Abstract

We describe a practical arrangement for optical sectioning by means of time-gated backscatter imaging using ultrafast illumination and a CS2-based optical Kerr effect shutter. This arrangement can reveal additional information when probing transient turbid media such as fuel injection sprays or complex multiphase flows which require single-shot imaging with sufficient time resolution to freeze the dynamics of the flow.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration

Sean P. Duran, Jason M. Porter, and Terence E. Parker
Appl. Opt. 54(7) 1743-1750 (2015)

Ultrafast time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays

Jacob B. Schmidt, Zane D. Schaefer, Terrence R. Meyer, Sukesh Roy, Stephen A. Danczyk, and James R. Gord
Appl. Opt. 48(4) B137-B144 (2009)

Evaluation of optical arrangements for ballistic imaging in sprays

Mattias Rahm, Megan Paciaroni, Zhenkan Wang, David Sedarsky, and Mark Linne
Opt. Express 23(17) 22444-22462 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Linne, “Imaging in the optically dense regions of a spray: A review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
    [Crossref]
  2. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
    [Crossref] [PubMed]
  3. L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr-fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
    [Crossref]
  4. M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43, 5100–5109 (2004).
    [Crossref] [PubMed]
  5. M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
    [Crossref]
  6. M. Linne, M. Paciaroni, J. Gord, and T. Meyer, “Ballistic imaging of the liquid core for a steady jet in crossflow,” Appl. Opt. 44, 6627–6634 (2005).
    [Crossref] [PubMed]
  7. M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Spray 16, 51–69 (2006).
    [Crossref]
  8. D. Sedarsky, J. Gord, C. Carter, T. Meyer, and M. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34, 2748–2750 (2009).
    [Crossref] [PubMed]
  9. J. B. Schmidt, Z. D. Schaefer, T. R. Meyer, S. Roy, S. A. Danczyk, and J. R. Gord, “Ultrafast time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays,” Appl. Opt. 48, B137–B144 (2009).
    [Crossref] [PubMed]
  10. Z. Falgout, M. Rahm, D. Sedarsky, and M. Linne, “Gas/fuel jet interfaces under high pressures and temperatures,” Fuel 168, 14–21 (2016).
    [Crossref]
  11. S. Idlahcen, L. Mees, C. Roze, T. Girasole, and J. B. Blaisot, “Time gate, optical layout, and wavelength effects on ballistic imaging,” J. Opt. Soc. Am. A 26, 1995–2004 (2009).
    [Crossref]
  12. D. Sedarsky, E. Berrocal, and M. Linne, “Quantitative image contrast enhancement in time-gated transillumination of scattering media,” Opt. Express 19, 1866–1883 (2011).
    [Crossref] [PubMed]
  13. S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J.-B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
    [Crossref]
  14. H. Purwar, S. Idlahcen, C. Roze, D. Sedarsky, and J.-B. Blaisot, “Collinear, two-color optical kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
    [Crossref] [PubMed]
  15. M. Rahm, M. Paciaroni, Z. Wang, D. Sedarsky, and M. Linne, “Evaluation of optical arrangements for ballistic imaging in sprays,” Opt. Express 23, 22444–22462 (2015).
    [Crossref] [PubMed]
  16. E. Kristensson, E. Berrocal, M. Richter, S.-G. Pettersson, and M. Alden, “High-speed structured planar laser illumination for contrast improvement of two-phase flow images,” Opt. Lett. 33, 2752–2754 (2008).
    [Crossref] [PubMed]
  17. E. Berrocal, E. Kristensson, P. Hottenbach, M. Alden, and G. Grunefeld, “Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging,” Appl. Phys. B 109, 683–694 (2012).
    [Crossref]
  18. E. Kristensson, L. Araneo, E. Berrocal, J. Manin, M. Richter, M. Alden, and M. Linne, “Analysis of multiple scattering suppression using structured laser illumination planar imaging in scattering and fluorescing media,” Opt. Express 19, 13647–13663 (2011).
    [Crossref] [PubMed]
  19. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
    [Crossref] [PubMed]
  20. S. Demos, H. Radousky, and R. Alfano, “Deep subsurface imaging in tissues using spectral and polarization filtering,” Opt. Express 7, 23–28 (2000).
    [Crossref] [PubMed]
  21. S. A. Kartazayeva, X. Ni, and R. R. Alfano, “Backscattering target detection in a turbid medium by use of circularly and linearly polarized light,” Opt. Lett. 30, 1168–1170 (2005).
    [Crossref] [PubMed]
  22. M. E. Zevallos L., S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
    [Crossref]
  23. R. N. Dahms, J. Manin, L. M. Pickett, and J. C. Oefelein, “Understanding high-pressure gas-liquid interface phenomena in diesel engines,” P. Combust. Inst. 34, 1667–1675 (2013).
    [Crossref]
  24. C. Baumgarten, Mixture Formation in Internal Combustion Engines (Springer, 2006).

2016 (1)

Z. Falgout, M. Rahm, D. Sedarsky, and M. Linne, “Gas/fuel jet interfaces under high pressures and temperatures,” Fuel 168, 14–21 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (2)

M. Linne, “Imaging in the optically dense regions of a spray: A review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
[Crossref]

R. N. Dahms, J. Manin, L. M. Pickett, and J. C. Oefelein, “Understanding high-pressure gas-liquid interface phenomena in diesel engines,” P. Combust. Inst. 34, 1667–1675 (2013).
[Crossref]

2012 (3)

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J.-B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

E. Berrocal, E. Kristensson, P. Hottenbach, M. Alden, and G. Grunefeld, “Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging,” Appl. Phys. B 109, 683–694 (2012).
[Crossref]

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (3)

2008 (1)

2006 (2)

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
[Crossref]

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Spray 16, 51–69 (2006).
[Crossref]

2005 (3)

2004 (1)

2000 (1)

1993 (1)

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Alden, M.

Alfano, R.

Alfano, R. R.

S. A. Kartazayeva, X. Ni, and R. R. Alfano, “Backscattering target detection in a turbid medium by use of circularly and linearly polarized light,” Opt. Lett. 30, 1168–1170 (2005).
[Crossref] [PubMed]

M. E. Zevallos L., S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
[Crossref]

L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr-fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
[Crossref]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Alrubaiee, M.

M. E. Zevallos L., S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
[Crossref]

Araneo, L.

Baumgarten, C.

C. Baumgarten, Mixture Formation in Internal Combustion Engines (Springer, 2006).

Berrocal, E.

Blaisot, J. B.

Blaisot, J.-B.

H. Purwar, S. Idlahcen, C. Roze, D. Sedarsky, and J.-B. Blaisot, “Collinear, two-color optical kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
[Crossref] [PubMed]

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J.-B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

Carter, C.

Dahms, R. N.

R. N. Dahms, J. Manin, L. M. Pickett, and J. C. Oefelein, “Understanding high-pressure gas-liquid interface phenomena in diesel engines,” P. Combust. Inst. 34, 1667–1675 (2013).
[Crossref]

Dai, H.

Danczyk, S. A.

Delplanque, J. P.

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Spray 16, 51–69 (2006).
[Crossref]

Demos, S.

Falgout, Z.

Z. Falgout, M. Rahm, D. Sedarsky, and M. Linne, “Gas/fuel jet interfaces under high pressures and temperatures,” Fuel 168, 14–21 (2016).
[Crossref]

Gayen, S. K.

M. E. Zevallos L., S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
[Crossref]

Girasole, T.

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J.-B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

S. Idlahcen, L. Mees, C. Roze, T. Girasole, and J. B. Blaisot, “Time gate, optical layout, and wavelength effects on ballistic imaging,” J. Opt. Soc. Am. A 26, 1995–2004 (2009).
[Crossref]

Gord, J.

Gord, J. R.

Grunefeld, G.

E. Berrocal, E. Kristensson, P. Hottenbach, M. Alden, and G. Grunefeld, “Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging,” Appl. Phys. B 109, 683–694 (2012).
[Crossref]

Hall, T.

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Spray 16, 51–69 (2006).
[Crossref]

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
[Crossref]

Ho, P. P.

L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr-fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
[Crossref]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Hottenbach, P.

E. Berrocal, E. Kristensson, P. Hottenbach, M. Alden, and G. Grunefeld, “Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging,” Appl. Phys. B 109, 683–694 (2012).
[Crossref]

Idlahcen, S.

Kartazayeva, S. A.

Kristensson, E.

Liang, X.

Linne, M.

Z. Falgout, M. Rahm, D. Sedarsky, and M. Linne, “Gas/fuel jet interfaces under high pressures and temperatures,” Fuel 168, 14–21 (2016).
[Crossref]

M. Rahm, M. Paciaroni, Z. Wang, D. Sedarsky, and M. Linne, “Evaluation of optical arrangements for ballistic imaging in sprays,” Opt. Express 23, 22444–22462 (2015).
[Crossref] [PubMed]

M. Linne, “Imaging in the optically dense regions of a spray: A review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
[Crossref]

E. Kristensson, L. Araneo, E. Berrocal, J. Manin, M. Richter, M. Alden, and M. Linne, “Analysis of multiple scattering suppression using structured laser illumination planar imaging in scattering and fluorescing media,” Opt. Express 19, 13647–13663 (2011).
[Crossref] [PubMed]

D. Sedarsky, E. Berrocal, and M. Linne, “Quantitative image contrast enhancement in time-gated transillumination of scattering media,” Opt. Express 19, 1866–1883 (2011).
[Crossref] [PubMed]

D. Sedarsky, J. Gord, C. Carter, T. Meyer, and M. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34, 2748–2750 (2009).
[Crossref] [PubMed]

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
[Crossref]

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Spray 16, 51–69 (2006).
[Crossref]

M. Linne, M. Paciaroni, J. Gord, and T. Meyer, “Ballistic imaging of the liquid core for a steady jet in crossflow,” Appl. Opt. 44, 6627–6634 (2005).
[Crossref] [PubMed]

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43, 5100–5109 (2004).
[Crossref] [PubMed]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Manin, J.

Mees, L.

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J.-B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

S. Idlahcen, L. Mees, C. Roze, T. Girasole, and J. B. Blaisot, “Time gate, optical layout, and wavelength effects on ballistic imaging,” J. Opt. Soc. Am. A 26, 1995–2004 (2009).
[Crossref]

Meyer, T.

Meyer, T. R.

Ni, X.

Oefelein, J. C.

R. N. Dahms, J. Manin, L. M. Pickett, and J. C. Oefelein, “Understanding high-pressure gas-liquid interface phenomena in diesel engines,” P. Combust. Inst. 34, 1667–1675 (2013).
[Crossref]

Paciaroni, M.

Parker, T.

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
[Crossref]

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Spray 16, 51–69 (2006).
[Crossref]

Pettersson, S.-G.

Pickett, L. M.

R. N. Dahms, J. Manin, L. M. Pickett, and J. C. Oefelein, “Understanding high-pressure gas-liquid interface phenomena in diesel engines,” P. Combust. Inst. 34, 1667–1675 (2013).
[Crossref]

Podoleanu, A. G.

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
[Crossref] [PubMed]

Purwar, H.

Radousky, H.

Rahm, M.

Z. Falgout, M. Rahm, D. Sedarsky, and M. Linne, “Gas/fuel jet interfaces under high pressures and temperatures,” Fuel 168, 14–21 (2016).
[Crossref]

M. Rahm, M. Paciaroni, Z. Wang, D. Sedarsky, and M. Linne, “Evaluation of optical arrangements for ballistic imaging in sprays,” Opt. Express 23, 22444–22462 (2015).
[Crossref] [PubMed]

Richter, M.

Roy, S.

Roze, C.

Schaefer, Z. D.

Schmidt, J. B.

Sedarsky, D.

Wang, L.

L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr-fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
[Crossref]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Wang, Z.

Zevallos L., M. E.

M. E. Zevallos L., S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
[Crossref]

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

E. Berrocal, E. Kristensson, P. Hottenbach, M. Alden, and G. Grunefeld, “Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging,” Appl. Phys. B 109, 683–694 (2012).
[Crossref]

Appl. Phys. Lett. (1)

M. E. Zevallos L., S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
[Crossref]

Atomization Spray (1)

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Spray 16, 51–69 (2006).
[Crossref]

Exp. Fluids (2)

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
[Crossref]

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J.-B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

Fuel (1)

Z. Falgout, M. Rahm, D. Sedarsky, and M. Linne, “Gas/fuel jet interfaces under high pressures and temperatures,” Fuel 168, 14–21 (2016).
[Crossref]

J. Microsc. (1)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Express (5)

Opt. Lett. (4)

P. Combust. Inst. (1)

R. N. Dahms, J. Manin, L. M. Pickett, and J. C. Oefelein, “Understanding high-pressure gas-liquid interface phenomena in diesel engines,” P. Combust. Inst. 34, 1667–1675 (2013).
[Crossref]

Prog. Energy Combust. Sci. (1)

M. Linne, “Imaging in the optically dense regions of a spray: A review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
[Crossref]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Other (1)

C. Baumgarten, Mixture Formation in Internal Combustion Engines (Springer, 2006).

Supplementary Material (4)

NameDescription
» Visualization 1: MP4 (165 KB)      Video of time-gated backscattering signal from the glass tube
» Visualization 2: MP4 (195 KB)      Video of time-gated backscattering signal from the Diesel spray in the LP/LT case
» Visualization 3: MP4 (245 KB)      Video of time-gated backscattering signal from the Diesel spray in the HP/HT case
» Visualization 4: MP4 (184 KB)      Video of time-gated backscattering signal from the dodecane spray in the LP/LT case

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup. The initial beam is separated into an imaging beam and a gating beam controlling the OKE-gate. The backscattered signal is split into a TG part and a non-TG part and directed to the cameras.

Fig. 2
Fig. 2

Photo of the ground glass tube in place inside the spray chamber. The position of the injector tip is indicated in the image. The photo of the tube was taken at 90° to the illumination direction.

Fig. 3
Fig. 3

Single-frame excerpt from TG-scan video of TG backscattering from glass tube ( Visualization 1). Distances calculated from the “single-trip” time scale with zero centered on maximum intensity peak.

Fig. 4
Fig. 4

Detected backscattering signal from a ground glass tube with the time-of-flight data converted to “single-trip” distances.

Fig. 5
Fig. 5

TG and non-TG image of Diesel LP-LT shown in false color. The intensity has been normalized between 0 and 1 in each image. In the images a nozzle-tip outline has been added to help interpretation. Reflections from larger fluid structures near the nozzle have higher visibility in the TG case than in the non-TG case due to suppression of multiple scattering from the drop cloud surrounding the spray. A complete TG-scan from the Diesel LP-LT is provided as a video in Visualization 2.

Fig. 6
Fig. 6

TG and non-TG image of Diesel HP-HT shown in false color. The intensity has been normalized between 0 and 1 in each image. In the images a nozzle-tip outline has been added to help interpretation. Larger refractive liquid structures near the nozzle are seen less frequently in the Diesel HP-HT case than in the Diesel LP-LT case. A complete TG-scan from the Diesel HP-HT is provided as a video in Visualization 3.

Fig. 7
Fig. 7

TG and non-TG image of Diesel HP-HT shown in false color. The intensity has been normalized between 0 and 1 in each image. In the images a nozzle-tip outline has been added to help interpretation. Contrast adjusted to make the gas phase refractive structures in the non-TG image more visible.

Fig. 8
Fig. 8

TG and non-TG image of dodecane LP-LT shown in false color. The intensity has been normalized between 0 and 1 in each image. In the images a nozzle-tip outline has been added to help interpretation. For dodecane in the LP-LT condition reflections from larger fluid structures near the nozzle are less apparent than for Diesel in the same condition. A complete TG-scan from the dodecane LP-LT is provided as a video in Visualization 4.

Fig. 9
Fig. 9

Signals from TG and non-TG scans in the LP-LT and HP-HT conditions. Part a shows the Diesel case, and part b shows the dodecane case.

Metrics