Abstract

We demonstrate that the lin-par-lin Ramsey coherent population trapping 87Rb clock using a dispersion detection technique has a promising performance. We theoretically and experimentally investigate the signal-to-noise ratio of the Ramsey spectrum signal by varying the relative angle of the polarizer and analyzer as well as the magnetic field. Based on the experimental results, the optimized relative angle and magnetic field are determined. This kind of atomic clock is attractive for the development of compact, high performance vapor clock based on CPT.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance of a prototype atomic clock based on lin‖lin coherent population trapping resonances in Rb atomic vapor

Eugeniy E. Mikhailov, Travis Horrom, Nathan Belcher, and Irina Novikova
J. Opt. Soc. Am. B 27(3) 417-422 (2010)

Pulsed coherent population trapping spectroscopy in microfabricated Cs–Ne vapor cells

Rodolphe Boudot, Vincent Maurice, Christophe Gorecki, and Emeric de Clercq
J. Opt. Soc. Am. B 35(5) 1004-1010 (2018)

Ramsey spectroscopy of high-contrast CPT resonances with push-pull optical pumping in Cs vapor

X. Liu, J-M. Mérolla, S. Guérandel, E. de Clercq, and R. Boudot
Opt. Express 21(10) 12451-12459 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of r.f. transitions and laser beat resonances in oriented na vapour,” Nuovo Cim. 36, 5–20 (1976).
    [Crossref]
  2. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
    [Crossref]
  3. V. Shah and J. Kitching, “Advances in coherent population trapping for atomic clocks,” Adv. At. Mol. Opt. Phy. 59, 21–74 (2010).
    [Crossref]
  4. A. Godone, F. Levi, C. Calosso, and S. Micalizio, “High-performing vapor cell frequency standards,” Riv. Nuovo Cimento 38, 133–171 (2015).
  5. S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
    [Crossref]
  6. X. Liu, J.-M. Mérolla, S. Guérandel, E. D. Clercq, and R. Boudot, “Ramsey spectroscopy of high-contrast CPT resonances with push-pull optical pumping in cs vapor,” Opt. Express 21, 12451–12459 (2013).
    [Crossref] [PubMed]
  7. A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236–240 (2004).
    [Crossref]
  8. T. Zanon, S. Guerandel, E. D. Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
    [Crossref] [PubMed]
  9. Y.-Y. Jau, E. Miron, A. Post, N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
    [Crossref] [PubMed]
  10. V. Shah, S. Knappe, L. Hollberg, and J. Kitching, “High-contrast coherent population trapping resonances using four-wave mixing in 87Rb,” Opt. Lett. 32, 1244 (2007).
    [Crossref] [PubMed]
  11. A. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. Zibrov, “On the unique possibility of significantly increasing the contrast of dark resonances on the D1 line of 87Rb,” JETP Lett. 82, 398–403 (2005).
    [Crossref]
  12. T. Yuan, T. B. Zhong, Y. Jing, Z. Yi, and G. S. Hong, “Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks,” Chin. Phys. B 24, 63302 (2015).
    [Crossref]
  13. G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
    [Crossref]
  14. D. Budker, W. Gawlik, D. Kimball, S. Rochester, V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153 (2002).
    [Crossref]
  15. J. Lin, J. Deng, Y. Ma, H. He, and Y. Wang, “Detection of ultrahigh resonance contrast in vapor-cell atomic clocks,” Opt. Lett. 37, 5036–5038 (2012).
    [Crossref] [PubMed]
  16. B. Tan, Y. Tian, H. Lin, J. Chen, and S. Gu, “Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection,” Opt. Lett. 40, 3703–3706 (2015).
    [Crossref] [PubMed]
  17. Y. Yano and S. Goka, “High-contrast coherent population trapping based on crossed polarizers method,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1953–1960 (2014).
    [Crossref] [PubMed]
  18. J. M. Danet, O. Kozlova, P. Yun, S. Guérande, and E. d. Clercq, “Compact atomic clock prototype based on coherent population trapping,” EPJ web conf.77, 00017 (2014).
  19. M. A. Hafiz and R. Boudot, “A coherent population trapping Cs vapor cell atomic clock based on push-pull optical pumping,” J. Appl. Phys. 118, 124903 (2015).
    [Crossref]
  20. H. Kim, H. S. Han, T. H. Yoon, and D. Cho, “Coherent population trapping in a Λ configuration coupled by magnetic dipole interactions,” Phys. Rev. A 89, 032507 (2014).
    [Crossref]
  21. D. Li, D. Shi, E. Hu, Y. Wang, L. Tian, J. Zhao, and Z. Wang, “A frequency standard via spectrum analysis and direct digital synthesis,” Appl. Phys. Express 7, 112203 (2014).
    [Crossref]
  22. E. Blanshan, S. Rochester, E. Donley, and J. Kitching, “Light shifts in a pulsed cold-atom coherent-population-trapping clock,” Phys. Rev. A 91, 041401 (2015).
    [Crossref]
  23. J. Yang, Y. Tian, B. Tan, P. Yun, and S. Gu, “Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser,” J. Appl. Phys. 115, 093109 (2014).
    [Crossref]

2015 (5)

A. Godone, F. Levi, C. Calosso, and S. Micalizio, “High-performing vapor cell frequency standards,” Riv. Nuovo Cimento 38, 133–171 (2015).

T. Yuan, T. B. Zhong, Y. Jing, Z. Yi, and G. S. Hong, “Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks,” Chin. Phys. B 24, 63302 (2015).
[Crossref]

M. A. Hafiz and R. Boudot, “A coherent population trapping Cs vapor cell atomic clock based on push-pull optical pumping,” J. Appl. Phys. 118, 124903 (2015).
[Crossref]

E. Blanshan, S. Rochester, E. Donley, and J. Kitching, “Light shifts in a pulsed cold-atom coherent-population-trapping clock,” Phys. Rev. A 91, 041401 (2015).
[Crossref]

B. Tan, Y. Tian, H. Lin, J. Chen, and S. Gu, “Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection,” Opt. Lett. 40, 3703–3706 (2015).
[Crossref] [PubMed]

2014 (4)

J. Yang, Y. Tian, B. Tan, P. Yun, and S. Gu, “Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser,” J. Appl. Phys. 115, 093109 (2014).
[Crossref]

Y. Yano and S. Goka, “High-contrast coherent population trapping based on crossed polarizers method,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1953–1960 (2014).
[Crossref] [PubMed]

H. Kim, H. S. Han, T. H. Yoon, and D. Cho, “Coherent population trapping in a Λ configuration coupled by magnetic dipole interactions,” Phys. Rev. A 89, 032507 (2014).
[Crossref]

D. Li, D. Shi, E. Hu, Y. Wang, L. Tian, J. Zhao, and Z. Wang, “A frequency standard via spectrum analysis and direct digital synthesis,” Appl. Phys. Express 7, 112203 (2014).
[Crossref]

2013 (1)

2012 (1)

2010 (1)

V. Shah and J. Kitching, “Advances in coherent population trapping for atomic clocks,” Adv. At. Mol. Opt. Phy. 59, 21–74 (2010).
[Crossref]

2007 (1)

2005 (4)

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[Crossref]

A. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. Zibrov, “On the unique possibility of significantly increasing the contrast of dark resonances on the D1 line of 87Rb,” JETP Lett. 82, 398–403 (2005).
[Crossref]

T. Zanon, S. Guerandel, E. D. Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

2004 (3)

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236–240 (2004).
[Crossref]

Y.-Y. Jau, E. Miron, A. Post, N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[Crossref] [PubMed]

2002 (1)

D. Budker, W. Gawlik, D. Kimball, S. Rochester, V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153 (2002).
[Crossref]

1976 (1)

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of r.f. transitions and laser beat resonances in oriented na vapour,” Nuovo Cim. 36, 5–20 (1976).
[Crossref]

Alzetta, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of r.f. transitions and laser beat resonances in oriented na vapour,” Nuovo Cim. 36, 5–20 (1976).
[Crossref]

Blanshan, E.

E. Blanshan, S. Rochester, E. Donley, and J. Kitching, “Light shifts in a pulsed cold-atom coherent-population-trapping clock,” Phys. Rev. A 91, 041401 (2015).
[Crossref]

Boudot, R.

M. A. Hafiz and R. Boudot, “A coherent population trapping Cs vapor cell atomic clock based on push-pull optical pumping,” J. Appl. Phys. 118, 124903 (2015).
[Crossref]

X. Liu, J.-M. Mérolla, S. Guérandel, E. D. Clercq, and R. Boudot, “Ramsey spectroscopy of high-contrast CPT resonances with push-pull optical pumping in cs vapor,” Opt. Express 21, 12451–12459 (2013).
[Crossref] [PubMed]

Budker, D.

D. Budker, W. Gawlik, D. Kimball, S. Rochester, V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153 (2002).
[Crossref]

Calosso, C.

A. Godone, F. Levi, C. Calosso, and S. Micalizio, “High-performing vapor cell frequency standards,” Riv. Nuovo Cimento 38, 133–171 (2015).

Chen, J.

Cho, D.

H. Kim, H. S. Han, T. H. Yoon, and D. Cho, “Coherent population trapping in a Λ configuration coupled by magnetic dipole interactions,” Phys. Rev. A 89, 032507 (2014).
[Crossref]

Clairon, A.

T. Zanon, S. Guerandel, E. D. Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Clercq, E. D.

X. Liu, J.-M. Mérolla, S. Guérandel, E. D. Clercq, and R. Boudot, “Ramsey spectroscopy of high-contrast CPT resonances with push-pull optical pumping in cs vapor,” Opt. Express 21, 12451–12459 (2013).
[Crossref] [PubMed]

T. Zanon, S. Guerandel, E. D. Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

J. M. Danet, O. Kozlova, P. Yun, S. Guérande, and E. d. Clercq, “Compact atomic clock prototype based on coherent population trapping,” EPJ web conf.77, 00017 (2014).

Danet, J. M.

J. M. Danet, O. Kozlova, P. Yun, S. Guérande, and E. d. Clercq, “Compact atomic clock prototype based on coherent population trapping,” EPJ web conf.77, 00017 (2014).

Delporte, J.

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[Crossref]

Deng, J.

Dimarcq, N.

T. Zanon, S. Guerandel, E. D. Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Donley, E.

E. Blanshan, S. Rochester, E. Donley, and J. Kitching, “Light shifts in a pulsed cold-atom coherent-population-trapping clock,” Phys. Rev. A 91, 041401 (2015).
[Crossref]

Gawlik, W.

D. Budker, W. Gawlik, D. Kimball, S. Rochester, V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153 (2002).
[Crossref]

Godone, A.

A. Godone, F. Levi, C. Calosso, and S. Micalizio, “High-performing vapor cell frequency standards,” Riv. Nuovo Cimento 38, 133–171 (2015).

Goka, S.

Y. Yano and S. Goka, “High-contrast coherent population trapping based on crossed polarizers method,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1953–1960 (2014).
[Crossref] [PubMed]

Gozzini, A.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of r.f. transitions and laser beat resonances in oriented na vapour,” Nuovo Cim. 36, 5–20 (1976).
[Crossref]

Gu, S.

B. Tan, Y. Tian, H. Lin, J. Chen, and S. Gu, “Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection,” Opt. Lett. 40, 3703–3706 (2015).
[Crossref] [PubMed]

J. Yang, Y. Tian, B. Tan, P. Yun, and S. Gu, “Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser,” J. Appl. Phys. 115, 093109 (2014).
[Crossref]

Guérande, S.

J. M. Danet, O. Kozlova, P. Yun, S. Guérande, and E. d. Clercq, “Compact atomic clock prototype based on coherent population trapping,” EPJ web conf.77, 00017 (2014).

Guerandel, S.

T. Zanon, S. Guerandel, E. D. Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Guérandel, S.

Hafiz, M. A.

M. A. Hafiz and R. Boudot, “A coherent population trapping Cs vapor cell atomic clock based on push-pull optical pumping,” J. Appl. Phys. 118, 124903 (2015).
[Crossref]

Han, H. S.

H. Kim, H. S. Han, T. H. Yoon, and D. Cho, “Coherent population trapping in a Λ configuration coupled by magnetic dipole interactions,” Phys. Rev. A 89, 032507 (2014).
[Crossref]

Happer, W.

Y.-Y. Jau, E. Miron, A. Post, N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[Crossref] [PubMed]

He, H.

Hollberg, L.

V. Shah, S. Knappe, L. Hollberg, and J. Kitching, “High-contrast coherent population trapping resonances using four-wave mixing in 87Rb,” Opt. Lett. 32, 1244 (2007).
[Crossref] [PubMed]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236–240 (2004).
[Crossref]

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Holleville, D.

T. Zanon, S. Guerandel, E. D. Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Hong, G. S.

T. Yuan, T. B. Zhong, Y. Jing, Z. Yi, and G. S. Hong, “Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks,” Chin. Phys. B 24, 63302 (2015).
[Crossref]

Hu, E.

D. Li, D. Shi, E. Hu, Y. Wang, L. Tian, J. Zhao, and Z. Wang, “A frequency standard via spectrum analysis and direct digital synthesis,” Appl. Phys. Express 7, 112203 (2014).
[Crossref]

Jau, Y.-Y.

Y.-Y. Jau, E. Miron, A. Post, N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[Crossref] [PubMed]

Jing, Y.

T. Yuan, T. B. Zhong, Y. Jing, Z. Yi, and G. S. Hong, “Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks,” Chin. Phys. B 24, 63302 (2015).
[Crossref]

Kargapoltsev, S. V.

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236–240 (2004).
[Crossref]

Kazakov, G.

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[Crossref]

Kim, H.

H. Kim, H. S. Han, T. H. Yoon, and D. Cho, “Coherent population trapping in a Λ configuration coupled by magnetic dipole interactions,” Phys. Rev. A 89, 032507 (2014).
[Crossref]

Kimball, D.

D. Budker, W. Gawlik, D. Kimball, S. Rochester, V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153 (2002).
[Crossref]

Kitching, J.

E. Blanshan, S. Rochester, E. Donley, and J. Kitching, “Light shifts in a pulsed cold-atom coherent-population-trapping clock,” Phys. Rev. A 91, 041401 (2015).
[Crossref]

V. Shah and J. Kitching, “Advances in coherent population trapping for atomic clocks,” Adv. At. Mol. Opt. Phy. 59, 21–74 (2010).
[Crossref]

V. Shah, S. Knappe, L. Hollberg, and J. Kitching, “High-contrast coherent population trapping resonances using four-wave mixing in 87Rb,” Opt. Lett. 32, 1244 (2007).
[Crossref] [PubMed]

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236–240 (2004).
[Crossref]

Knappe, S.

V. Shah, S. Knappe, L. Hollberg, and J. Kitching, “High-contrast coherent population trapping resonances using four-wave mixing in 87Rb,” Opt. Lett. 32, 1244 (2007).
[Crossref] [PubMed]

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Kozlova, O.

J. M. Danet, O. Kozlova, P. Yun, S. Guérande, and E. d. Clercq, “Compact atomic clock prototype based on coherent population trapping,” EPJ web conf.77, 00017 (2014).

Kuzma, N.

Y.-Y. Jau, E. Miron, A. Post, N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[Crossref] [PubMed]

Levi, F.

A. Godone, F. Levi, C. Calosso, and S. Micalizio, “High-performing vapor cell frequency standards,” Riv. Nuovo Cimento 38, 133–171 (2015).

Li, D.

D. Li, D. Shi, E. Hu, Y. Wang, L. Tian, J. Zhao, and Z. Wang, “A frequency standard via spectrum analysis and direct digital synthesis,” Appl. Phys. Express 7, 112203 (2014).
[Crossref]

Liew, L.-A.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Lin, H.

Lin, J.

Liu, X.

Ma, Y.

Matisov, B.

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[Crossref]

Mazets, I.

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[Crossref]

Mérolla, J.-M.

Micalizio, S.

A. Godone, F. Levi, C. Calosso, and S. Micalizio, “High-performing vapor cell frequency standards,” Riv. Nuovo Cimento 38, 133–171 (2015).

Mileti, G.

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[Crossref]

Miron, E.

Y.-Y. Jau, E. Miron, A. Post, N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[Crossref] [PubMed]

Moi, L.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of r.f. transitions and laser beat resonances in oriented na vapour,” Nuovo Cim. 36, 5–20 (1976).
[Crossref]

Moreland, J.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Orriols, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of r.f. transitions and laser beat resonances in oriented na vapour,” Nuovo Cim. 36, 5–20 (1976).
[Crossref]

Post, A.

Y.-Y. Jau, E. Miron, A. Post, N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[Crossref] [PubMed]

Rochester, S.

E. Blanshan, S. Rochester, E. Donley, and J. Kitching, “Light shifts in a pulsed cold-atom coherent-population-trapping clock,” Phys. Rev. A 91, 041401 (2015).
[Crossref]

D. Budker, W. Gawlik, D. Kimball, S. Rochester, V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153 (2002).
[Crossref]

Schwindt, P. D.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Shah, V.

V. Shah and J. Kitching, “Advances in coherent population trapping for atomic clocks,” Adv. At. Mol. Opt. Phy. 59, 21–74 (2010).
[Crossref]

V. Shah, S. Knappe, L. Hollberg, and J. Kitching, “High-contrast coherent population trapping resonances using four-wave mixing in 87Rb,” Opt. Lett. 32, 1244 (2007).
[Crossref] [PubMed]

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Shi, D.

D. Li, D. Shi, E. Hu, Y. Wang, L. Tian, J. Zhao, and Z. Wang, “A frequency standard via spectrum analysis and direct digital synthesis,” Appl. Phys. Express 7, 112203 (2014).
[Crossref]

Taichenachev, A.

A. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. Zibrov, “On the unique possibility of significantly increasing the contrast of dark resonances on the D1 line of 87Rb,” JETP Lett. 82, 398–403 (2005).
[Crossref]

Taichenachev, A. V.

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236–240 (2004).
[Crossref]

Tan, B.

B. Tan, Y. Tian, H. Lin, J. Chen, and S. Gu, “Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection,” Opt. Lett. 40, 3703–3706 (2015).
[Crossref] [PubMed]

J. Yang, Y. Tian, B. Tan, P. Yun, and S. Gu, “Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser,” J. Appl. Phys. 115, 093109 (2014).
[Crossref]

Tian, L.

D. Li, D. Shi, E. Hu, Y. Wang, L. Tian, J. Zhao, and Z. Wang, “A frequency standard via spectrum analysis and direct digital synthesis,” Appl. Phys. Express 7, 112203 (2014).
[Crossref]

Tian, Y.

B. Tan, Y. Tian, H. Lin, J. Chen, and S. Gu, “Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection,” Opt. Lett. 40, 3703–3706 (2015).
[Crossref] [PubMed]

J. Yang, Y. Tian, B. Tan, P. Yun, and S. Gu, “Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser,” J. Appl. Phys. 115, 093109 (2014).
[Crossref]

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

Velichansky, V. L.

A. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. Zibrov, “On the unique possibility of significantly increasing the contrast of dark resonances on the D1 line of 87Rb,” JETP Lett. 82, 398–403 (2005).
[Crossref]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236–240 (2004).
[Crossref]

Wang, Y.

D. Li, D. Shi, E. Hu, Y. Wang, L. Tian, J. Zhao, and Z. Wang, “A frequency standard via spectrum analysis and direct digital synthesis,” Appl. Phys. Express 7, 112203 (2014).
[Crossref]

J. Lin, J. Deng, Y. Ma, H. He, and Y. Wang, “Detection of ultrahigh resonance contrast in vapor-cell atomic clocks,” Opt. Lett. 37, 5036–5038 (2012).
[Crossref] [PubMed]

Wang, Z.

D. Li, D. Shi, E. Hu, Y. Wang, L. Tian, J. Zhao, and Z. Wang, “A frequency standard via spectrum analysis and direct digital synthesis,” Appl. Phys. Express 7, 112203 (2014).
[Crossref]

Weis, A.

D. Budker, W. Gawlik, D. Kimball, S. Rochester, V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153 (2002).
[Crossref]

Wynands, R.

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236–240 (2004).
[Crossref]

Yang, J.

J. Yang, Y. Tian, B. Tan, P. Yun, and S. Gu, “Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser,” J. Appl. Phys. 115, 093109 (2014).
[Crossref]

Yano, Y.

Y. Yano and S. Goka, “High-contrast coherent population trapping based on crossed polarizers method,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1953–1960 (2014).
[Crossref] [PubMed]

Yashchuk, V.

D. Budker, W. Gawlik, D. Kimball, S. Rochester, V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153 (2002).
[Crossref]

Yi, Z.

T. Yuan, T. B. Zhong, Y. Jing, Z. Yi, and G. S. Hong, “Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks,” Chin. Phys. B 24, 63302 (2015).
[Crossref]

Yoon, T. H.

H. Kim, H. S. Han, T. H. Yoon, and D. Cho, “Coherent population trapping in a Λ configuration coupled by magnetic dipole interactions,” Phys. Rev. A 89, 032507 (2014).
[Crossref]

Yuan, T.

T. Yuan, T. B. Zhong, Y. Jing, Z. Yi, and G. S. Hong, “Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks,” Chin. Phys. B 24, 63302 (2015).
[Crossref]

Yudin, V. I.

A. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. Zibrov, “On the unique possibility of significantly increasing the contrast of dark resonances on the D1 line of 87Rb,” JETP Lett. 82, 398–403 (2005).
[Crossref]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236–240 (2004).
[Crossref]

Yun, P.

J. Yang, Y. Tian, B. Tan, P. Yun, and S. Gu, “Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser,” J. Appl. Phys. 115, 093109 (2014).
[Crossref]

J. M. Danet, O. Kozlova, P. Yun, S. Guérande, and E. d. Clercq, “Compact atomic clock prototype based on coherent population trapping,” EPJ web conf.77, 00017 (2014).

Zanon, T.

T. Zanon, S. Guerandel, E. D. Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Zhao, J.

D. Li, D. Shi, E. Hu, Y. Wang, L. Tian, J. Zhao, and Z. Wang, “A frequency standard via spectrum analysis and direct digital synthesis,” Appl. Phys. Express 7, 112203 (2014).
[Crossref]

Zhong, T. B.

T. Yuan, T. B. Zhong, Y. Jing, Z. Yi, and G. S. Hong, “Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks,” Chin. Phys. B 24, 63302 (2015).
[Crossref]

Zibrov, S.

A. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. Zibrov, “On the unique possibility of significantly increasing the contrast of dark resonances on the D1 line of 87Rb,” JETP Lett. 82, 398–403 (2005).
[Crossref]

Adv. At. Mol. Opt. Phy. (1)

V. Shah and J. Kitching, “Advances in coherent population trapping for atomic clocks,” Adv. At. Mol. Opt. Phy. 59, 21–74 (2010).
[Crossref]

Appl. Phys. B (1)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

Appl. Phys. Express (1)

D. Li, D. Shi, E. Hu, Y. Wang, L. Tian, J. Zhao, and Z. Wang, “A frequency standard via spectrum analysis and direct digital synthesis,” Appl. Phys. Express 7, 112203 (2014).
[Crossref]

Appl. Phys. Lett. (1)

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Chin. Phys. B (1)

T. Yuan, T. B. Zhong, Y. Jing, Z. Yi, and G. S. Hong, “Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks,” Chin. Phys. B 24, 63302 (2015).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

Y. Yano and S. Goka, “High-contrast coherent population trapping based on crossed polarizers method,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1953–1960 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (2)

M. A. Hafiz and R. Boudot, “A coherent population trapping Cs vapor cell atomic clock based on push-pull optical pumping,” J. Appl. Phys. 118, 124903 (2015).
[Crossref]

J. Yang, Y. Tian, B. Tan, P. Yun, and S. Gu, “Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser,” J. Appl. Phys. 115, 093109 (2014).
[Crossref]

JETP Lett. (2)

A. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. Zibrov, “On the unique possibility of significantly increasing the contrast of dark resonances on the D1 line of 87Rb,” JETP Lett. 82, 398–403 (2005).
[Crossref]

A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, S. V. Kargapoltsev, R. Wynands, J. Kitching, and L. Hollberg, “High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves,” JETP Lett. 80, 236–240 (2004).
[Crossref]

Nuovo Cim. (1)

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of r.f. transitions and laser beat resonances in oriented na vapour,” Nuovo Cim. 36, 5–20 (1976).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (3)

G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, “Pseudoresonance mechanism of all-optical frequency-standard operation,” Phys. Rev. A 72, 063408 (2005).
[Crossref]

H. Kim, H. S. Han, T. H. Yoon, and D. Cho, “Coherent population trapping in a Λ configuration coupled by magnetic dipole interactions,” Phys. Rev. A 89, 032507 (2014).
[Crossref]

E. Blanshan, S. Rochester, E. Donley, and J. Kitching, “Light shifts in a pulsed cold-atom coherent-population-trapping clock,” Phys. Rev. A 91, 041401 (2015).
[Crossref]

Phys. Rev. Lett. (2)

T. Zanon, S. Guerandel, E. D. Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
[Crossref] [PubMed]

Y.-Y. Jau, E. Miron, A. Post, N. Kuzma, and W. Happer, “Push-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93, 160802 (2004).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

D. Budker, W. Gawlik, D. Kimball, S. Rochester, V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153 (2002).
[Crossref]

Riv. Nuovo Cimento (1)

A. Godone, F. Levi, C. Calosso, and S. Micalizio, “High-performing vapor cell frequency standards,” Riv. Nuovo Cimento 38, 133–171 (2015).

Other (1)

J. M. Danet, O. Kozlova, P. Yun, S. Guérande, and E. d. Clercq, “Compact atomic clock prototype based on coherent population trapping,” EPJ web conf.77, 00017 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Double Λ system interacting with the lin-par-lin laser field.
Fig. 2
Fig. 2 Schemetic diagram of dispersion detection.
Fig. 3
Fig. 3 Calculation of Ramsey-CPT fringes at different magnetic fields. For (a) and (b), (c) and (d), (e) and (f), the magnetic fields are 3.6μT, 10μT and 21μT, respectively. In (a), (c) and (e), the black solid line represents ξ (Δ) when B = 0, the red dashed line represents ξ+) when B ≠ 0, and the blue short dot line represents ξ) when B ≠ 0. (b), (d) and (f) are the differences of ξ+) and ξ) shown in (a), (c) and (e), respectively.
Fig. 4
Fig. 4 Schematic diagram of experimental setup. DBR, distributed Bragg reflector laser; FEOM, fiber electro-optic modulator; AOM, acoustic-optic modulator; DDS, direct digital synthesizer; PC, personal computer; ADC, analog-to-digital converter; PD, photo detector.
Fig. 5
Fig. 5 (a) A schematic of the optical pulses and time sequences. (b) An example of experimental Ramsey fringes for τ=0.2ms CPT pulse and T=0.8ms interrogation in a single scan without average.
Fig. 6
Fig. 6 Ramsey signal and optical noise as functions of the relative angle θ (the magnetic field is set to 31μT).
Fig. 7
Fig. 7 SNR v.s. the relative angle θ. The solid squares are the SNR from the experimental data, and solid line is the fitting curve. The magnetic field in this measurement is 31μT.
Fig. 8
Fig. 8 (a) Ramsey signal and CPT signal as functions of the magnetic field (the relative angle is set to 5°); (b) The results of theoretically calculated Ramsey signal as a function of the magnetic field (the relative angle is set to 5°).
Fig. 9
Fig. 9 SNR and noise v.s. magnetic field. Solid squares are the measured SNR, which varies with the external magnetic field. The solid triangles are the measured noise, which are at the level of 0.7mV. The relative angle in the experiment is 5°.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ν ± = ν 0 ± 2 g I μ B h B + 3 g J 2 μ B 2 8 ν 0 h 2 B 2 ,
I I i n = 1 4 ( e 2 π α + l / λ e 2 π α l / λ ) 2 + e 2 π ( α + + α ) l / λ sin 2 ( θ + ϕ ) sin 2 ( θ + ϕ ) ,
ϕ = π l λ χ 0 ( ξ ( Δ + ) ξ ( Δ ) ) = π l λ χ 0 ( Δ + γ Δ + 2 + γ 2 Δ γ Δ 2 + γ 2 ) ,
I = I c sin 2 ( θ + ϕ ) + I b sin 2 θ ,
I D C I c sin 2 θ + I b sin 2 θ ,
I s I c | sin ( 2 θ ) | ϕ ,
i t ρ 11 = Ω 1 p ( t ) 2 b 31 + Ω 1 p ( t ) 2 b 13 + i Γ 2 ρ 33 i γ 1 2 ( ρ 11 ρ 22 ) i t ρ 22 = Ω 2 p ( t ) 2 b 32 + Ω 2 p ( t ) 2 b 23 + i Γ 2 ρ 33 i γ 1 2 ( ρ 22 ρ 11 ) i t ρ 33 = Ω 1 p ( t ) 2 b 13 + Ω 1 p ( t ) 2 b 31 Ω 2 p ( t ) 2 b 23 + Ω 2 p ( t ) 2 b 32 i Γ ρ 33 i t b 12 = Δ + b 12 Ω 1 p ( t ) 2 b 32 + Ω 2 p ( t ) 2 b 13 i γ 2 b 12 i t b 13 = Δ + 2 b 13 Ω 1 p ( t ) 2 ( ρ 33 ρ 11 ) + Ω 2 p ( t ) 2 b 12 i Γ 2 b 12 i t b 23 = Δ + 2 b 23 Ω 2 p ( t ) 2 ( ρ 33 ρ 22 ) + Ω 1 p ( t ) 2 b 21 i Γ 2 b 12
σ t o t a l ( θ ) = σ i n 2 sin 4 ( θ ) + σ e 2
σ y ( τ ) = 1 π Q S N R τ

Metrics