Abstract

Rib waveguides are investigated as an alternative to strip waveguides for planar trapping and transport of microparticles. Microparticles are successfully propelled along the surface of rib waveguides and trapped in the gap between opposing rib waveguides. The trapping capabilities of waveguide end facets formed by a single and opposing waveguide geometries are investigated. The slab beneath a rib waveguide continues to guide light after the end facet of a rib waveguide. Thus particles can be trapped in wider gaps formed by opposing rib waveguides than with strip waveguides. Rib waveguides were found more efficient in trapping a collection of particles in the gap and particles could be moved to different locations in the gap by changing the relative power in the two opposing rib waveguides. Numerical simulations are used to show that the trapping efficiency on the surface of rib and strip waveguides is comparable. The simulations also confirm the advantage of opposing rib waveguides for trapping particles in wide gaps. The low sidewalls of rib waveguides give low propagation losses and make it easy to integrate rib waveguides with other functions in a lab-on-a-chip where particle trapping and transport is required.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical transport, lifting and trapping of micro-particles by planar waveguides

Øystein Ivar Helle, Balpreet Singh Ahluwalia, and Olav Gaute Hellesø
Opt. Express 23(5) 6601-6612 (2015)

Serial Raman spectroscopy of particles trapped on a waveguide

Pål Løvhaugen, Balpreet Singh Ahluwalia, Thomas R. Huser, and Olav Gaute Hellesø
Opt. Express 21(3) 2964-2970 (2013)

Optofluidic trapping and transport on solid core waveguides within a microfluidic device

Bradley S. Schmidt, Allen H. J. Yang, David Erickson, and Michal Lipson
Opt. Express 15(22) 14322-14334 (2007)

References

  • View by:
  • |
  • |
  • |

  1. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  3. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
    [Crossref] [PubMed]
  4. B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18(20), 21053–21061 (2010).
    [Crossref] [PubMed]
  5. S. Gaugiran, S. Gétin, J. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
    [Crossref] [PubMed]
  6. D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, H. Schmidt, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
    [Crossref] [PubMed]
  7. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref] [PubMed]
  8. S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
    [Crossref] [PubMed]
  9. P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
    [Crossref] [PubMed]
  10. S. Gaugiran, S. Gétin, J. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
    [Crossref] [PubMed]
  11. Ø. I. Helle, B. S. Ahluwalia, and O. G. Hellesø, “Optical transport, lifting and trapping of micro-particles by planar waveguides,” Opt. Express 23(5), 6601–6612 (2015).
    [Crossref] [PubMed]
  12. O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
    [Crossref] [PubMed]
  13. B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
    [Crossref]
  14. B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
    [Crossref] [PubMed]
  15. S. Lindecrantz and O. G. Hellesø, “Estimation of propagation losses for narrow strip and rib waveguides,” IEEE Photonics Technol. Lett. 26(18), 1836–1839 (2014).
    [Crossref]
  16. G. P. McNerney, W. Hübner, B. K. Chen, and T. Huser, “Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1,” J. Biophotonics 3(4), 216–223 (2010).
    [Crossref] [PubMed]
  17. B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent-wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express 17(7), 5075–5082 (2009).
    [Crossref] [PubMed]
  18. B. Agnarsson, A. B. Jonsdottir, N. B. Arnfinnsdottir, and K. Leosson, “On-chip modulation of evanescent illumination and live-cell imaging with polymer waveguides,” Opt. Express 19(23), 22929–22935 (2011).
    [Crossref] [PubMed]
  19. A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23(21), 27391–27404 (2015).
    [Crossref] [PubMed]
  20. L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. M. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
    [Crossref] [PubMed]
  21. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
    [Crossref]
  22. B. S. Phillips, P. Measor, Y. Zhao, H. Schmidt, and A. R. Hawkins, “Optofluidic notch filter integration by lift-off of thin films,” Opt. Express 18(5), 4790–4795 (2010).
    [Crossref] [PubMed]

2015 (3)

2014 (2)

S. Lindecrantz and O. G. Hellesø, “Estimation of propagation losses for narrow strip and rib waveguides,” IEEE Photonics Technol. Lett. 26(18), 1836–1839 (2014).
[Crossref]

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

2013 (2)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. M. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

2012 (2)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

2009 (4)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent-wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express 17(7), 5075–5082 (2009).
[Crossref] [PubMed]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

2007 (1)

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, H. Schmidt, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

2005 (2)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

1996 (1)

Agnarsson, B.

Ahluwalia, B. S.

Ø. I. Helle, B. S. Ahluwalia, and O. G. Hellesø, “Optical transport, lifting and trapping of micro-particles by planar waveguides,” Opt. Express 23(5), 6601–6612 (2015).
[Crossref] [PubMed]

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18(20), 21053–21061 (2010).
[Crossref] [PubMed]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Arnfinnsdottir, N. B.

Baets, R.

Chatelain, F.

Chen, B. K.

G. P. McNerney, W. Hübner, B. K. Chen, and T. Huser, “Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1,” J. Biophotonics 3(4), 216–223 (2010).
[Crossref] [PubMed]

Chen, T. C.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. M. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Chen, Y. T.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. M. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Chu, H. Y.

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

Clemmen, S.

Colas, G.

Deamer, D. W.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, H. Schmidt, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

Dérouard, J.

Dhakal, A.

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Fedeli, J.

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Fuchs, A.

Gaugiran, S.

Gétin, S.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Gudjonsson, T.

Hawkins, A. R.

B. S. Phillips, P. Measor, Y. Zhao, H. Schmidt, and A. R. Hawkins, “Optofluidic notch filter integration by lift-off of thin films,” Opt. Express 18(5), 4790–4795 (2010).
[Crossref] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, H. Schmidt, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

Helle, Ø. I.

Hellesø, O. G.

Ø. I. Helle, B. S. Ahluwalia, and O. G. Hellesø, “Optical transport, lifting and trapping of micro-particles by planar waveguides,” Opt. Express 23(5), 6601–6612 (2015).
[Crossref] [PubMed]

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

S. Lindecrantz and O. G. Hellesø, “Estimation of propagation losses for narrow strip and rib waveguides,” IEEE Photonics Technol. Lett. 26(18), 1836–1839 (2014).
[Crossref]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18(20), 21053–21061 (2010).
[Crossref] [PubMed]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Hsu, L. C.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. M. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Huang, C. Y.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. M. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Hübner, W.

G. P. McNerney, W. Hübner, B. K. Chen, and T. Huser, “Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1,” J. Biophotonics 3(4), 216–223 (2010).
[Crossref] [PubMed]

Huser, T.

G. P. McNerney, W. Hübner, B. K. Chen, and T. Huser, “Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1,” J. Biophotonics 3(4), 216–223 (2010).
[Crossref] [PubMed]

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18(20), 21053–21061 (2010).
[Crossref] [PubMed]

Huser, T. R.

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

Ingthorsson, S.

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Jonsdottir, A. B.

Kawata, S.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Kühn, S.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

Le Thomas, N.

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Lee, M. C. M.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. M. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Lee, P. T.

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

Leosson, K.

Lin, P. T.

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

Lindecrantz, S.

S. Lindecrantz and O. G. Hellesø, “Estimation of propagation losses for narrow strip and rib waveguides,” IEEE Photonics Technol. Lett. 26(18), 1836–1839 (2014).
[Crossref]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Løvhaugen, P.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

Lu, T. W.

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

Lunt, E. J.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, H. Schmidt, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

McCourt, P.

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18(20), 21053–21061 (2010).
[Crossref] [PubMed]

McNerney, G. P.

G. P. McNerney, W. Hübner, B. K. Chen, and T. Huser, “Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1,” J. Biophotonics 3(4), 216–223 (2010).
[Crossref] [PubMed]

Measor, P.

B. S. Phillips, P. Measor, Y. Zhao, H. Schmidt, and A. R. Hawkins, “Optofluidic notch filter integration by lift-off of thin films,” Opt. Express 18(5), 4790–4795 (2010).
[Crossref] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Oteiza, A.

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

Perney, N. M. B.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Peyskens, F.

Phillips, B. S.

B. S. Phillips, P. Measor, Y. Zhao, H. Schmidt, and A. R. Hawkins, “Optofluidic notch filter integration by lift-off of thin films,” Opt. Express 18(5), 4790–4795 (2010).
[Crossref] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

Raza, A.

Rudenko, M. I.

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, H. Schmidt, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Schmidt, H.

B. S. Phillips, P. Measor, Y. Zhao, H. Schmidt, and A. R. Hawkins, “Optofluidic notch filter integration by lift-off of thin films,” Opt. Express 18(5), 4790–4795 (2010).
[Crossref] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, H. Schmidt, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, H. Schmidt, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

Sessions, N. P.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Shen, D. W.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. M. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Subramanian, A. Z.

A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23(21), 27391–27404 (2015).
[Crossref] [PubMed]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Tani, T.

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Wilkinson, J. S.

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Yang, Y. T.

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. M. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Yin, D.

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, H. Schmidt, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

Zhao, Y.

Analyst (Lond.) (1)

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (2)

S. Lindecrantz and O. G. Hellesø, “Estimation of propagation losses for narrow strip and rib waveguides,” IEEE Photonics Technol. Lett. 26(18), 1836–1839 (2014).
[Crossref]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

J. Biophotonics (1)

G. P. McNerney, W. Hübner, B. K. Chen, and T. Huser, “Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1,” J. Biophotonics 3(4), 216–223 (2010).
[Crossref] [PubMed]

Lab Chip (5)

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, H. Schmidt, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

L. C. Hsu, T. C. Chen, Y. T. Yang, C. Y. Huang, D. W. Shen, Y. T. Chen, and M. C. M. Lee, “Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices,” Lab Chip 13(6), 1151–1155 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Opt. Express (8)

B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent-wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express 17(7), 5075–5082 (2009).
[Crossref] [PubMed]

B. Agnarsson, A. B. Jonsdottir, N. B. Arnfinnsdottir, and K. Leosson, “On-chip modulation of evanescent illumination and live-cell imaging with polymer waveguides,” Opt. Express 19(23), 22929–22935 (2011).
[Crossref] [PubMed]

A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23(21), 27391–27404 (2015).
[Crossref] [PubMed]

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18(20), 21053–21061 (2010).
[Crossref] [PubMed]

S. Gaugiran, S. Gétin, J. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
[Crossref] [PubMed]

S. Gaugiran, S. Gétin, J. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
[Crossref] [PubMed]

Ø. I. Helle, B. S. Ahluwalia, and O. G. Hellesø, “Optical transport, lifting and trapping of micro-particles by planar waveguides,” Opt. Express 23(5), 6601–6612 (2015).
[Crossref] [PubMed]

B. S. Phillips, P. Measor, Y. Zhao, H. Schmidt, and A. R. Hawkins, “Optofluidic notch filter integration by lift-off of thin films,” Opt. Express 18(5), 4790–4795 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Supplementary Material (6)

NameDescription
» Visualization 1: MOV (2841 KB)      Optical trapping of red blood cells by a straight rib waveguide
» Visualization 2: MOV (2420 KB)      Optical trapping of 3 µm diameter particles in a 20 µm wide gap between opposing rib waveguides
» Visualization 3: MOV (2715 KB)      Optical trapping of 3 µm diameter particles in a 20 µm wide gap between opposing strip waveguides
» Visualization 4: MOV (20680 KB)      Propulsion of 3 µm particle at a y-junction formed by a rib waveguide
» Visualization 5: MOV (5237 KB)      Moving trapped particles of 1 µm diameter in a 20 µm wide gap between two rib waveguides
» Visualization 6: MOV (1811 KB)      Moving trapped particles of 3 µm diameter in a 20 µm wide gap between two rib waveguides

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of a) strip waveguide with strip height (h) of 180 nm and b) its fundamental TE-mode. c) shows a rib waveguide with rib height (r) of 50 nm and d) its fundamental TE-mode. Both waveguides have a width (w) of 1.3μm. Figure not drawn to scale.
Fig. 2
Fig. 2 Outline of the waveguide ends used in this work. A single end facet is compared for a) rib and b) strip waveguides. Two opposing waveguide end facets are also analyzed for c) rib and d) strip waveguides. e) The opposing waveguide end facets are formed a by loop with a gap in the middle. A sphere is shown with diameter d and distance z from the waveguide end. The core height is kept constant at h = 180nm for rib and strip waveguides. The rib height (r) was 50 nm for the experiments with rib waveguides, while it was used as a variable for the simulations. Figure not drawn to scale.
Fig. 3
Fig. 3 Optical trapping of 3 μm diameter particles in a 20 μm wide gap between opposing waveguides for a) rib and b) strip geometries, respectively (Visualization 1, Visualization 2, and Visualization 3).
Fig. 4
Fig. 4 Moving trapped particles of diameter a) 1 μm and b) 3 μm in a 20 μm wide gap between two rib waveguides (Visualization 4, Visualization 5, Visualization 6).
Fig. 5
Fig. 5 Simulated field distributions at the end of strip and rib waveguides and in the gap between waveguides. The normalized electric field is shown with the same color scale and for the same total input power (1 mW) for all distributions. The fields shown are a) side-view of end of strip waveguide, b) top-view of end of strip waveguide, c) side-view of gap between strip waveguides, d) side-view of gap between strip waveguides, e) side-view of end of rib waveguide, f) top-view of end of rib waveguide, g) side-view of gap between rib waveguides and h) top-view of gap between rib waveguides. Normalized electric field (106 V/m).
Fig. 6
Fig. 6 (a) Vertical (Fx) and forward (Fz) optical forces on a 1 μm diameter (d) particle trapped on top of a rib waveguide with a width (w) of 1.3 μm as function of rib height (r), with a constant core height (t) of 180 nm. The dashed red vertical lines show r = 50 nm and r = 180 nm, corresponding to respectively the rib and strip waveguides used experimentally. (b) Schematic diagram to illustrate the simulation parameters of a). Figure not drawn to scale.
Fig. 7
Fig. 7 Vertical (Fx) and forward (Fz) optical forces on a 1 μm diameter (d) particle located 5 μm away from the end of the waveguide, as function of rib height (r). The core height is kept constant at 180 nm. The dotted and straight lines show rib waveguide with r = 50 nm and strip waveguide with r = 180 nm used in the experiments.
Fig. 8
Fig. 8 (a) Forward (Fz) and (b) vertical (Fx) optical forces on 1 and 3 μm particle as a function of z position after the end of the waveguide, for rib and strip waveguides. Note logarithmic y-axis and negative Fx-values to allow logarithmic axis. The end facet of the waveguide is located at z = 0, particle is on top of waveguide surface for z < 0 and it enters the gap for z = 0.
Fig. 9
Fig. 9 (a) Forward (Fz) and (b) vertical (Fx) optical forces on 1 and 3 μm particles in the gap between two opposing rib waveguides. The displacement is from the end of the left waveguide to the center of the sphere. Fz is anti-symmetric and Fx symmetric about the centre of the gap (z = 5 μm), such that z >5 μm gives Fz(z) = -Fz(10μm - z) and Fx(z) = Fx(10μm - z).

Metrics