Abstract

This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet’s principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide (VO2), the proposed meta-material is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Emission of terahertz pulses from vanadium dioxide films undergoing metal–insulator phase transition

Mikhail Esaulkov, Petr Solyankin, Artem Sidorov, Lyubov Parshina, Artem Makarevich, Qi Jin, Qin Luo, Oleg Novodvorsky, Andrey Kaul, Elena Cherepetskaya, Alexander Shkurinov, Vladimir Makarov, and Xi-Cheng Zhang
Optica 2(9) 790-796 (2015)

Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition

Pankaj Mandal, Andrew Speck, Changhyun Ko, and Shriram Ramanathan
Opt. Lett. 36(10) 1927-1929 (2011)

Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering

Minseok Kim, Junho Jeong, Joyce K. S. Poon, and George V. Eleftheriades
J. Opt. Soc. Am. B 33(5) 980-988 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
    [Crossref] [PubMed]
  2. T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
    [Crossref]
  3. I. V. Shadrivov, P. V. Kapitanova, S. I. Maslovski, and Y. S. Kivshar, “Metamaterials controlled with light,” Phys. Rev. Lett. 109, 083902 (2012).
    [Crossref] [PubMed]
  4. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
    [Crossref] [PubMed]
  5. H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
    [Crossref]
  6. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444, 597–600 (2006).
    [Crossref] [PubMed]
  7. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
    [Crossref]
  8. F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
    [Crossref] [PubMed]
  9. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
    [Crossref] [PubMed]
  10. J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12, 063007 (2010).
    [Crossref]
  11. K. Kempa, “Percolation effects in the checkerboard babinet series of metamaterial structures,” Phys. Status Solidi Rapid Res. Lett. 4, 218–220 (2010).
    [Crossref]
  12. K. Takano, F. Miyamaru, K. Akiyama, H. Miyazaki, M. W. Takeda, Y. Abe, Y. Tokuda, H. Ito, and M. Hangyo, “Crossover from capacitive to inductive electromagnetic responses in near self-complementary metallic checker-board patterns,” Opt. Express 22, 24787–24795 (2014).
    [Crossref] [PubMed]
  13. D. Gonzalez-Ovejero, E. Martini, B. Loiseaux, C. Tripon-Canseliet, M. Mencagli, J. Chazelas, and S. Maci, “Basic properties of checkerboard metasurfaces,” IEEE Antennas Wireless Propag. Lett. 14, 406–409 (2015).
    [Crossref]
  14. Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88, 205138 (2013).
    [Crossref]
  15. Y. Urade, Y. Nakata, T. Nakanishi, and M. Kitano, “Frequency-independent response of self-complementary checkerboard screens,” Phys. Rev. Lett. 114, 237401 (2015).
    [Crossref] [PubMed]
  16. J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. A. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microw. Wirel. Components Lett. 23, 291–293 (2013).
    [Crossref]
  17. F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34 (1959).
    [Crossref]
  18. K. Okimura, Y. Sasakawa, and Y. Nihei, “X-ray diffraction study of electric field-induced metal-insulator transition of vanadium dioxide film on sapphire substrate,” Jpn. J. Appl. Phys. 45, 9200–9202 (2006).
    [Crossref]
  19. A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
    [Crossref]
  20. J. A. Kong, Electromagnetic Wave Theory, 2 (Wiley, 1990).
  21. C. E. Baum and B. K. Singaraju, “Generalization of Babinet’s principle in terms of the combined field to include impedance loaded aperture antennas and scatterers,” Interaction Note No. 217, Air Force Weapons Lab., Kirtland Air Force Base, NM87117 (1974).
  22. J. D. Baena, J. P. del Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary meta-surfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92, 245413 (2015).
    [Crossref]
  23. H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
    [Crossref] [PubMed]
  24. T. Zentgraf, T. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
    [Crossref]
  25. K. Okimura and N. Kubo, “Preparation of VO2 films with metal-insulator transition on sapphire and silicon substrates by inductively coupled plasma-assisted sputtering,” Jpn. J. Appl. Phys. 44, 1150–1153 (2005).
    [Crossref]
  26. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
    [Crossref]
  27. A. C. Strikwerda, M. Zalkovskij, K. Iwaszczuk, D. L. Lorenzen, and P. U. Jepsen, “Permanently reconfigured metamaterials due to terahertz induced mass transfer of gold,” Opt. Express 23, 11586–11599 (2015).
    [Crossref] [PubMed]

2015 (4)

D. Gonzalez-Ovejero, E. Martini, B. Loiseaux, C. Tripon-Canseliet, M. Mencagli, J. Chazelas, and S. Maci, “Basic properties of checkerboard metasurfaces,” IEEE Antennas Wireless Propag. Lett. 14, 406–409 (2015).
[Crossref]

Y. Urade, Y. Nakata, T. Nakanishi, and M. Kitano, “Frequency-independent response of self-complementary checkerboard screens,” Phys. Rev. Lett. 114, 237401 (2015).
[Crossref] [PubMed]

J. D. Baena, J. P. del Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary meta-surfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92, 245413 (2015).
[Crossref]

A. C. Strikwerda, M. Zalkovskij, K. Iwaszczuk, D. L. Lorenzen, and P. U. Jepsen, “Permanently reconfigured metamaterials due to terahertz induced mass transfer of gold,” Opt. Express 23, 11586–11599 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (3)

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. A. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microw. Wirel. Components Lett. 23, 291–293 (2013).
[Crossref]

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88, 205138 (2013).
[Crossref]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

2012 (2)

I. V. Shadrivov, P. V. Kapitanova, S. I. Maslovski, and Y. S. Kivshar, “Metamaterials controlled with light,” Phys. Rev. Lett. 109, 083902 (2012).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref] [PubMed]

2011 (2)

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

2010 (2)

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12, 063007 (2010).
[Crossref]

K. Kempa, “Percolation effects in the checkerboard babinet series of metamaterial structures,” Phys. Status Solidi Rapid Res. Lett. 4, 218–220 (2010).
[Crossref]

2009 (1)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

2008 (1)

2007 (2)

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref] [PubMed]

T. Zentgraf, T. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

2006 (2)

K. Okimura, Y. Sasakawa, and Y. Nihei, “X-ray diffraction study of electric field-induced metal-insulator transition of vanadium dioxide film on sapphire substrate,” Jpn. J. Appl. Phys. 45, 9200–9202 (2006).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

2005 (1)

K. Okimura and N. Kubo, “Preparation of VO2 films with metal-insulator transition on sapphire and silicon substrates by inductively coupled plasma-assisted sputtering,” Jpn. J. Appl. Phys. 44, 1150–1153 (2005).
[Crossref]

2001 (1)

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

1990 (1)

1959 (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34 (1959).
[Crossref]

Abe, Y.

Akiyama, K.

Averitt, R. D.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

Baena, J. D.

J. D. Baena, J. P. del Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary meta-surfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92, 245413 (2015).
[Crossref]

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. A. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microw. Wirel. Components Lett. 23, 291–293 (2013).
[Crossref]

Baum, C. E.

C. E. Baum and B. K. Singaraju, “Generalization of Babinet’s principle in terms of the combined field to include impedance loaded aperture antennas and scatterers,” Interaction Note No. 217, Air Force Weapons Lab., Kirtland Air Force Base, NM87117 (1974).

Belov, P. A.

J. D. Baena, J. P. del Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary meta-surfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92, 245413 (2015).
[Crossref]

Bingham, C. M.

Cavalleri, A.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Chazelas, J.

D. Gonzalez-Ovejero, E. Martini, B. Loiseaux, C. Tripon-Canseliet, M. Mencagli, J. Chazelas, and S. Maci, “Basic properties of checkerboard metasurfaces,” IEEE Antennas Wireless Propag. Lett. 14, 406–409 (2015).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

del Risco, J. P.

J. D. Baena, J. P. del Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary meta-surfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92, 245413 (2015).
[Crossref]

Edmunds, J. D.

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12, 063007 (2010).
[Crossref]

Fattinger, C.

Forget, P.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Giessen, H.

T. Zentgraf, T. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Glybovski, S. B.

J. D. Baena, J. P. del Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary meta-surfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92, 245413 (2015).
[Crossref]

Gonzalez-Ovejero, D.

D. Gonzalez-Ovejero, E. Martini, B. Loiseaux, C. Tripon-Canseliet, M. Mencagli, J. Chazelas, and S. Maci, “Basic properties of checkerboard metasurfaces,” IEEE Antennas Wireless Propag. Lett. 14, 406–409 (2015).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Grischkowsky, D.

Hangyo, M.

Hibbins, A. P.

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12, 063007 (2010).
[Crossref]

Highstrete, C.

Isozaki, A.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Ito, H.

Iwaszczuk, K.

Jepsen, P. U.

Jiang, L.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Kaiser, S.

T. Zentgraf, T. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Kan, T.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Kanda, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Kapitanova, P. V.

I. V. Shadrivov, P. V. Kapitanova, S. I. Maslovski, and Y. S. Kivshar, “Metamaterials controlled with light,” Phys. Rev. Lett. 109, 083902 (2012).
[Crossref] [PubMed]

Keiding, S.

Kempa, K.

K. Kempa, “Percolation effects in the checkerboard babinet series of metamaterial structures,” Phys. Status Solidi Rapid Res. Lett. 4, 218–220 (2010).
[Crossref]

Kieffer, J. C.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Kitano, M.

Y. Urade, Y. Nakata, T. Nakanishi, and M. Kitano, “Frequency-independent response of self-complementary checkerboard screens,” Phys. Rev. Lett. 114, 237401 (2015).
[Crossref] [PubMed]

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref] [PubMed]

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88, 205138 (2013).
[Crossref]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref] [PubMed]

I. V. Shadrivov, P. V. Kapitanova, S. I. Maslovski, and Y. S. Kivshar, “Metamaterials controlled with light,” Phys. Rev. Lett. 109, 083902 (2012).
[Crossref] [PubMed]

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory, 2 (Wiley, 1990).

Konishi, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Kubo, N.

K. Okimura and N. Kubo, “Preparation of VO2 films with metal-insulator transition on sapphire and silicon substrates by inductively coupled plasma-assisted sputtering,” Jpn. J. Appl. Phys. 44, 1150–1153 (2005).
[Crossref]

Kuwata-Gonokami, M.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Landy, N. I.

Lederer, F.

T. Zentgraf, T. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Lee, M.

Loiseaux, B.

D. Gonzalez-Ovejero, E. Martini, B. Loiseaux, C. Tripon-Canseliet, M. Mencagli, J. Chazelas, and S. Maci, “Basic properties of checkerboard metasurfaces,” IEEE Antennas Wireless Propag. Lett. 14, 406–409 (2015).
[Crossref]

Lorenzen, D. L.

Losada, V.

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. A. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microw. Wirel. Components Lett. 23, 291–293 (2013).
[Crossref]

Maci, S.

D. Gonzalez-Ovejero, E. Martini, B. Loiseaux, C. Tripon-Canseliet, M. Mencagli, J. Chazelas, and S. Maci, “Basic properties of checkerboard metasurfaces,” IEEE Antennas Wireless Propag. Lett. 14, 406–409 (2015).
[Crossref]

Marques, R.

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. A. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microw. Wirel. Components Lett. 23, 291–293 (2013).
[Crossref]

Martini, E.

D. Gonzalez-Ovejero, E. Martini, B. Loiseaux, C. Tripon-Canseliet, M. Mencagli, J. Chazelas, and S. Maci, “Basic properties of checkerboard metasurfaces,” IEEE Antennas Wireless Propag. Lett. 14, 406–409 (2015).
[Crossref]

Maslovski, S. I.

I. V. Shadrivov, P. V. Kapitanova, S. I. Maslovski, and Y. S. Kivshar, “Metamaterials controlled with light,” Phys. Rev. Lett. 109, 083902 (2012).
[Crossref] [PubMed]

Matsumoto, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Medina, F.

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. A. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microw. Wirel. Components Lett. 23, 291–293 (2013).
[Crossref]

Mencagli, M.

D. Gonzalez-Ovejero, E. Martini, B. Loiseaux, C. Tripon-Canseliet, M. Mencagli, J. Chazelas, and S. Maci, “Basic properties of checkerboard metasurfaces,” IEEE Antennas Wireless Propag. Lett. 14, 406–409 (2015).
[Crossref]

Meyrath, T.

T. Zentgraf, T. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Miyamaru, F.

Miyazaki, H.

Morin, F. J.

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34 (1959).
[Crossref]

Morita, H.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref] [PubMed]

Nakanishi, T.

Y. Urade, Y. Nakata, T. Nakanishi, and M. Kitano, “Frequency-independent response of self-complementary checkerboard screens,” Phys. Rev. Lett. 114, 237401 (2015).
[Crossref] [PubMed]

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref] [PubMed]

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88, 205138 (2013).
[Crossref]

Nakata, Y.

Y. Urade, Y. Nakata, T. Nakanishi, and M. Kitano, “Frequency-independent response of self-complementary checkerboard screens,” Phys. Rev. Lett. 114, 237401 (2015).
[Crossref] [PubMed]

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88, 205138 (2013).
[Crossref]

Nemoto, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Nihei, Y.

K. Okimura, Y. Sasakawa, and Y. Nihei, “X-ray diffraction study of electric field-induced metal-insulator transition of vanadium dioxide film on sapphire substrate,” Jpn. J. Appl. Phys. 45, 9200–9202 (2006).
[Crossref]

Nishida, T.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref] [PubMed]

Nishiyama, Y.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref] [PubMed]

O’Hara, J. F.

Okimura, K.

K. Okimura, Y. Sasakawa, and Y. Nihei, “X-ray diffraction study of electric field-induced metal-insulator transition of vanadium dioxide film on sapphire substrate,” Jpn. J. Appl. Phys. 45, 9200–9202 (2006).
[Crossref]

K. Okimura and N. Kubo, “Preparation of VO2 films with metal-insulator transition on sapphire and silicon substrates by inductively coupled plasma-assisted sputtering,” Jpn. J. Appl. Phys. 44, 1150–1153 (2005).
[Crossref]

Ortiz, J. D.

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. A. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microw. Wirel. Components Lett. 23, 291–293 (2013).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Padilla, W. J.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Plum, E.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Quijano, J. A.

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. A. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microw. Wirel. Components Lett. 23, 291–293 (2013).
[Crossref]

Ráksi, F.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Rockstuhl, C.

T. Zentgraf, T. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Sambles, J. R.

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12, 063007 (2010).
[Crossref]

Sasakawa, Y.

K. Okimura, Y. Sasakawa, and Y. Nihei, “X-ray diffraction study of electric field-induced metal-insulator transition of vanadium dioxide film on sapphire substrate,” Jpn. J. Appl. Phys. 45, 9200–9202 (2006).
[Crossref]

Seidel, A.

T. Zentgraf, T. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Shadrivov, I. V.

I. V. Shadrivov, P. V. Kapitanova, S. I. Maslovski, and Y. S. Kivshar, “Metamaterials controlled with light,” Phys. Rev. Lett. 109, 083902 (2012).
[Crossref] [PubMed]

Shimoyama, I.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

Siders, C. W.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Singaraju, B. K.

C. E. Baum and B. K. Singaraju, “Generalization of Babinet’s principle in terms of the combined field to include impedance loaded aperture antennas and scatterers,” Interaction Note No. 217, Air Force Weapons Lab., Kirtland Air Force Base, NM87117 (1974).

Slobozhanyuk, A. P.

J. D. Baena, J. P. del Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary meta-surfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92, 245413 (2015).
[Crossref]

Squier, J. A.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Strikwerda, A. C.

Takano, K.

Takeda, M. W.

Tao, H.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref] [PubMed]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Tokuda, Y.

Tóth, Cs.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Tripon-Canseliet, C.

D. Gonzalez-Ovejero, E. Martini, B. Loiseaux, C. Tripon-Canseliet, M. Mencagli, J. Chazelas, and S. Maci, “Basic properties of checkerboard metasurfaces,” IEEE Antennas Wireless Propag. Lett. 14, 406–409 (2015).
[Crossref]

Urade, Y.

Y. Urade, Y. Nakata, T. Nakanishi, and M. Kitano, “Frequency-independent response of self-complementary checkerboard screens,” Phys. Rev. Lett. 114, 237401 (2015).
[Crossref] [PubMed]

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88, 205138 (2013).
[Crossref]

van Exter, M.

Youngs, I. J.

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12, 063007 (2010).
[Crossref]

Zalkovskij, M.

Zentgraf, T.

T. Zentgraf, T. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Zhang, X.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102, 221906 (2013).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

D. Gonzalez-Ovejero, E. Martini, B. Loiseaux, C. Tripon-Canseliet, M. Mencagli, J. Chazelas, and S. Maci, “Basic properties of checkerboard metasurfaces,” IEEE Antennas Wireless Propag. Lett. 14, 406–409 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

IEEE Microw. Wirel. Components Lett. (1)

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. A. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microw. Wirel. Components Lett. 23, 291–293 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

K. Okimura and N. Kubo, “Preparation of VO2 films with metal-insulator transition on sapphire and silicon substrates by inductively coupled plasma-assisted sputtering,” Jpn. J. Appl. Phys. 44, 1150–1153 (2005).
[Crossref]

K. Okimura, Y. Sasakawa, and Y. Nihei, “X-ray diffraction study of electric field-induced metal-insulator transition of vanadium dioxide film on sapphire substrate,” Jpn. J. Appl. Phys. 45, 9200–9202 (2006).
[Crossref]

Nano Lett. (1)

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

New J. Phys. (1)

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12, 063007 (2010).
[Crossref]

Opt. Express (4)

Phys. Rev. B (3)

J. D. Baena, J. P. del Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary meta-surfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92, 245413 (2015).
[Crossref]

T. Zentgraf, T. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76, 033407 (2007).
[Crossref]

Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88, 205138 (2013).
[Crossref]

Phys. Rev. Lett. (4)

Y. Urade, Y. Nakata, T. Nakanishi, and M. Kitano, “Frequency-independent response of self-complementary checkerboard screens,” Phys. Rev. Lett. 114, 237401 (2015).
[Crossref] [PubMed]

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34 (1959).
[Crossref]

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

I. V. Shadrivov, P. V. Kapitanova, S. I. Maslovski, and Y. S. Kivshar, “Metamaterials controlled with light,” Phys. Rev. Lett. 109, 083902 (2012).
[Crossref] [PubMed]

Phys. Status Solidi Rapid Res. Lett. (1)

K. Kempa, “Percolation effects in the checkerboard babinet series of metamaterial structures,” Phys. Status Solidi Rapid Res. Lett. 4, 218–220 (2010).
[Crossref]

Sci. Rep. (1)

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref] [PubMed]

Other (2)

J. A. Kong, Electromagnetic Wave Theory, 2 (Wiley, 1990).

C. E. Baum and B. K. Singaraju, “Generalization of Babinet’s principle in terms of the combined field to include impedance loaded aperture antennas and scatterers,” Interaction Note No. 217, Air Force Weapons Lab., Kirtland Air Force Base, NM87117 (1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Principles of Babinet-invertible metasurface. (a) Off state. (b) Babinet-inverted structure. Note that the polarization of the incident wave is orthogonal to that in the off state. (c) On state. The vectors E , H , and k indicate the electric field, the magnetic field, and the wavevector of the incident plane waves, respectively.

Fig. 2
Fig. 2

(a) Babinet-invertible metasurface design. The parameters are as follows: a = 75µm, g = 5µm, u = 15µm, and d = 32µm. The broken lines indicate the area where the Al structures overlap the VO2. (b) Calculated g dependence of the on-off ratio of the power transmission at the peak and dip frequencies and their frequency difference. (c) Photograph of fabricated metasurface. The exposed regions of the VO2 patches are digitally colored in turquoise for clarity.

Fig. 3
Fig. 3

Measured transmission coefficient spectra at T = 300 and 370K: (a) amplitude transmission spectra and (b) phase shift spectra.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t ˜ ( ω ) + t ˜ c ( ω ) = 1 ,

Metrics