Abstract

The electric-optical property of the proton exchanged phase modulator in an x-cut single-crystal lithium niobate thin film was studied. Proton exchanged waveguides generally suffered from a deteriorated electric-optical coefficient. By introducing a shallow proton exchange layer (thickness = 0.165 μm), most energy of the optical mode was allowed to guide in the untouched single-crystal lithium niobate film, making contribution to the effective electric-optical coefficient as high as 29.5 pm/V, which was very close to that of the bulk lithium niobate (r33 = 31 pm/V). A 12 V voltage applied to the electrodes located on the two sides of the waveguide induced a 0.097 nm shift of the Fabry-Perot resonant peak. Considering the wavelength difference of the neighboring resonant peaks (0.228 nm) and the length of the electrodes (2.3 mm), the voltage-length product was as low as 6.5 V·cm, indicating the efficient electric-optical modulation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Waveguides in single-crystal lithium niobate thin film by proton exchange

Lutong Cai, Shuang Li Huangpu Han, and Hui Hu
Opt. Express 23(2) 1240-1248 (2015)

Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film

Lutong Cai, Ruirui Kong, Yiwen Wang, and Hui Hu
Opt. Express 23(22) 29211-29221 (2015)

Acousto-optical modulation of thin film lithium niobate waveguide devices

Lutong Cai, Ashraf Mahmoud, Msi Khan, Mohamed Mahmoud, Tamal Mukherjee, James Bain, and Gianluca Piazza
Photon. Res. 7(9) 1003-1013 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
    [Crossref]
  2. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
    [Crossref]
  3. X. Wang and C. K. Madsen, “Design of a hybrid As2S3-Ti:LiNbO3 optical waveguide for phase-matched difference frequency generation at mid-infrared,” Opt. Express 22(22), 27183–27192 (2014).
    [Crossref] [PubMed]
  4. H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, and R. M. Osgood., “Helium-ion-induced radiation damage in LiNbO3 thin-film electro-optic modulators,” Opt. Express 22(16), 19653–19661 (2014).
    [Crossref] [PubMed]
  5. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
    [Crossref]
  6. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
    [Crossref] [PubMed]
  7. L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
    [Crossref] [PubMed]
  8. H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
    [Crossref] [PubMed]
  9. R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
    [Crossref]
  10. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
    [Crossref] [PubMed]
  11. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  12. A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
    [Crossref] [PubMed]
  13. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  14. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
    [Crossref] [PubMed]
  15. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
    [Crossref] [PubMed]
  16. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
    [Crossref] [PubMed]
  17. S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23(19), 24212–24219 (2015).
    [Crossref] [PubMed]
  18. L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23(22), 29211–29221 (2015).
    [Crossref] [PubMed]
  19. P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett. 13(11), 1050–1052 (1988).
    [Crossref] [PubMed]
  20. I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, “Electro-Optic Effect in Proton Exchanged LiNbO3 and LiTaO3 Waveguides,” J. Lightwave Technol. 14(3), 403–409 (1996).
    [Crossref]
  21. A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
    [Crossref]
  22. M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).
    [Crossref]
  23. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
    [Crossref] [PubMed]
  24. J. M. M. M. de Almeida, “Design methodology of annealed H+ waveguides in ferroelectric LiNbO3,” Opt. Eng. 46(6), 064601 (2007).
    [Crossref]
  25. E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti: LiNbO3 channel waveguides: A novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
    [Crossref]
  26. D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, and K. Petermann, “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3400108 (2015).
    [Crossref]
  27. M. García-Granda, H. Hu, J. R. García, and W. Sohler, “Design and fabrication of navel ridge guide modulators in lithium niobate,” J. Lightwave Technol. 27(24), 5690–5697 (2009).
  28. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  29. S. Rao, “Hydrogenated amorphous silicon phase-change device based on a p-i-p waveguiding configuration,” Opt. Laser Technol. 53, 17–21 (2013).
    [Crossref]
  30. M. Minakata, K. Kumagai, and S. Kawakami, “Lattice constant changes and electro-optic effects in proton-exchanged LiNbO3 optical waveguides,” Appl. Phys. Lett. 49(16), 992–994 (1986).
    [Crossref]
  31. J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka, and M. Minakata, “High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot,” Electron. Lett. 38(10), 472–473 (2002).
    [Crossref]

2015 (7)

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, and K. Petermann, “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3400108 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref] [PubMed]

S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23(19), 24212–24219 (2015).
[Crossref] [PubMed]

L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23(22), 29211–29221 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (4)

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

S. Rao, “Hydrogenated amorphous silicon phase-change device based on a p-i-p waveguiding configuration,” Opt. Laser Technol. 53, 17–21 (2013).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
[Crossref] [PubMed]

2012 (2)

2009 (2)

2007 (2)

J. M. M. M. de Almeida, “Design methodology of annealed H+ waveguides in ferroelectric LiNbO3,” Opt. Eng. 46(6), 064601 (2007).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

2005 (1)

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

2004 (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

2002 (2)

J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka, and M. Minakata, “High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot,” Electron. Lett. 38(10), 472–473 (2002).
[Crossref]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
[Crossref] [PubMed]

2001 (1)

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

1996 (1)

I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, “Electro-Optic Effect in Proton Exchanged LiNbO3 and LiTaO3 Waveguides,” J. Lightwave Technol. 14(3), 403–409 (1996).
[Crossref]

1993 (1)

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).
[Crossref]

1988 (2)

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti: LiNbO3 channel waveguides: A novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett. 13(11), 1050–1052 (1988).
[Crossref] [PubMed]

1986 (1)

M. Minakata, K. Kumagai, and S. Kawakami, “Lattice constant changes and electro-optic effects in proton-exchanged LiNbO3 optical waveguides,” Appl. Phys. Lett. 49(16), 992–994 (1986).
[Crossref]

Aoki, K.

J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka, and M. Minakata, “High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot,” Electron. Lett. 38(10), 472–473 (2002).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

Armenise, M. N.

I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, “Electro-Optic Effect in Proton Exchanged LiNbO3 and LiTaO3 Waveguides,” J. Lightwave Technol. 14(3), 403–409 (1996).
[Crossref]

Atikian, H. A.

Baida, F. I.

Bakhru, H.

Bava, G. P.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti: LiNbO3 channel waveguides: A novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Bernal, M.-P.

Bortz, M. L.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).
[Crossref]

Burek, M. J.

Cabrera, J. M.

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

Cai, L.

Chen, L.

Cheng, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Chiles, J.

Collet, M.

Courjal, N.

Dadap, J. I.

de Almeida, J. M. M. M.

J. M. M. M. de Almeida, “Design methodology of annealed H+ waveguides in ferroelectric LiNbO3,” Opt. Eng. 46(6), 064601 (2007).
[Crossref]

De la Paliza, G.

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Diziain, S.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Eyres, L. A.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).
[Crossref]

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Fathpour, S.

Fejer, M. M.

Findakly, T. K.

Fujimura, M.

Gainutdinov, R. V.

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

Gajda, A.

D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, and K. Petermann, “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3400108 (2015).
[Crossref]

García, J. R.

Garcia-Cabanes, A.

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

García-Granda, M.

Geiss, R.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Gong, Y. X.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Grange, R.

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Hu, H.

Huang, H.-C.

Huang, I.-C.

Imaeda, M.

J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka, and M. Minakata, “High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot,” Electron. Lett. 38(10), 472–473 (2002).
[Crossref]

Jiang, Y.

Jin, H.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Kawakami, S.

M. Minakata, K. Kumagai, and S. Kawakami, “Lattice constant changes and electro-optic effects in proton-exchanged LiNbO3 optical waveguides,” Appl. Phys. Lett. 49(16), 992–994 (1986).
[Crossref]

Khan, S.

Kley, E. B.

Kley, E.-B.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Kondo, A.

J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka, and M. Minakata, “High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot,” Electron. Lett. 38(10), 472–473 (2002).
[Crossref]

Kondo, J.

J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka, and M. Minakata, “High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot,” Electron. Lett. 38(10), 472–473 (2002).
[Crossref]

Kong, R.

Kozuka, Y.

J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka, and M. Minakata, “High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot,” Electron. Lett. 38(10), 472–473 (2002).
[Crossref]

Kroh, M.

D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, and K. Petermann, “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3400108 (2015).
[Crossref]

Kumagai, K.

M. Minakata, K. Kumagai, and S. Kawakami, “Lattice constant changes and electro-optic effects in proton-exchanged LiNbO3 optical waveguides,” Appl. Phys. Lett. 49(16), 992–994 (1986).
[Crossref]

Kurz, J. R.

Kymissis, I.

Leonberger, F. J.

Li, S.

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Lin, Z.

Liu, F. M.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Loncar, M.

Lu, H.

Ma, J.

Madsen, C. K.

Malinowski, M.

Malladi, G.

Méndez, A.

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

Minakata, M.

J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka, and M. Minakata, “High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot,” Electron. Lett. 38(10), 472–473 (2002).
[Crossref]

M. Minakata, K. Kumagai, and S. Kawakami, “Lattice constant changes and electro-optic effects in proton-exchanged LiNbO3 optical waveguides,” Appl. Phys. Lett. 49(16), 992–994 (1986).
[Crossref]

Mitomi, O.

J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka, and M. Minakata, “High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot,” Electron. Lett. 38(10), 472–473 (2002).
[Crossref]

Montrosset, I.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti: LiNbO3 channel waveguides: A novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Novak, S.

Osgood, R. M.

Parameswaran, K. R.

Passaro, V. M. N.

I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, “Electro-Optic Effect in Proton Exchanged LiNbO3 and LiTaO3 Waveguides,” J. Lightwave Technol. 14(3), 403–409 (1996).
[Crossref]

Patil, A.

Pertsch, T.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Petermann, K.

D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, and K. Petermann, “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3400108 (2015).
[Crossref]

Petousi, D.

D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, and K. Petermann, “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3400108 (2015).
[Crossref]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Rabiei, P.

Rao, A.

Rao, S.

S. Rao, “Hydrogenated amorphous silicon phase-change device based on a p-i-p waveguiding configuration,” Opt. Laser Technol. 53, 17–21 (2013).
[Crossref]

Reano, R. M.

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Richardson, K.

Ricken, R.

Roussev, R. V.

Route, R. K.

Sadani, B.

Saravi, S.

Savatinova, I.

I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, “Electro-Optic Effect in Proton Exchanged LiNbO3 and LiTaO3 Waveguides,” J. Lightwave Technol. 14(3), 403–409 (1996).
[Crossref]

Schrempel, F.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Sergeyev, A.

Setzpfandt, F.

Smith, N.

Sohler, W.

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Stark, P.

Steier, W. H.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

Stenger, V.

Strake, E.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti: LiNbO3 channel waveguides: A novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Suchoski, P. G.

Takatsuji, S.

J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka, and M. Minakata, “High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot,” Electron. Lett. 38(10), 472–473 (2002).
[Crossref]

Tillack, B.

D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, and K. Petermann, “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3400108 (2015).
[Crossref]

Todorov, R.

I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, “Electro-Optic Effect in Proton Exchanged LiNbO3 and LiTaO3 Waveguides,” J. Lightwave Technol. 14(3), 403–409 (1996).
[Crossref]

Tonchev, S.

I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, “Electro-Optic Effect in Proton Exchanged LiNbO3 and LiTaO3 Waveguides,” J. Lightwave Technol. 14(3), 403–409 (1996).
[Crossref]

Tünnermann, A.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Ulliac, G.

Venkataraman, V.

Voigt, K.

D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, and K. Petermann, “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3400108 (2015).
[Crossref]

Volk, T. R.

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

Wang, C.

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Winzer, G.

D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, and K. Petermann, “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3400108 (2015).
[Crossref]

Wood, M. G.

Xia, J. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Xu, P.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Yuan, Y.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zhang, H. H.

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

Zhong, M. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zhou, J. W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zhu, S. N.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Ziling, C. C.

I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, “Electro-Optic Effect in Proton Exchanged LiNbO3 and LiTaO3 Waveguides,” J. Lightwave Technol. 14(3), 403–409 (1996).
[Crossref]

Zilk, M.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Zimmermann, L.

D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, and K. Petermann, “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3400108 (2015).
[Crossref]

Appl. Phys. B (1)

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

Appl. Phys. Lett. (5)

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

M. Minakata, K. Kumagai, and S. Kawakami, “Lattice constant changes and electro-optic effects in proton-exchanged LiNbO3 optical waveguides,” Appl. Phys. Lett. 49(16), 992–994 (1986).
[Crossref]

Electron. Lett. (1)

J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka, and M. Minakata, “High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot,” Electron. Lett. 38(10), 472–473 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, and K. Petermann, “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3400108 (2015).
[Crossref]

J. Lightwave Technol. (3)

I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, “Electro-Optic Effect in Proton Exchanged LiNbO3 and LiTaO3 Waveguides,” J. Lightwave Technol. 14(3), 403–409 (1996).
[Crossref]

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti: LiNbO3 channel waveguides: A novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

M. García-Granda, H. Hu, J. R. García, and W. Sohler, “Design and fabrication of navel ridge guide modulators in lithium niobate,” J. Lightwave Technol. 27(24), 5690–5697 (2009).

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Opt. Eng. (1)

J. M. M. M. de Almeida, “Design methodology of annealed H+ waveguides in ferroelectric LiNbO3,” Opt. Eng. 46(6), 064601 (2007).
[Crossref]

Opt. Express (10)

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
[Crossref] [PubMed]

H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, and R. M. Osgood., “Helium-ion-induced radiation damage in LiNbO3 thin-film electro-optic modulators,” Opt. Express 22(16), 19653–19661 (2014).
[Crossref] [PubMed]

X. Wang and C. K. Madsen, “Design of a hybrid As2S3-Ti:LiNbO3 optical waveguide for phase-matched difference frequency generation at mid-infrared,” Opt. Express 22(22), 27183–27192 (2014).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref] [PubMed]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref] [PubMed]

S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23(19), 24212–24219 (2015).
[Crossref] [PubMed]

L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23(22), 29211–29221 (2015).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

S. Rao, “Hydrogenated amorphous silicon phase-change device based on a p-i-p waveguiding configuration,” Opt. Laser Technol. 53, 17–21 (2013).
[Crossref]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Phys. Status Solidi, A Appl. Res. (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

Sci. Rep. (1)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Configuration of the PE phase modulator in LNOI. (b) Optical mode profile with W = 3.2 μm, D = 0.165 μm and T = 0.52 μm for the quasi-TE guided mode at 1.55 μm. (c) Electrostatic field (Ez) after 1 V voltage was applied to the electrodes. The gap (G) between the electrodes was 10 μm.
Fig. 2
Fig. 2 Cut-off dimensions of the PE region for quasi-TE10 mode. The dimensions below the curves corresponded to SM conditions in the horizontal direction.
Fig. 3
Fig. 3 Dependence of VπL of the phase modulator on W in (a) 0.4 μm, (b) 0.5 μm, (c) 0.6 μm and (d) 0.7 μm thick LN film. Difference color lines corresponded to different D.
Fig. 4
Fig. 4 (a) Fabrication procedure of the PE phase modulator in LNOI. (b) SEM image of the cross-section (etched by FIB) of the phase modulator. (c) Optical microscope image (captured in the Transmission-mode) of the top view of the phase modulator.
Fig. 5
Fig. 5 (a) Measured transmissions of the phase modulator before (black) and after (red) applying 12 V voltage. A 0.097 nm shift of the resonant wavelength (Δλ') occurred. The wavelength difference of neighboring resonances (Δλ) was 0.228 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V π L= λG n 3 r 33 Γ
Γ= G V LN E ele (x,z) | E opt (x,z) | 2 dxdz LN | E opt (x,z) | 2 dxdz

Metrics