Abstract

We present a study on subsurface imaging with an infrared scattering-type scanning near-field optical microscope (s-SNOM). The depth-limitation for the visibility of gold nanoparticles with a diameter of 50 nm under Si3N4 is determined to about 50 nm. We first investigate spot size and signal strength concerning their particle-size dependence for a dielectric cover layer with positive permittivity. The experimental results are confirmed by model calculations and a comparison to TEM images. In the next step, we investigate spectroscopically also the regime of negative permittivity of the capping layer and its influence on lateral resolution and signal strength in experiment and simulations. The explanation of this observation combines subsurface imaging and superlensing, and shows up limitations of the latter regarding small structure sizes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale subsurface- and material-specific identification of single nanoparticles

Zachary Nuño, Brandon Hessler, Jerry Ochoa, Young-Seok Shon, Codi Bonney, and Yohannes Abate
Opt. Express 19(21) 20865-20875 (2011)

Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application

Jon Olav Grepstad, Peter Kaspar, Olav Solgaard, Ib-Rune Johansen, and Aasmund S. Sudbø
Opt. Express 20(7) 7954-7965 (2012)

Contrast and imaging performance in photo induced force microscopy

Mohammad Almajhadi and H. Kumar Wickramasinghe
Opt. Express 25(22) 26923-26938 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM (Springer, 2005).
    [Crossref]
  2. G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
    [Crossref] [PubMed]
  3. H. Kuzmany, Solid-State Spectroscopy: An Introduction (Springer, 2009).
    [Crossref]
  4. T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
    [Crossref]
  5. T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
    [Crossref] [PubMed]
  6. A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett. 4(9), 1526–1531 (2013).
    [Crossref] [PubMed]
  7. S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106(2), 023113 (2015).
    [Crossref]
  8. S. Bensmann, F. Gaussmann, M. Lewin, J. Wüppen, S. Nyga, C. Janzen, B. Jungbluth, and T. Taubner, “Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser,” Opt. Express 22(19), 22369–22381 (2014).
    [Crossref] [PubMed]
  9. B. Hauer, T. Saltzmann, U. Simon, and T. Taubner, “Solvothermally synthesized Sb2Te3 platelets show unexpected optical contrasts in mid-infrared near-field scanning microscopy,” Nano Lett. 15(5), 2787–2793 (2015).
    [Crossref] [PubMed]
  10. F. Gaussmann, B. Hauer, H. Hardtdegen, F. Haas, T. Schäpers, and T. Taubner, “Quasi-spectroscopic evaluation of near-field microscopy images of highly doped InAs,” (submitted to” J. Appl. Phys.)
  11. J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. GómezRivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
    [Crossref] [PubMed]
  12. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
    [Crossref]
  13. F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. V. Zayats and D. Richards, eds. (Artech House, 2009).
  14. T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
    [Crossref] [PubMed]
  15. A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
    [Crossref]
  16. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
    [Crossref] [PubMed]
  17. G. Wollny, E. Bründermann, Z. Arsov, L. Quaroni, and M. Havenith, “Nanoscale depth resolution in scanning near-field infrared microscopy,” Opt. Express 16, (10)7453–7459 (2008).
    [Crossref] [PubMed]
  18. R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
    [Crossref] [PubMed]
  19. A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
    [Crossref] [PubMed]
  20. M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83(24), 5089–5091 (2003).
    [Crossref]
  21. A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
    [Crossref] [PubMed]
  22. M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.
  23. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
    [Crossref] [PubMed]
  24. P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
    [Crossref] [PubMed]
  25. M. Fehrenbacher, S. Winnerl, H. Schneider, and J. Döring, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
    [Crossref] [PubMed]
  26. P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
    [Crossref] [PubMed]
  27. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  28. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
    [Crossref] [PubMed]
  29. Y. Wong, C. Yuen, M. Leung, and S. Ku, “Selected applications of nanotechnology in textiles,” Autex Res. J. 6(1), 1–8 (2006).
  30. A. Ogura, D. Kosemura, Y. Kakemura, T. Yoshida, H. Uchida, N. Hattori, and M. Yoshimaru, “Evaluation of strain in Si-on-insulator substrate induced by Si3N4 capping film,” Jpn. J. Appl. Phys. 47(3), 1465–1468 (2008).
    [Crossref]
  31. J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
    [Crossref]
  32. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
    [Crossref]
  33. R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicrosc 100(3–4), 421–427 (2004).
    [Crossref]
  34. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. J. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [Crossref] [PubMed]
  35. N. Ocelic, “Quantitative near-field phonon-polariton spectroscopy,” Ph.D. thesis, Technische Universität München, München (2007).
  36. P. Li, T. Wang, and T. Taubner, “Infrared imaging and distinguishing of dielectric objects through a SiC superlens,” (manuscript in preparation)
  37. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

2015 (5)

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106(2), 023113 (2015).
[Crossref]

B. Hauer, T. Saltzmann, U. Simon, and T. Taubner, “Solvothermally synthesized Sb2Te3 platelets show unexpected optical contrasts in mid-infrared near-field scanning microscopy,” Nano Lett. 15(5), 2787–2793 (2015).
[Crossref] [PubMed]

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.

M. Fehrenbacher, S. Winnerl, H. Schneider, and J. Döring, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
[Crossref] [PubMed]

2014 (4)

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref] [PubMed]

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
[Crossref]

S. Bensmann, F. Gaussmann, M. Lewin, J. Wüppen, S. Nyga, C. Janzen, B. Jungbluth, and T. Taubner, “Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser,” Opt. Express 22(19), 22369–22381 (2014).
[Crossref] [PubMed]

2013 (2)

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett. 4(9), 1526–1531 (2013).
[Crossref] [PubMed]

A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (3)

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. GómezRivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
[Crossref] [PubMed]

2008 (2)

A. Ogura, D. Kosemura, Y. Kakemura, T. Yoshida, H. Uchida, N. Hattori, and M. Yoshimaru, “Evaluation of strain in Si-on-insulator substrate induced by Si3N4 capping film,” Jpn. J. Appl. Phys. 47(3), 1465–1468 (2008).
[Crossref]

G. Wollny, E. Bründermann, Z. Arsov, L. Quaroni, and M. Havenith, “Nanoscale depth resolution in scanning near-field infrared microscopy,” Opt. Express 16, (10)7453–7459 (2008).
[Crossref] [PubMed]

2006 (3)

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Y. Wong, C. Yuen, M. Leung, and S. Ku, “Selected applications of nanotechnology in textiles,” Autex Res. J. 6(1), 1–8 (2006).

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

2005 (1)

2004 (2)

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
[Crossref]

R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicrosc 100(3–4), 421–427 (2004).
[Crossref]

2003 (3)

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83(24), 5089–5091 (2003).
[Crossref]

1990 (1)

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
[Crossref]

1986 (1)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[Crossref] [PubMed]

1983 (1)

Alexander, R. W. J.

Algra, R. E.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. GómezRivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[Crossref] [PubMed]

Amenabar, I.

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106(2), 023113 (2015).
[Crossref]

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett. 4(9), 1526–1531 (2013).
[Crossref] [PubMed]

Arsov, Z.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Baker, F. K.

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
[Crossref]

Bakkers, E. P. A. M.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. GómezRivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[Crossref] [PubMed]

Basov, D. N.

A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Benke, J.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.

Bensmann, S.

Binnig, G.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[Crossref] [PubMed]

Böckmann, H.

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

Bornhöfft, M.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.

Bründermann, E.

Caldwell, J.

P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
[Crossref] [PubMed]

Carney, P. S.

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref] [PubMed]

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett. 4(9), 1526–1531 (2013).
[Crossref] [PubMed]

R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
[Crossref] [PubMed]

Chuvilin, A.

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref] [PubMed]

R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
[Crossref] [PubMed]

de Oliveira, T. V. A. G.

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106(2), 023113 (2015).
[Crossref]

Diedenhofen, S. L.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. GómezRivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[Crossref] [PubMed]

Dominguez, G.

A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
[Crossref]

Döring, J.

M. Fehrenbacher, S. Winnerl, H. Schneider, and J. Döring, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

Egerton, R.

R. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM (Springer, 2005).
[Crossref]

Engelhardt, A. P.

A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
[Crossref] [PubMed]

Fehrenbacher, M.

M. Fehrenbacher, S. Winnerl, H. Schneider, and J. Döring, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

Fogler, M. M.

A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
[Crossref]

Gainsforth, Z.

A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
[Crossref]

Gaussmann, F.

P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
[Crossref] [PubMed]

S. Bensmann, F. Gaussmann, M. Lewin, J. Wüppen, S. Nyga, C. Janzen, B. Jungbluth, and T. Taubner, “Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser,” Opt. Express 22(19), 22369–22381 (2014).
[Crossref] [PubMed]

F. Gaussmann, B. Hauer, H. Hardtdegen, F. Haas, T. Schäpers, and T. Taubner, “Quasi-spectroscopic evaluation of near-field microscopy images of highly doped InAs,” (submitted to” J. Appl. Phys.)

Gerber, C.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[Crossref] [PubMed]

Goldflam, M. D.

A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
[Crossref]

Golmar, F.

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref] [PubMed]

GómezRivas, J.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. GómezRivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[Crossref] [PubMed]

Govyadinov, A. A.

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106(2), 023113 (2015).
[Crossref]

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref] [PubMed]

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett. 4(9), 1526–1531 (2013).
[Crossref] [PubMed]

R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
[Crossref] [PubMed]

Gunderson, C. D.

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
[Crossref]

Haas, F.

F. Gaussmann, B. Hauer, H. Hardtdegen, F. Haas, T. Schäpers, and T. Taubner, “Quasi-spectroscopic evaluation of near-field microscopy images of highly doped InAs,” (submitted to” J. Appl. Phys.)

Hardtdegen, H.

F. Gaussmann, B. Hauer, H. Hardtdegen, F. Haas, T. Schäpers, and T. Taubner, “Quasi-spectroscopic evaluation of near-field microscopy images of highly doped InAs,” (submitted to” J. Appl. Phys.)

Hattori, N.

A. Ogura, D. Kosemura, Y. Kakemura, T. Yoshida, H. Uchida, N. Hattori, and M. Yoshimaru, “Evaluation of strain in Si-on-insulator substrate induced by Si3N4 capping film,” Jpn. J. Appl. Phys. 47(3), 1465–1468 (2008).
[Crossref]

Hauer, B.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.

B. Hauer, T. Saltzmann, U. Simon, and T. Taubner, “Solvothermally synthesized Sb2Te3 platelets show unexpected optical contrasts in mid-infrared near-field scanning microscopy,” Nano Lett. 15(5), 2787–2793 (2015).
[Crossref] [PubMed]

A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
[Crossref] [PubMed]

F. Gaussmann, B. Hauer, H. Hardtdegen, F. Haas, T. Schäpers, and T. Taubner, “Quasi-spectroscopic evaluation of near-field microscopy images of highly doped InAs,” (submitted to” J. Appl. Phys.)

Havenith, M.

Hayden, J. D.

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
[Crossref]

Hillenbrand, R.

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106(2), 023113 (2015).
[Crossref]

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref] [PubMed]

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett. 4(9), 1526–1531 (2013).
[Crossref] [PubMed]

R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
[Crossref] [PubMed]

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. GómezRivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[Crossref] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
[Crossref]

R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicrosc 100(3–4), 421–427 (2004).
[Crossref]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. V. Zayats and D. Richards, eds. (Artech House, 2009).

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

Huber, A. J.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. GómezRivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[Crossref] [PubMed]

Huth, F.

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett. 4(9), 1526–1531 (2013).
[Crossref] [PubMed]

R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
[Crossref] [PubMed]

Janzen, C.

Jung, L.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.

Jungbluth, B.

Kakemura, Y.

A. Ogura, D. Kosemura, Y. Kakemura, T. Yoshida, H. Uchida, N. Hattori, and M. Yoshimaru, “Evaluation of strain in Si-on-insulator substrate induced by Si3N4 capping film,” Jpn. J. Appl. Phys. 47(3), 1465–1468 (2008).
[Crossref]

Keilmann, F.

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
[Crossref]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. V. Zayats and D. Richards, eds. (Artech House, 2009).

Kelly, P.

A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
[Crossref]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Kosemura, D.

A. Ogura, D. Kosemura, Y. Kakemura, T. Yoshida, H. Uchida, N. Hattori, and M. Yoshimaru, “Evaluation of strain in Si-on-insulator substrate induced by Si3N4 capping film,” Jpn. J. Appl. Phys. 47(3), 1465–1468 (2008).
[Crossref]

Kretinin, A. V.

P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
[Crossref] [PubMed]

Krutokhvostov, R.

Ku, S.

Y. Wong, C. Yuen, M. Leung, and S. Ku, “Selected applications of nanotechnology in textiles,” Autex Res. J. 6(1), 1–8 (2006).

Kuzmany, H.

H. Kuzmany, Solid-State Spectroscopy: An Introduction (Springer, 2009).
[Crossref]

Lee, J.-Y.

Leung, M.

Y. Wong, C. Yuen, M. Leung, and S. Ku, “Selected applications of nanotechnology in textiles,” Autex Res. J. 6(1), 1–8 (2006).

Lewin, M.

P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
[Crossref] [PubMed]

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.

S. Bensmann, F. Gaussmann, M. Lewin, J. Wüppen, S. Nyga, C. Janzen, B. Jungbluth, and T. Taubner, “Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser,” Opt. Express 22(19), 22369–22381 (2014).
[Crossref] [PubMed]

Li, P.

P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
[Crossref] [PubMed]

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

P. Li, T. Wang, and T. Taubner, “Infrared imaging and distinguishing of dielectric objects through a SiC superlens,” (manuscript in preparation)

Lienau, C.

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83(24), 5089–5091 (2003).
[Crossref]

Long, L. L.

Mastel, S.

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106(2), 023113 (2015).
[Crossref]

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref] [PubMed]

Mayer, J.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.

McLeod, A. S.

A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
[Crossref]

Mele, T. C.

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
[Crossref]

Michel, A.-K. U.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.

Miller, J. W.

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
[Crossref]

Novoselov, K. S.

P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
[Crossref]

Nyga, S.

Ocelic, N.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

N. Ocelic, “Quantitative near-field phonon-polariton spectroscopy,” Ph.D. thesis, Technische Universität München, München (2007).

Ogura, A.

A. Ogura, D. Kosemura, Y. Kakemura, T. Yoshida, H. Uchida, N. Hattori, and M. Yoshimaru, “Evaluation of strain in Si-on-insulator substrate induced by Si3N4 capping film,” Jpn. J. Appl. Phys. 47(3), 1465–1468 (2008).
[Crossref]

Ordal, M. A.

Parrillo, L. C.

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
[Crossref]

Peumans, P.

Pfiester, J. R.

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Quaroni, L.

Quate, C. F.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[Crossref] [PubMed]

Raschke, M. B.

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83(24), 5089–5091 (2003).
[Crossref]

Saltzmann, T.

B. Hauer, T. Saltzmann, U. Simon, and T. Taubner, “Solvothermally synthesized Sb2Te3 platelets show unexpected optical contrasts in mid-infrared near-field scanning microscopy,” Nano Lett. 15(5), 2787–2793 (2015).
[Crossref] [PubMed]

Schäpers, T.

F. Gaussmann, B. Hauer, H. Hardtdegen, F. Haas, T. Schäpers, and T. Taubner, “Quasi-spectroscopic evaluation of near-field microscopy images of highly doped InAs,” (submitted to” J. Appl. Phys.)

Schneider, H.

M. Fehrenbacher, S. Winnerl, H. Schneider, and J. Döring, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

Shamonina, E.

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Simon, U.

B. Hauer, T. Saltzmann, U. Simon, and T. Taubner, “Solvothermally synthesized Sb2Te3 platelets show unexpected optical contrasts in mid-infrared near-field scanning microscopy,” Nano Lett. 15(5), 2787–2793 (2015).
[Crossref] [PubMed]

Solymar, L.

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

Stiegler, J. M.

R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
[Crossref] [PubMed]

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. GómezRivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[Crossref] [PubMed]

Taniguchi, T.

P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
[Crossref] [PubMed]

Taubner, T.

P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
[Crossref] [PubMed]

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.

B. Hauer, T. Saltzmann, U. Simon, and T. Taubner, “Solvothermally synthesized Sb2Te3 platelets show unexpected optical contrasts in mid-infrared near-field scanning microscopy,” Nano Lett. 15(5), 2787–2793 (2015).
[Crossref] [PubMed]

S. Bensmann, F. Gaussmann, M. Lewin, J. Wüppen, S. Nyga, C. Janzen, B. Jungbluth, and T. Taubner, “Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser,” Opt. Express 22(19), 22369–22381 (2014).
[Crossref] [PubMed]

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
[Crossref] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
[Crossref]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

F. Gaussmann, B. Hauer, H. Hardtdegen, F. Haas, T. Schäpers, and T. Taubner, “Quasi-spectroscopic evaluation of near-field microscopy images of highly doped InAs,” (submitted to” J. Appl. Phys.)

P. Li, T. Wang, and T. Taubner, “Infrared imaging and distinguishing of dielectric objects through a SiC superlens,” (manuscript in preparation)

Thiemens, M. H.

A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
[Crossref]

Tobin, P. J.

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
[Crossref]

Tseng, H. H.

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
[Crossref]

Uchida, H.

A. Ogura, D. Kosemura, Y. Kakemura, T. Yoshida, H. Uchida, N. Hattori, and M. Yoshimaru, “Evaluation of strain in Si-on-insulator substrate induced by Si3N4 capping film,” Jpn. J. Appl. Phys. 47(3), 1465–1468 (2008).
[Crossref]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Wang, T.

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

P. Li, T. Wang, and T. Taubner, “Infrared imaging and distinguishing of dielectric objects through a SiC superlens,” (manuscript in preparation)

Ward, C. A.

Watanabe, K.

P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
[Crossref] [PubMed]

Westphal, A. J.

A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
[Crossref]

Winnerl, S.

M. Fehrenbacher, S. Winnerl, H. Schneider, and J. Döring, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

Wollny, G.

Wong, Y.

Y. Wong, C. Yuen, M. Leung, and S. Ku, “Selected applications of nanotechnology in textiles,” Autex Res. J. 6(1), 1–8 (2006).

Wüppen, J.

Wuttig, M.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.

Yoshida, T.

A. Ogura, D. Kosemura, Y. Kakemura, T. Yoshida, H. Uchida, N. Hattori, and M. Yoshimaru, “Evaluation of strain in Si-on-insulator substrate induced by Si3N4 capping film,” Jpn. J. Appl. Phys. 47(3), 1465–1468 (2008).
[Crossref]

Yoshimaru, M.

A. Ogura, D. Kosemura, Y. Kakemura, T. Yoshida, H. Uchida, N. Hattori, and M. Yoshimaru, “Evaluation of strain in Si-on-insulator substrate induced by Si3N4 capping film,” Jpn. J. Appl. Phys. 47(3), 1465–1468 (2008).
[Crossref]

Yuen, C.

Y. Wong, C. Yuen, M. Leung, and S. Ku, “Selected applications of nanotechnology in textiles,” Autex Res. J. 6(1), 1–8 (2006).

ACS Nano (1)

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A.-K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using infrared nano-imaging and correlative electron microscopy,” (Appl. Phys. Lett. 105(15), 151902 (2015.

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83(24), 5089–5091 (2003).
[Crossref]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
[Crossref]

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106(2), 023113 (2015).
[Crossref]

Autex Res. J. (1)

Y. Wong, C. Yuen, M. Leung, and S. Ku, “Selected applications of nanotechnology in textiles,” Autex Res. J. 6(1), 1–8 (2006).

IEEE Trans. Electron Devices (1)

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Devices 37(8), 1842–1851 (1990).
[Crossref]

J. Microsc. (2)

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett. 4(9), 1526–1531 (2013).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

A. Ogura, D. Kosemura, Y. Kakemura, T. Yoshida, H. Uchida, N. Hattori, and M. Yoshimaru, “Evaluation of strain in Si-on-insulator substrate induced by Si3N4 capping film,” Jpn. J. Appl. Phys. 47(3), 1465–1468 (2008).
[Crossref]

Nano Lett. (4)

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-enhanced infrared near-field microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

M. Fehrenbacher, S. Winnerl, H. Schneider, and J. Döring, “Plasmonic superlensing in doped GaAs,” Nano Lett. 15(2), 1057–1061 (2015).
[Crossref] [PubMed]

B. Hauer, T. Saltzmann, U. Simon, and T. Taubner, “Solvothermally synthesized Sb2Te3 platelets show unexpected optical contrasts in mid-infrared near-field scanning microscopy,” Nano Lett. 15(5), 2787–2793 (2015).
[Crossref] [PubMed]

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. GómezRivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Li, M. Lewin, A. V. Kretinin, J. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6, 7507 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rev. B (1)

A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants,” Phys. Rev. B 90(8), 085136 (2014).
[Crossref]

Phys. Rev. Lett. (1)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[Crossref] [PubMed]

Science (1)

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Ultramicrosc (1)

R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicrosc 100(3–4), 421–427 (2004).
[Crossref]

Ultramicroscopy (1)

A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
[Crossref] [PubMed]

Other (8)

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
[Crossref]

F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. V. Zayats and D. Richards, eds. (Artech House, 2009).

H. Kuzmany, Solid-State Spectroscopy: An Introduction (Springer, 2009).
[Crossref]

F. Gaussmann, B. Hauer, H. Hardtdegen, F. Haas, T. Schäpers, and T. Taubner, “Quasi-spectroscopic evaluation of near-field microscopy images of highly doped InAs,” (submitted to” J. Appl. Phys.)

N. Ocelic, “Quantitative near-field phonon-polariton spectroscopy,” Ph.D. thesis, Technische Universität München, München (2007).

P. Li, T. Wang, and T. Taubner, “Infrared imaging and distinguishing of dielectric objects through a SiC superlens,” (manuscript in preparation)

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

R. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM (Springer, 2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic representation of the sample system (upper part) and the simplifications for the model calculation described in the text (lower part). (b)–(e) Correlation between SNOM images (s2, upper row) and TEM images (brightfield mode, lower row) of the same sample region for a 30 nm (b),(d) and a 50 nm (c),(e) thick membrane. Single Au spheres are marked with black circles, the black rectangle marks a cluster of four spheres that appear as one bright spot in the SNOM image. Dark points in the SNOM image stem from dirt on top of the membrane, that also appeared in the topography image (not shown).
Fig. 2
Fig. 2 Simulation of a SNOM tip (length: 300 nm; tip radius: 30 nm) above a 30 nm thick Si3N4 membrane (a) with and (b) without a Au particle (Ø = 50nm) underneath the membrane for ν = 1240cm−1.
Fig. 3
Fig. 3 Investigation of the structure size dependence in subsurface imaging: The spot size (a), the ratio between spot size and particle diameter (b) as well as the signal strength (definition in the text, (c)) are plotted against the diameter of the investigated particle. The blue data points are experimental results (evaluated from the s2-signal), the black line is a model calculation, which is further explained in the text.
Fig. 4
Fig. 4 Spectroscopic investigation of the signal strength for a single Au sphere (Ø = 50 nm) under 30 nm Si3N4. (a) Experimental and simulation results. (b) SNOM images (s3) of the marked data points at ν1 = 946cm−1 and ν2 = 1031cm−1, revealing a contrast inversion.
Fig. 5
Fig. 5 Spectroscopic investigation of the resolution for a single Au sphere (Ø = 50 nm, (a)) and an edge between Si and air (b) underneath 30 nm Si3N4. Red arrows mark the wavenumbers revealing the best resolution for the case in (b). The real (black solid line) and imaginary part (red dashed line) of the dielectric function of Si3N4 are plotted in (c). Red arrows mark the wavenumbers for which the superlensing condition is—corresponding to this data—met [23] and therefore the best resolution is expected. Note that (a) has been evaluated from the s3-signal, (b) from the s2-signal. [Dielectric data taken from [33].]
Fig. 6
Fig. 6 Simulations of a Au particle (Ø = 50 nm) underneath a 30 nm thick membrane for the dielectric function of (a) Si3N4 at ν = 1240cm−1 (Re[ε] > 0), (b) Si3N4 at ν = 1049cm−1 (resonant case, Re[ε] = −1). (c) The same case as in (b) for an artificially lowered imaginary part (Im(ε) = 0.1).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α ^ t = ( α x 0 0 0 α x 0 0 0 10 α x ) with α x = 4 π r t 3 ε t ε Si 3 N 4 ε t + ε Si 3 N 4
experiment : s 2 , rel = s 2 , max s 2 , bg s 2 , bg
calculation : E rel = E max E bg E tip
k x cutoff = 1 d ln ( 2 Im [ ε ] )
R min ~ 2 π k x cutoff = λ 8 = 1160 nm,

Metrics