Abstract

A new variant of all-fiber multiple-beam interferometer capable to perform narrow-band filtration of a reflected light, with characteristics similar to those for Fabry-Perot interferometer in a transmission, is presented. The interferometer design accompanied with parameters simulation is conducted, the experimental sample is fabricated and the study of its characteristics is undertaken. Experimental results conform the calculations. This variant of reflection interferometer can be used as one of laser cavity mirrors providing frequency selection of low-powered fiber lasers and laser diodes with short linear cavities. We assume, that this device makes it possible to obtain single-frequency operation with fast continuous tuning of a laser wavelength in a wide spectral range.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission

Chien-Chung Lee, Yung-Kuang Chen, and Shien-Kuei Liaw
Opt. Lett. 23(5) 358-360 (1998)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Yeh, M. C. Lin, and S. Chi, “A tunable erbium-doped fiber ring laser with power-equalized output,” Opt. Express 14(26), 12828–12831 (2006).
    [Crossref] [PubMed]
  2. Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
    [Crossref]
  3. S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17(11), 1323–1326 (2007).
    [Crossref]
  4. R. G. Hunsperger, Integrated Optics. Theory and Technology. Sixth Edition (Springer, 2009).
  5. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19(24), 2101–2103 (1994).
    [Crossref] [PubMed]
  6. J. J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express 16(6), 3896–3911 (2008).
    [Crossref] [PubMed]
  7. T. Saitoh, K. Nakamura, Y. Takahashi, and K. Miyagi, “High-Speed MEMS Swept-Wavelength Light Source for FBG Sensor System,” Proc. SPIE 5855, 146–149 (2005).
    [Crossref]
  8. W. T. Tsang, N. A. Olsson, and R. A. Logan, “High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 42(8), 650–653 (1983).
    [Crossref]
  9. V. S. Terent’ev and Yu. V. Troitskii, “Noninverted” Interference Fringes upon Light Reflection from a Fabry–Perot Interferometer with an Asymmetric Diffraction Mirror,” Opt. Spectrosc. 97(2), 308–313 (2004).
    [Crossref]
  10. V. S. Terent’ev, “Numerical Simulation of a Reflective Diffraction Fiber Interferometer,” Optoelectron. Instrum. Data Process. 48(4), 358–368 (2012).
    [Crossref]
  11. N. D. Goldina, M. I. Zakharov, and Y. V. Troitsky, “Optical resonator using anisotropic metal film for mode selection,” Appl. Opt. 11(2), 261–264 (1972).
    [Crossref] [PubMed]
  12. V. S. Terentyev and V. A. Simonov, “Selection of linear-cavity fibre laser radiation using a reflection interferometer,” Quantum Electron. 43(8), 706–710 (2013).
    [Crossref]
  13. Yu. V. Troitski, Reflected light multibeam interferometers (russian, Novosibirsk: Nauka, 1985).
  14. V. S. Terentiev, “Multiple-Beam Interferometers in Reflected Light with a “Non-Inverted” Response Function,” Optoelectron. Instrum. Data Process. 45(6), 563–570 (2009).
    [Crossref]
  15. V. S. Terentiev, A. V. Dostovalov, and V. A. Simonov, “Reflection interferometers formed on the single-mode fiber tip,” Laser Phys. 23(8), 085108 (2013).
    [Crossref]
  16. V. S. Terentyev and V. A. Simonov, “Fiber reflection interferometer in single-mode fiber,” presented at 24th annual International Laser Physics Workshop, (2015).
  17. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  18. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  19. L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20(14), 15734–15751 (2012).
    [Crossref] [PubMed]
  20. A. P. Kol’chenko, V. S. Terent’ev, and B. I. Troshin, “A Reflection Interferometer with a Noninverted Response Function Based on a Phase Grating,” Opt. Spectrosc. 101(4), 632–634 (2006).
    [Crossref]

2013 (2)

V. S. Terentiev, A. V. Dostovalov, and V. A. Simonov, “Reflection interferometers formed on the single-mode fiber tip,” Laser Phys. 23(8), 085108 (2013).
[Crossref]

V. S. Terentyev and V. A. Simonov, “Selection of linear-cavity fibre laser radiation using a reflection interferometer,” Quantum Electron. 43(8), 706–710 (2013).
[Crossref]

2012 (3)

2009 (1)

V. S. Terentiev, “Multiple-Beam Interferometers in Reflected Light with a “Non-Inverted” Response Function,” Optoelectron. Instrum. Data Process. 45(6), 563–570 (2009).
[Crossref]

2008 (1)

2007 (1)

S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17(11), 1323–1326 (2007).
[Crossref]

2006 (2)

A. P. Kol’chenko, V. S. Terent’ev, and B. I. Troshin, “A Reflection Interferometer with a Noninverted Response Function Based on a Phase Grating,” Opt. Spectrosc. 101(4), 632–634 (2006).
[Crossref]

C. H. Yeh, M. C. Lin, and S. Chi, “A tunable erbium-doped fiber ring laser with power-equalized output,” Opt. Express 14(26), 12828–12831 (2006).
[Crossref] [PubMed]

2005 (1)

T. Saitoh, K. Nakamura, Y. Takahashi, and K. Miyagi, “High-Speed MEMS Swept-Wavelength Light Source for FBG Sensor System,” Proc. SPIE 5855, 146–149 (2005).
[Crossref]

2004 (1)

V. S. Terent’ev and Yu. V. Troitskii, “Noninverted” Interference Fringes upon Light Reflection from a Fabry–Perot Interferometer with an Asymmetric Diffraction Mirror,” Opt. Spectrosc. 97(2), 308–313 (2004).
[Crossref]

2001 (1)

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

1998 (1)

1994 (1)

1983 (1)

W. T. Tsang, N. A. Olsson, and R. A. Logan, “High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 42(8), 650–653 (1983).
[Crossref]

1972 (1)

Aleksandrova, A.

Archambault, J.-L.

Babin, S. A.

S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17(11), 1323–1326 (2007).
[Crossref]

Chashnikova, M.

Chi, S.

Djurišic, A. B.

Dostovalov, A. V.

V. S. Terentiev, A. V. Dostovalov, and V. A. Simonov, “Reflection interferometers formed on the single-mode fiber tip,” Laser Phys. 23(8), 085108 (2013).
[Crossref]

Elazar, J. M.

Fedosenko, O.

Feinberg, J.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Flores, Y.

Gao, L.

Goldina, N. D.

Gruska, B.

Havstad, S. A.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

He, J. J.

Kablukov, S. I.

S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17(11), 1323–1326 (2007).
[Crossref]

Kischkat, J.

Klinkmüller, M.

Kol’chenko, A. P.

A. P. Kol’chenko, V. S. Terent’ev, and B. I. Troshin, “A Reflection Interferometer with a Noninverted Response Function Based on a Phase Grating,” Opt. Spectrosc. 101(4), 632–634 (2006).
[Crossref]

Kringlebotn, J. T.

Lemarchand, F.

Lequime, M.

Lin, M. C.

Liu, D.

Logan, R. A.

W. T. Tsang, N. A. Olsson, and R. A. Logan, “High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 42(8), 650–653 (1983).
[Crossref]

Machulik, S.

Majewski, M. L.

Masselink, W. T.

Miyagi, K.

T. Saitoh, K. Nakamura, Y. Takahashi, and K. Miyagi, “High-Speed MEMS Swept-Wavelength Light Source for FBG Sensor System,” Proc. SPIE 5855, 146–149 (2005).
[Crossref]

Monastyrskyi, G.

Nakamura, K.

T. Saitoh, K. Nakamura, Y. Takahashi, and K. Miyagi, “High-Speed MEMS Swept-Wavelength Light Source for FBG Sensor System,” Proc. SPIE 5855, 146–149 (2005).
[Crossref]

Olsson, N. A.

W. T. Tsang, N. A. Olsson, and R. A. Logan, “High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 42(8), 650–653 (1983).
[Crossref]

Payne, D. N.

Peters, S.

Rakic, A. D.

Reekie, L.

Saitoh, T.

T. Saitoh, K. Nakamura, Y. Takahashi, and K. Miyagi, “High-Speed MEMS Swept-Wavelength Light Source for FBG Sensor System,” Proc. SPIE 5855, 146–149 (2005).
[Crossref]

Semtsiv, M.

Simonov, V. A.

V. S. Terentyev and V. A. Simonov, “Selection of linear-cavity fibre laser radiation using a reflection interferometer,” Quantum Electron. 43(8), 706–710 (2013).
[Crossref]

V. S. Terentiev, A. V. Dostovalov, and V. A. Simonov, “Reflection interferometers formed on the single-mode fiber tip,” Laser Phys. 23(8), 085108 (2013).
[Crossref]

Song, Y. W.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Starodubov, D.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Takahashi, Y.

T. Saitoh, K. Nakamura, Y. Takahashi, and K. Miyagi, “High-Speed MEMS Swept-Wavelength Light Source for FBG Sensor System,” Proc. SPIE 5855, 146–149 (2005).
[Crossref]

Terent’ev, V. S.

V. S. Terent’ev, “Numerical Simulation of a Reflective Diffraction Fiber Interferometer,” Optoelectron. Instrum. Data Process. 48(4), 358–368 (2012).
[Crossref]

A. P. Kol’chenko, V. S. Terent’ev, and B. I. Troshin, “A Reflection Interferometer with a Noninverted Response Function Based on a Phase Grating,” Opt. Spectrosc. 101(4), 632–634 (2006).
[Crossref]

V. S. Terent’ev and Yu. V. Troitskii, “Noninverted” Interference Fringes upon Light Reflection from a Fabry–Perot Interferometer with an Asymmetric Diffraction Mirror,” Opt. Spectrosc. 97(2), 308–313 (2004).
[Crossref]

Terentiev, V. S.

V. S. Terentiev, A. V. Dostovalov, and V. A. Simonov, “Reflection interferometers formed on the single-mode fiber tip,” Laser Phys. 23(8), 085108 (2013).
[Crossref]

V. S. Terentiev, “Multiple-Beam Interferometers in Reflected Light with a “Non-Inverted” Response Function,” Optoelectron. Instrum. Data Process. 45(6), 563–570 (2009).
[Crossref]

Terentyev, V. S.

V. S. Terentyev and V. A. Simonov, “Selection of linear-cavity fibre laser radiation using a reflection interferometer,” Quantum Electron. 43(8), 706–710 (2013).
[Crossref]

Troitskii, Yu. V.

V. S. Terent’ev and Yu. V. Troitskii, “Noninverted” Interference Fringes upon Light Reflection from a Fabry–Perot Interferometer with an Asymmetric Diffraction Mirror,” Opt. Spectrosc. 97(2), 308–313 (2004).
[Crossref]

Troitsky, Y. V.

Troshin, B. I.

A. P. Kol’chenko, V. S. Terent’ev, and B. I. Troshin, “A Reflection Interferometer with a Noninverted Response Function Based on a Phase Grating,” Opt. Spectrosc. 101(4), 632–634 (2006).
[Crossref]

Tsang, W. T.

W. T. Tsang, N. A. Olsson, and R. A. Logan, “High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 42(8), 650–653 (1983).
[Crossref]

Vlasov, A. A.

S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17(11), 1323–1326 (2007).
[Crossref]

Willner, A. E.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Xie, Y.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Yeh, C. H.

Zakharov, M. I.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

W. T. Tsang, N. A. Olsson, and R. A. Logan, “High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 42(8), 650–653 (1983).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technol. Lett. 13(11), 1167–1169 (2001).
[Crossref]

Laser Phys. (2)

S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17(11), 1323–1326 (2007).
[Crossref]

V. S. Terentiev, A. V. Dostovalov, and V. A. Simonov, “Reflection interferometers formed on the single-mode fiber tip,” Laser Phys. 23(8), 085108 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Spectrosc. (2)

V. S. Terent’ev and Yu. V. Troitskii, “Noninverted” Interference Fringes upon Light Reflection from a Fabry–Perot Interferometer with an Asymmetric Diffraction Mirror,” Opt. Spectrosc. 97(2), 308–313 (2004).
[Crossref]

A. P. Kol’chenko, V. S. Terent’ev, and B. I. Troshin, “A Reflection Interferometer with a Noninverted Response Function Based on a Phase Grating,” Opt. Spectrosc. 101(4), 632–634 (2006).
[Crossref]

Optoelectron. Instrum. Data Process. (2)

V. S. Terent’ev, “Numerical Simulation of a Reflective Diffraction Fiber Interferometer,” Optoelectron. Instrum. Data Process. 48(4), 358–368 (2012).
[Crossref]

V. S. Terentiev, “Multiple-Beam Interferometers in Reflected Light with a “Non-Inverted” Response Function,” Optoelectron. Instrum. Data Process. 45(6), 563–570 (2009).
[Crossref]

Proc. SPIE (1)

T. Saitoh, K. Nakamura, Y. Takahashi, and K. Miyagi, “High-Speed MEMS Swept-Wavelength Light Source for FBG Sensor System,” Proc. SPIE 5855, 146–149 (2005).
[Crossref]

Quantum Electron. (1)

V. S. Terentyev and V. A. Simonov, “Selection of linear-cavity fibre laser radiation using a reflection interferometer,” Quantum Electron. 43(8), 706–710 (2013).
[Crossref]

Other (3)

Yu. V. Troitski, Reflected light multibeam interferometers (russian, Novosibirsk: Nauka, 1985).

V. S. Terentyev and V. A. Simonov, “Fiber reflection interferometer in single-mode fiber,” presented at 24th annual International Laser Physics Workshop, (2015).

R. G. Hunsperger, Integrated Optics. Theory and Technology. Sixth Edition (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Scheme of FRI: (a) general scheme on the basis of ferrules and sleeve; (b) the structure of front mirror . I0(λ) is the spectral distribution of intensity for incident light, IR(λ) is that for reflected light, L – the FRI base, M1,2 – cavity mirrors, R1,2,3 are the reflection coefficients of corresponding mirrors.
Fig. 2
Fig. 2 Variation of energy coefficients for mirror M1 in the process of deposition: (a) Ni-film on the tip of silica fiber; (b) deposition of dielectric layers on the Ni-film. T1 – transmission, R1,2 – reflection coefficients from opposite sides of mirror M1. TiO2, and SiO2 labels indicate the dielectric type of deposited layers. In the expirement the deposition of dielectric layers was stopped at point P.
Fig. 3
Fig. 3 The setup for measuring FRI reflection spectrum. BBS is the broadband light source, FC is the fiber circulator, FT1,2 are the fiber tips, OSA is the optical spectrum analyzer.
Fig. 4
Fig. 4 The FRI reflection spectrum: line is an experiment, dotted line is a calculation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T =  T 1 T 3 1+ R 2 R 3 -2  ( R 2 R 3 ) 1/2 cos(2ψ) , R= R 1 +2 T 1 ( R 1 R 3 ) 1/2 cos(ϑ+2ψ)- ( R 2 R 3 ) 1/2 cos(ϑ) 1+ R 2 R 3 -2 cos(2ψ) ( R 2 R 3 ) 1/2 + R 3 T 1 2 1+ R 2 R 3 -2 cos(2ψ) ( R 2 R 3 ) 1/2 ,
Re[ ξ ]= n 1 = n a ( 1 R g T g )/ T g = n g ( 1 R a T a )/ T a ,
F= π  ( R 2 R 3 ) 1/4   1 ( R 2 R 3 ) 1/2 , R max = ( 1 R 2 ) 2 R 3 4 ( 1 ( R 2 R 3 ) 1/2 ) 2 , R min = ( 1 R 2 ) 2 R 3 4 ( 1+ ( R 2 R 3 ) 1/2 ) 2 ,

Metrics