges on the atomic scale by means of atomic force microscopy,” Phys. Rev. Lett. 115(7), 076101 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62(3), 531–540 (1990).
[Crossref]

Sci. Rep. (1)

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

Science (2)

L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G. Meyer, “Measuring the charge state of an adatom with noncontact atomic force microscopy,” Science 324(5933), 1428–1431 (2009).
[Crossref] [PubMed]

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339(6124), 1164–1169 (2013).
[Crossref] [PubMed]

Other (2)

M. Ohta, K. Umeda, K. Kobayashi, and H. Yamada, “Surface charge density measureing device using atomic force microscope,” Patent no. PCT/JP2013/055002.

M. Brownnutt, Instuitute for Experimental Physics, University of Innsbruck, (personal communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of linear Paul trap. Segmented electrodes labeled A, B, and C are used for applying static voltages to confine particles in the z direction. Radial confinement is realized by AC voltages applied to a pair of electrodes labeled AC. A tapered optical fiber is set across the z-axis at a right angle. (b) Relationship between a charged particle and a tapered fiber.

Fig. 2
Fig. 2

(a) Simplified model of a linear trap for numerical calculation. Plot of a static potential on a plane including the z-axis is superimposed. This is calculated when 50 V, 0 V, and 20 V are applied to the DC electrodes A, B, and C, respectively. (b) Plot of the calculated static potential along the z-axis. (c) Numerically calculated electric field along the z-axis produced by DC electrodes.

Fig. 3
Fig. 3

Image of a particle trapped in a linear Paul trap (left) and schematic diagram of the corresponding part of the trap (right). A tapered fiber is placed on a linear translation stage. The image shows the case that the fiber is moved away from the center of the trapping region. A helium-neon laser beam is directed along the trap axis to observe the particle via the scattered light.

Fig. 4
Fig. 4

Line charge density of tapered optical fiber with a diameter of 1.6 μm. (a) AC amplitude is changed and DC voltages of 15 V, 0 V, and 30 V are applied to electrodes A, B, and C, respectively. (b) DC voltages applied to electrodes A and B are 15 V and 0 V, respectively. The voltage applied to electrode C is changed. The AC voltage is set at 800V. See main text for the derivation of the error bars shown.

Tables (1)

Tables Icon

Table 1 Position of the numerically calculated minimum potential along the z-direction, and that of the experimentally obtained value by trapping particles for several values of the DC electrode voltages.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E f = 1 2π ε 0 λ r
Q 2π ε 0 λ r =Q E end
λ=2π ε 0 r E end

Metrics