Abstract

Red, green, and blue (RGB) light-emitting diode (LED) is a narrow-band light source that can improve visual contrast, and thus, can be used for special illumination. In this study, three RGB LEDs, each provided with two reflective mirrors, are used to design an all-reflective color temperature-adjustable LED flashlight. The LED flashlight features an adjustable color temperature ranging from 2000 K to 6500 K, a uniformity of illuminance of 0.68, an average difference of uniformity of approximately 25%, and a color uniformity of 0.0042.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Collimating lamp with well color mixing of red/green/blue LEDs

Ching-Cherng Sun, Ivan Moreno, Yi-Chien Lo, Bo-Chun Chiu, and Wei-Ting Chien
Opt. Express 20(S1) A75-A84 (2012)

Uniform illumination design by configuration of LEDs and optimization of LED lens for large-scale color-mixing applications

Peng Liu, Huihui Wang, Rengmao Wu, Yang Yang, Yaqin Zhang, Zhenrong Zheng, Haifeng Li, and Xu Liu
Appl. Opt. 52(17) 3998-4005 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Worthey, “Color rendering: asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
    [Crossref]
  2. H. C. Wang, M. T. Tsai, and C. P. Chiang, “Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging,” J. Opt. 15(5), 055301 (2013).
    [Crossref]
  3. H. C. Wang and Y. T. Chen, “Optimal lighting of RGB LEDs for oral cavity detection,” Opt. Express 20(9), 10186–10199 (2012).
    [Crossref] [PubMed]
  4. Y. P. Hsiao, H. C. Wang, S. H. Chen, C. H. Tsai, and J. H. Yang, “Identified early stage mycosis fungoides from psoriasis and atopic dermatitis using non-invasive color contrast enhancement by LEDs lighting,” Opt. Quantum Electron. 47(7), 1599–1611 (2015).
    [Crossref]
  5. C. C. Sun, I. Moreno, Y. C. Lo, B. C. Chiu, and W. T. Chien, “Collimating lamp with well color mixing of red/green/blue LEDs,” Opt. Express 20(S1), A75–A84 (2012).
    [Crossref] [PubMed]
  6. J. Muschaweck, “Randomized micro lens arrays for color mixing,” Proc. SPIE7954, 79540A (2011).
  7. P. Liu, H. Wang, R. Wu, Y. Yang, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “Uniform illumination design by configuration of LEDs and optimization of LED lens for large-scale color-mixing applications,” Appl. Opt. 52(17), 3998–4005 (2013).
    [Crossref] [PubMed]
  8. Y. S. Chen, C. Y. Lin, C. M. Yeh, C. T. Kuo, C. W. Hsu, and H. C. Wang, “Anti-glare LED lamps with adjustable illumination light field,” Opt. Express 22(5), 5183–5195 (2014).
    [Crossref] [PubMed]
  9. M. Y. Hsieh and C. Y. Chen, “The Effects of interior illuminance Distribution on Spatial impression,” Journal of Architecture of Taiwan 75, 81–98 (2011).
  10. D. Ramane and A. Shaligram, “Optimization of multi-element LED source for uniform illumination of plane surface,” Opt. Express 19(S4Suppl 4), A639–A648 (2011).
    [Crossref] [PubMed]
  11. C. H. Tsuei, J. W. Pen, and W. S. Sun, “Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design,” Opt. Express 16(23), 18692–18701 (2008).
    [Crossref] [PubMed]
  12. http://www.telescope-optics.net/index.htm
  13. L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
    [Crossref]
  14. American National Standards Institute, http://www.ansi.org/ .
  15. http://assets.sylvania.com/assets/documents/FAQ0026-0605.985fe903-aa8a-4885-a1ad-5c077c8f97bc.pdf
  16. http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/cfls/Criteria_CFLs_Version4.0_draft4.pdf

2015 (1)

Y. P. Hsiao, H. C. Wang, S. H. Chen, C. H. Tsai, and J. H. Yang, “Identified early stage mycosis fungoides from psoriasis and atopic dermatitis using non-invasive color contrast enhancement by LEDs lighting,” Opt. Quantum Electron. 47(7), 1599–1611 (2015).
[Crossref]

2014 (2)

Y. S. Chen, C. Y. Lin, C. M. Yeh, C. T. Kuo, C. W. Hsu, and H. C. Wang, “Anti-glare LED lamps with adjustable illumination light field,” Opt. Express 22(5), 5183–5195 (2014).
[Crossref] [PubMed]

L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (3)

J. Muschaweck, “Randomized micro lens arrays for color mixing,” Proc. SPIE7954, 79540A (2011).

M. Y. Hsieh and C. Y. Chen, “The Effects of interior illuminance Distribution on Spatial impression,” Journal of Architecture of Taiwan 75, 81–98 (2011).

D. Ramane and A. Shaligram, “Optimization of multi-element LED source for uniform illumination of plane surface,” Opt. Express 19(S4Suppl 4), A639–A648 (2011).
[Crossref] [PubMed]

2008 (1)

2003 (1)

J. A. Worthey, “Color rendering: asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
[Crossref]

Chen, C. Y.

M. Y. Hsieh and C. Y. Chen, “The Effects of interior illuminance Distribution on Spatial impression,” Journal of Architecture of Taiwan 75, 81–98 (2011).

Chen, L. Y.

L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
[Crossref]

Chen, S. H.

Y. P. Hsiao, H. C. Wang, S. H. Chen, C. H. Tsai, and J. H. Yang, “Identified early stage mycosis fungoides from psoriasis and atopic dermatitis using non-invasive color contrast enhancement by LEDs lighting,” Opt. Quantum Electron. 47(7), 1599–1611 (2015).
[Crossref]

L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
[Crossref]

Chen, Y. S.

Chen, Y. T.

Chiang, C. P.

H. C. Wang, M. T. Tsai, and C. P. Chiang, “Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging,” J. Opt. 15(5), 055301 (2013).
[Crossref]

Chien, W. T.

Chiu, B. C.

Hsiao, Y. P.

Y. P. Hsiao, H. C. Wang, S. H. Chen, C. H. Tsai, and J. H. Yang, “Identified early stage mycosis fungoides from psoriasis and atopic dermatitis using non-invasive color contrast enhancement by LEDs lighting,” Opt. Quantum Electron. 47(7), 1599–1611 (2015).
[Crossref]

Hsieh, M. Y.

M. Y. Hsieh and C. Y. Chen, “The Effects of interior illuminance Distribution on Spatial impression,” Journal of Architecture of Taiwan 75, 81–98 (2011).

Hsu, C. W.

Kuo, C. T.

Y. S. Chen, C. Y. Lin, C. M. Yeh, C. T. Kuo, C. W. Hsu, and H. C. Wang, “Anti-glare LED lamps with adjustable illumination light field,” Opt. Express 22(5), 5183–5195 (2014).
[Crossref] [PubMed]

L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
[Crossref]

Li, H.

Lin, C. Y.

Liu, P.

Liu, X.

Lo, Y. C.

Moreno, I.

Muschaweck, J.

J. Muschaweck, “Randomized micro lens arrays for color mixing,” Proc. SPIE7954, 79540A (2011).

Pen, J. W.

Ramane, D.

Shaligram, A.

Sun, C. C.

Sun, W. S.

Tsai, C. H.

Y. P. Hsiao, H. C. Wang, S. H. Chen, C. H. Tsai, and J. H. Yang, “Identified early stage mycosis fungoides from psoriasis and atopic dermatitis using non-invasive color contrast enhancement by LEDs lighting,” Opt. Quantum Electron. 47(7), 1599–1611 (2015).
[Crossref]

Tsai, M. T.

H. C. Wang, M. T. Tsai, and C. P. Chiang, “Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging,” J. Opt. 15(5), 055301 (2013).
[Crossref]

Tsuei, C. H.

Wang, H.

Wang, H. C.

Y. P. Hsiao, H. C. Wang, S. H. Chen, C. H. Tsai, and J. H. Yang, “Identified early stage mycosis fungoides from psoriasis and atopic dermatitis using non-invasive color contrast enhancement by LEDs lighting,” Opt. Quantum Electron. 47(7), 1599–1611 (2015).
[Crossref]

L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
[Crossref]

Y. S. Chen, C. Y. Lin, C. M. Yeh, C. T. Kuo, C. W. Hsu, and H. C. Wang, “Anti-glare LED lamps with adjustable illumination light field,” Opt. Express 22(5), 5183–5195 (2014).
[Crossref] [PubMed]

H. C. Wang, M. T. Tsai, and C. P. Chiang, “Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging,” J. Opt. 15(5), 055301 (2013).
[Crossref]

H. C. Wang and Y. T. Chen, “Optimal lighting of RGB LEDs for oral cavity detection,” Opt. Express 20(9), 10186–10199 (2012).
[Crossref] [PubMed]

Worthey, J. A.

J. A. Worthey, “Color rendering: asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
[Crossref]

Wu, R.

Yang, J. H.

Y. P. Hsiao, H. C. Wang, S. H. Chen, C. H. Tsai, and J. H. Yang, “Identified early stage mycosis fungoides from psoriasis and atopic dermatitis using non-invasive color contrast enhancement by LEDs lighting,” Opt. Quantum Electron. 47(7), 1599–1611 (2015).
[Crossref]

Yang, Y.

Yeh, C. M.

Zhang, Y.

Zheng, Z.

Appl. Opt. (1)

Color Res. Appl. (1)

J. A. Worthey, “Color rendering: asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
[Crossref]

J. Opt. (1)

H. C. Wang, M. T. Tsai, and C. P. Chiang, “Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging,” J. Opt. 15(5), 055301 (2013).
[Crossref]

Journal of Architecture of Taiwan (1)

M. Y. Hsieh and C. Y. Chen, “The Effects of interior illuminance Distribution on Spatial impression,” Journal of Architecture of Taiwan 75, 81–98 (2011).

Opt. Express (5)

Opt. Quantum Electron. (1)

Y. P. Hsiao, H. C. Wang, S. H. Chen, C. H. Tsai, and J. H. Yang, “Identified early stage mycosis fungoides from psoriasis and atopic dermatitis using non-invasive color contrast enhancement by LEDs lighting,” Opt. Quantum Electron. 47(7), 1599–1611 (2015).
[Crossref]

Org. Electron. (1)

L. Y. Chen, S. H. Chen, C. T. Kuo, and H. C. Wang, “Spectral design and evaluation of OLEDs as light sources,” Org. Electron. 15(10), 2194–2209 (2014).
[Crossref]

Proc. (1)

J. Muschaweck, “Randomized micro lens arrays for color mixing,” Proc. SPIE7954, 79540A (2011).

Other (4)

American National Standards Institute, http://www.ansi.org/ .

http://assets.sylvania.com/assets/documents/FAQ0026-0605.985fe903-aa8a-4885-a1ad-5c077c8f97bc.pdf

http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/cfls/Criteria_CFLs_Version4.0_draft4.pdf

http://www.telescope-optics.net/index.htm

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Establishment of the lamp module and flowchart of optical calculation.
Fig. 2
Fig. 2 Flashlight structure: (a) side view of the x–z plane, (b) side view of the z–y plane, and (c) top view of the x–y plane.
Fig. 3
Fig. 3 Light ray tracing diagram of RGB LED within the flashlight.
Fig. 4
Fig. 4 (a) Diagram of the 30° rotation of LED, (b) relative position of the reflective mirror S11 of the red LED, (c) relative position of the reflective mirror S12 of the green LED, (d) relative position of the reflective mirror S13 of the blue LED.
Fig. 5
Fig. 5 (a) Relative positions of reflective mirrors S2 and S1, (b) diagram of LED light being reflected to coordinate (0, 44.4), (c) diagram of LED light being reflected to coordinate (0, 330).
Fig. 6
Fig. 6 (a) Relative position of reflecting surfaces S2 and S1, (b) diagram of LED light being reflected to coordinate (0, 44.4).
Fig. 7
Fig. 7 Graphical representation of the chromaticity specification of solid-state lighting products on the CIE 1931 chromaticity diagram with combinatorial numbers of LED color mixture types.

Tables (2)

Tables Icon

Table 1 Positions of the optical system and optical values before and after optimization.

Tables Icon

Table 2 Optical computation results of the RGB LED flashlight under eight correlated color temperatures

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Uniformity= E 0 E a
E= 1 N n=1 N | E n E a E a | ×100%
Δu'v ' rms = 1 M i M [ ( u i ' u avg ' ) 2 + ( v i ' v avg ' ) 2 ]
z=sag(r)= r 2 /R 1+ 1( 1+k ) r 2 / R 2
z1'=sag(x1')= x1 ' 2 80
z=(263+4x)± 5 x 2 +2650x+1.246× 10 5
z2'=sag(x2')= x2 ' 2 /105 1+ 1x2 ' 2 / 105 2

Metrics