Abstract

We demonstrate the formation of a homogeneous nanograting with 50-nm period on GaN in air, using ultraviolet femtosecond (fs) laser pulses at 266 nm in the recently developed two-step ablation technique. The experimental results have shown that the ablation technique successfully controlled the spatial mode of surface plasmon polaritons (SPP) excited on the target surface and decreased the grating period in accordance with the short wavelength of fs laser pulses. Calculation for a model target reproduces well the laser-wavelength dependent periods, being in good agreement with the observed, and supports the mechanism for nanostructuring.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water

Godai Miyaji, Kenzo Miyazaki, Kaifeng Zhang, Takakazu Yoshifuji, and Junya Fujita
Opt. Express 20(14) 14848-14856 (2012)

Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation

Sandra Höhm, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(20) 25959-25971 (2015)

Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses

Xian-Feng Li, Cheng-Yun Zhang, Hui Li, Qiao-Feng Dai, Sheng Lan, and Shao-Long Tie
Opt. Express 22(23) 28086-28099 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
    [Crossref]
  2. F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
    [Crossref]
  3. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
    [Crossref]
  4. N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys., A Mater. Sci. Process. 76(6), 983–985 (2003).
    [Crossref]
  5. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
    [Crossref]
  6. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [Crossref]
  7. G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1–2), 334–341 (2004).
    [Crossref]
  8. N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Glassy carbon layer formed in diamond-like carbon films with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(3), 425–427 (2004).
    [Crossref]
  9. K. Miyazaki, N. Maekawa, W. Kobayashi, M. Kaku, N. Yasumaru, and J. Kiuchi, “Reflectivity in femtosecond-laserinduced structural changes of diamond-like carbon film,” Appl. Phys., A Mater. Sci. Process. 80(1), 17–21 (2005).
    [Crossref]
  10. G. Miyaji and K. Miyazaki, “Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 89(19), 191902 (2006).
    [Crossref]
  11. G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
    [Crossref]
  12. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
    [Crossref] [PubMed]
  13. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express 20(14), 14848–14856 (2012).
    [Crossref] [PubMed]
  14. K. Miyazaki and G. Miyaji, “Periodic nanostructure formation on silicon irradiated with multiple low-fluence femtosecond laser pulses in water,” Phys. Procedia 39, 674–682 (2012).
    [Crossref]
  15. G. Miyaji and K. Miyazaki, “Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation,” Appl. Phys. Lett. 103(7), 071910 (2013).
    [Crossref]
  16. K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
    [Crossref]
  17. K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
    [Crossref] [PubMed]
  18. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  19. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  20. W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Samples, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14(7), 1654–1661 (1997).
    [Crossref]
  21. G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
    [Crossref]
  22. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Kluwer Academic Publishers, Boston, 1999).
  23. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
    [Crossref]
  24. M. Suzuki and T. Uenoyama, “First-principles calculation of effective mass parameters of gallium nitride,” Jpn. J. Appl. Phys. 34(1), 3442–3446 (1995).
    [Crossref]

2015 (1)

K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
[Crossref] [PubMed]

2013 (2)

G. Miyaji and K. Miyazaki, “Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation,” Appl. Phys. Lett. 103(7), 071910 (2013).
[Crossref]

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

2012 (2)

G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express 20(14), 14848–14856 (2012).
[Crossref] [PubMed]

K. Miyazaki and G. Miyaji, “Periodic nanostructure formation on silicon irradiated with multiple low-fluence femtosecond laser pulses in water,” Phys. Procedia 39, 674–682 (2012).
[Crossref]

2008 (1)

2007 (1)

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[Crossref]

2006 (1)

G. Miyaji and K. Miyazaki, “Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 89(19), 191902 (2006).
[Crossref]

2005 (1)

K. Miyazaki, N. Maekawa, W. Kobayashi, M. Kaku, N. Yasumaru, and J. Kiuchi, “Reflectivity in femtosecond-laserinduced structural changes of diamond-like carbon film,” Appl. Phys., A Mater. Sci. Process. 80(1), 17–21 (2005).
[Crossref]

2004 (2)

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1–2), 334–341 (2004).
[Crossref]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Glassy carbon layer formed in diamond-like carbon films with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(3), 425–427 (2004).
[Crossref]

2003 (3)

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys., A Mater. Sci. Process. 76(6), 983–985 (2003).
[Crossref]

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

2002 (2)

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

2000 (2)

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

1997 (2)

W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Samples, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14(7), 1654–1661 (1997).
[Crossref]

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

1995 (1)

M. Suzuki and T. Uenoyama, “First-principles calculation of effective mass parameters of gallium nitride,” Jpn. J. Appl. Phys. 34(1), 3442–3446 (1995).
[Crossref]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Barnes, W. L.

Bonse, J.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Chen, X.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Costache, F.

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Daminelli, G.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1–2), 334–341 (2004).
[Crossref]

Egawa, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Fang, R.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Fujita, J.

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

Inoue, T.

K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
[Crossref] [PubMed]

Ishikawa, H.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Jimbo, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Kaku, M.

K. Miyazaki, N. Maekawa, W. Kobayashi, M. Kaku, N. Yasumaru, and J. Kiuchi, “Reflectivity in femtosecond-laserinduced structural changes of diamond-like carbon film,” Appl. Phys., A Mater. Sci. Process. 80(1), 17–21 (2005).
[Crossref]

Kautek, W.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1–2), 334–341 (2004).
[Crossref]

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

Kitson, S. C.

Kiuchi, J.

K. Miyazaki, N. Maekawa, W. Kobayashi, M. Kaku, N. Yasumaru, and J. Kiuchi, “Reflectivity in femtosecond-laserinduced structural changes of diamond-like carbon film,” Appl. Phys., A Mater. Sci. Process. 80(1), 17–21 (2005).
[Crossref]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Glassy carbon layer formed in diamond-like carbon films with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(3), 425–427 (2004).
[Crossref]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys., A Mater. Sci. Process. 76(6), 983–985 (2003).
[Crossref]

Kobayashi, W.

K. Miyazaki, N. Maekawa, W. Kobayashi, M. Kaku, N. Yasumaru, and J. Kiuchi, “Reflectivity in femtosecond-laserinduced structural changes of diamond-like carbon film,” Appl. Phys., A Mater. Sci. Process. 80(1), 17–21 (2005).
[Crossref]

Krüger, J.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1–2), 334–341 (2004).
[Crossref]

Liao, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Ma, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Maekawa, N.

K. Miyazaki, N. Maekawa, W. Kobayashi, M. Kaku, N. Yasumaru, and J. Kiuchi, “Reflectivity in femtosecond-laserinduced structural changes of diamond-like carbon film,” Appl. Phys., A Mater. Sci. Process. 80(1), 17–21 (2005).
[Crossref]

Miyaji, G.

K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
[Crossref] [PubMed]

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

G. Miyaji and K. Miyazaki, “Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation,” Appl. Phys. Lett. 103(7), 071910 (2013).
[Crossref]

K. Miyazaki and G. Miyaji, “Periodic nanostructure formation on silicon irradiated with multiple low-fluence femtosecond laser pulses in water,” Phys. Procedia 39, 674–682 (2012).
[Crossref]

G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express 20(14), 14848–14856 (2012).
[Crossref] [PubMed]

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
[Crossref] [PubMed]

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[Crossref]

G. Miyaji and K. Miyazaki, “Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 89(19), 191902 (2006).
[Crossref]

Miyazaki, K.

K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
[Crossref] [PubMed]

G. Miyaji and K. Miyazaki, “Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation,” Appl. Phys. Lett. 103(7), 071910 (2013).
[Crossref]

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

K. Miyazaki and G. Miyaji, “Periodic nanostructure formation on silicon irradiated with multiple low-fluence femtosecond laser pulses in water,” Phys. Procedia 39, 674–682 (2012).
[Crossref]

G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express 20(14), 14848–14856 (2012).
[Crossref] [PubMed]

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
[Crossref] [PubMed]

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[Crossref]

G. Miyaji and K. Miyazaki, “Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 89(19), 191902 (2006).
[Crossref]

K. Miyazaki, N. Maekawa, W. Kobayashi, M. Kaku, N. Yasumaru, and J. Kiuchi, “Reflectivity in femtosecond-laserinduced structural changes of diamond-like carbon film,” Appl. Phys., A Mater. Sci. Process. 80(1), 17–21 (2005).
[Crossref]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Glassy carbon layer formed in diamond-like carbon films with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(3), 425–427 (2004).
[Crossref]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys., A Mater. Sci. Process. 76(6), 983–985 (2003).
[Crossref]

Pandelov, S. V.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Preist, T. W.

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Reif, J.

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Samples, J. R.

Schmidt, D.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Soga, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

Sturm, H.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

Suzuki, M.

M. Suzuki and T. Uenoyama, “First-principles calculation of effective mass parameters of gallium nitride,” Jpn. J. Appl. Phys. 34(1), 3442–3446 (1995).
[Crossref]

Uenoyama, T.

M. Suzuki and T. Uenoyama, “First-principles calculation of effective mass parameters of gallium nitride,” Jpn. J. Appl. Phys. 34(1), 3442–3446 (1995).
[Crossref]

Umeno, M.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

Wang, G.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Wang, K.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Watanabe, J.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Wu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Yasumaru, N.

K. Miyazaki, N. Maekawa, W. Kobayashi, M. Kaku, N. Yasumaru, and J. Kiuchi, “Reflectivity in femtosecond-laserinduced structural changes of diamond-like carbon film,” Appl. Phys., A Mater. Sci. Process. 80(1), 17–21 (2005).
[Crossref]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Glassy carbon layer formed in diamond-like carbon films with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(3), 425–427 (2004).
[Crossref]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys., A Mater. Sci. Process. 76(6), 983–985 (2003).
[Crossref]

Yoshifuji, T.

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Yu, G.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Yu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Zhang, K.

Appl. Phys. Lett. (7)

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

G. Miyaji and K. Miyazaki, “Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 89(19), 191902 (2006).
[Crossref]

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[Crossref]

G. Miyaji and K. Miyazaki, “Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation,” Appl. Phys. Lett. 103(7), 071910 (2013).
[Crossref]

K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
[Crossref] [PubMed]

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys., A Mater. Sci. Process. 76(6), 983–985 (2003).
[Crossref]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Glassy carbon layer formed in diamond-like carbon films with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(3), 425–427 (2004).
[Crossref]

K. Miyazaki, N. Maekawa, W. Kobayashi, M. Kaku, N. Yasumaru, and J. Kiuchi, “Reflectivity in femtosecond-laserinduced structural changes of diamond-like carbon film,” Appl. Phys., A Mater. Sci. Process. 80(1), 17–21 (2005).
[Crossref]

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

Appl. Surf. Sci. (2)

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

J. Appl. Phys. (1)

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

M. Suzuki and T. Uenoyama, “First-principles calculation of effective mass parameters of gallium nitride,” Jpn. J. Appl. Phys. 34(1), 3442–3446 (1995).
[Crossref]

Opt. Express (2)

Phys. Procedia (1)

K. Miyazaki and G. Miyaji, “Periodic nanostructure formation on silicon irradiated with multiple low-fluence femtosecond laser pulses in water,” Phys. Procedia 39, 674–682 (2012).
[Crossref]

Phys. Rev. B (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

Thin Solid Films (1)

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1–2), 334–341 (2004).
[Crossref]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Kluwer Academic Publishers, Boston, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEM image of the self-organized PNS on GaN irradiated with N = 50 at F = 660 mJ/cm2 (left) and its spatial frequency spectrum (right). The fs laser polarization direction is horizontal.

Fig. 2
Fig. 2

SEM image and frequency spectrum of the periodic structure on GaN surface irradiated with (a) N = 0, (b) N = 10, and (c) N = 30 at F(1) = 660 mJ/cm2 from beam 1 in the second step. The fs laser polarization direction is horizontal. The number at each peak in the spectrum denotes the spatial period d in nm.

Fig. 3
Fig. 3

SEM image and frequency spectrum of the periodic structure on GaN surface irradiated with (a) N = 5 and (b) N = 30 at F(1) = 770 mJ/cm2 from beam 1 in the second step. The fs laser polarization direction is horizontal. The number at each peak in the spectrum denotes the spatial period d in nm.

Fig. 4
Fig. 4

(a) Period D of the surface structure (thick curve) and skin depth δ (thin curve), calculated as a function of Ne in an excited GaN layer. The excitation of SPPs is allowed in the region of Re[ε*] < 0 with Ne > 1.7 × 1022 cm−3, where D is drawn with a solid curve. (b) The maximum (open circles) and minimum values of D (open triangles) as a function of λ, where the hatched area marks the possible D between them, and the solid circles represent d observed at λ ~800 nm and 266 nm.

Metrics