Abstract

We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers

Kwang Jae Lee, Sang-Jo Kim, Jae-Joon Kim, Kyungwook Hwang, Sung-Tae Kim, and Seong-Ju Park
Opt. Express 22(S4) A1164-A1173 (2014)

High efficiency ultraviolet GaN-based vertical light emitting diodes on 6-inch sapphire substrate using ex-situ sputtered AlN nucleation layer

Jeong-Tak Oh, Yong-Tae Moon, Dae-Sung Kang, Chan-Keun Park, Jae-Woong Han, Myung-Hoon Jung, Youn-Joon Sung, Hwan-Hee Jeong, June-O Song, and Tae-Yeon Seong
Opt. Express 26(5) 5111-5117 (2018)

Performance enhancement of yellow InGaN-based multiple-quantum-well light-emitting diodes grown on Si substrates by optimizing the InGaN/GaN superlattice interlayer

Xixia Tao, Junlin Liu, Jianli Zhang, Chunlan Mo, Longquan Xu, Jie Ding, Guangxu Wang, Xiaolan Wang, Xiaoming Wu, Zhijue Quan, Shuan Pan, Fang Fang, and Fengyi Jiang
Opt. Mater. Express 8(5) 1221-1230 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
    [Crossref] [PubMed]
  2. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
    [Crossref]
  3. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [Crossref] [PubMed]
  4. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
    [Crossref] [PubMed]
  5. H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. 21(45), 4641–4646 (2009).
    [Crossref]
  6. S. Nakamura and M. R. Krames, “History of gallium-nitride-based light-emitting diodes for illumination,” Proc. IEEE 101(10), 2211–2220 (2013).
    [Crossref]
  7. S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra, “Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE,” IEEE Electron Device Lett. 25(5), 247–249 (2004).
    [Crossref]
  8. C. A. Tran, A. Osinski, R. F. Karlicek, and I. Berishev, “Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 75(11), 1494–1496 (1999).
    [Crossref]
  9. A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, “Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness,” Jpn. J. Appl. Phys. 39(Part 2, No. 11B), L1183–L1185 (2000).
    [Crossref]
  10. D. Zhu, D. J. Wallis, and C. J. Humphreys, “Prospects of III-nitride optoelectronics grown on Si,” Rep. Prog. Phys. 76(10), 106501 (2013).
    [Crossref] [PubMed]
  11. A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, “Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in situ SixNy masking,” Appl. Phys. Lett. 80(20), 3670–3672 (2002).
    [Crossref]
  12. W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).
  13. R. H. Horng, B. R. Wu, C. H. Tien, S. L. Ou, M. H. Yang, H. C. Kuo, and D. S. Wuu, “Performance of GaN-based light-emitting diodes fabricated using GaN epilayers grown on silicon substrates,” Opt. Express 22(S1Suppl 1), A179–A187 (2014).
    [Crossref] [PubMed]
  14. S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
    [Crossref]
  15. S. Strite and H. Morkoç, “GaN, AIN, and InN: A review,” J. Vac. Sci. Technol. B 10(4), 1237–1266 (1992).
    [Crossref]
  16. S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennegues, E. W. Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates,” J. Cryst. Growth 248, 568–572 (2003).
    [Crossref]
  17. S. Tanaka, Y. Honda, N. Sawaki, and M. Hibino, “Structural characterization of GaN laterally overgrown on a (111)Si substrate,” Appl. Phys. Lett. 79(7), 955–957 (2001).
    [Crossref]
  18. M. H. Kim, Y. G. Do, H. C. Kang, D. Y. Noh, and S. J. Park, “Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 79(17), 2713–2715 (2001).
    [Crossref]
  19. K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
    [Crossref]
  20. E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 79(20), 3230–3232 (2001).
    [Crossref]
  21. J. Ma, X. Zhu, K. M. Wong, X. Zou, and K. M. Lau, “Improved GaN-based LED grown on silicon (111) substrates using stress/dislocation-engineered interlayers,” J. Cryst. Growth 370, 265–268 (2013).
    [Crossref]
  22. J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, “The origin of stress reduction by low-temperature AlN interlayers,” Appl. Phys. Lett. 81(15), 2722–2724 (2002).
    [Crossref]
  23. A. Reiher, J. Blasing, A. Dadgar, A. Diez, and A. Krost, “Efficient stress relief in GaN heteroepitaxy on Si (111) using low-temperature AlN interlayers,” J. Cryst. Growth 248, 563–567 (2003).
    [Crossref]
  24. Y. Lu, G. W. Cong, X. L. Liu, D. C. Lu, Z. G. Wang, and M. F. Wu, “Depth distribution of the strain in the GaN layer with low-temperature AlN interlayer on Si(111) substrate studied by Rutherford backscattering/channeling,” Appl. Phys. Lett. 85(23), 5562–5564 (2004).
    [Crossref]
  25. A. Bourret, C. Adelmann, B. Daudin, J. L. Rouvière, G. Feuillet, and G. Mula, “Strain relaxation in (0001) AlN/GaN heterostructures,” Phys. Rev. B 63(24), 245307 (2001).
    [Crossref]
  26. K. J. Lee, S. J. Kim, J. J. Kim, K. Hwang, S. T. Kim, and S. J. Park, “Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers,” Opt. Express 22(S4Suppl 4), A1164–A1173 (2014).
    [Crossref] [PubMed]
  27. M. E. Vickers, M. J. Kappers, R. Datta, C. McAleese, T. M. Smeeton, F. D. Rayment, and C. J. Humphreys, “In-plane imperfections in GaN studied by x-ray diffraction,” J. Phys. D Appl. Phys. 38(10A), A99–A104 (2005).
    [Crossref]
  28. S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86(24), 241904 (2005).
    [Crossref]
  29. R. J. Briggs and A. K. Ramdas, “Piezospectroscopic study of the Raman spectrum of cadmium sulfide,” Phys. Rev. B 13(12), 5518–5529 (1976).
    [Crossref]
  30. C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
    [Crossref] [PubMed]
  31. Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87(25), 251915 (2005).
    [Crossref]
  32. D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4(10), 3451–3455 (1971).
    [Crossref]
  33. S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
    [Crossref]
  34. Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
    [Crossref]
  35. L. Bingqian, F. Yuchun, and L. Yuhua, “An electrical model of InGaN based high power light emitting diodes with self-heating effect,” Proc. SPIE 6669, 66691C (2007).

2014 (2)

2013 (4)

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

J. Ma, X. Zhu, K. M. Wong, X. Zou, and K. M. Lau, “Improved GaN-based LED grown on silicon (111) substrates using stress/dislocation-engineered interlayers,” J. Cryst. Growth 370, 265–268 (2013).
[Crossref]

S. Nakamura and M. R. Krames, “History of gallium-nitride-based light-emitting diodes for illumination,” Proc. IEEE 101(10), 2211–2220 (2013).
[Crossref]

D. Zhu, D. J. Wallis, and C. J. Humphreys, “Prospects of III-nitride optoelectronics grown on Si,” Rep. Prog. Phys. 76(10), 106501 (2013).
[Crossref] [PubMed]

2012 (1)

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

2009 (1)

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. 21(45), 4641–4646 (2009).
[Crossref]

2007 (1)

L. Bingqian, F. Yuchun, and L. Yuhua, “An electrical model of InGaN based high power light emitting diodes with self-heating effect,” Proc. SPIE 6669, 66691C (2007).

2006 (1)

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

2005 (4)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87(25), 251915 (2005).
[Crossref]

M. E. Vickers, M. J. Kappers, R. Datta, C. McAleese, T. M. Smeeton, F. D. Rayment, and C. J. Humphreys, “In-plane imperfections in GaN studied by x-ray diffraction,” J. Phys. D Appl. Phys. 38(10A), A99–A104 (2005).
[Crossref]

S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86(24), 241904 (2005).
[Crossref]

2004 (2)

Y. Lu, G. W. Cong, X. L. Liu, D. C. Lu, Z. G. Wang, and M. F. Wu, “Depth distribution of the strain in the GaN layer with low-temperature AlN interlayer on Si(111) substrate studied by Rutherford backscattering/channeling,” Appl. Phys. Lett. 85(23), 5562–5564 (2004).
[Crossref]

S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra, “Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE,” IEEE Electron Device Lett. 25(5), 247–249 (2004).
[Crossref]

2003 (3)

S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennegues, E. W. Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates,” J. Cryst. Growth 248, 568–572 (2003).
[Crossref]

A. Reiher, J. Blasing, A. Dadgar, A. Diez, and A. Krost, “Efficient stress relief in GaN heteroepitaxy on Si (111) using low-temperature AlN interlayers,” J. Cryst. Growth 248, 563–567 (2003).
[Crossref]

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

2002 (2)

J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, “The origin of stress reduction by low-temperature AlN interlayers,” Appl. Phys. Lett. 81(15), 2722–2724 (2002).
[Crossref]

A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, “Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in situ SixNy masking,” Appl. Phys. Lett. 80(20), 3670–3672 (2002).
[Crossref]

2001 (4)

S. Tanaka, Y. Honda, N. Sawaki, and M. Hibino, “Structural characterization of GaN laterally overgrown on a (111)Si substrate,” Appl. Phys. Lett. 79(7), 955–957 (2001).
[Crossref]

M. H. Kim, Y. G. Do, H. C. Kang, D. Y. Noh, and S. J. Park, “Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 79(17), 2713–2715 (2001).
[Crossref]

E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 79(20), 3230–3232 (2001).
[Crossref]

A. Bourret, C. Adelmann, B. Daudin, J. L. Rouvière, G. Feuillet, and G. Mula, “Strain relaxation in (0001) AlN/GaN heterostructures,” Phys. Rev. B 63(24), 245307 (2001).
[Crossref]

2000 (2)

A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, “Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness,” Jpn. J. Appl. Phys. 39(Part 2, No. 11B), L1183–L1185 (2000).
[Crossref]

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

1999 (2)

C. A. Tran, A. Osinski, R. F. Karlicek, and I. Berishev, “Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 75(11), 1494–1496 (1999).
[Crossref]

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

1998 (1)

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

1997 (1)

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[Crossref]

1996 (1)

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

1992 (1)

S. Strite and H. Morkoç, “GaN, AIN, and InN: A review,” J. Vac. Sci. Technol. B 10(4), 1237–1266 (1992).
[Crossref]

1976 (1)

R. J. Briggs and A. K. Ramdas, “Piezospectroscopic study of the Raman spectrum of cadmium sulfide,” Phys. Rev. B 13(12), 5518–5529 (1976).
[Crossref]

1971 (1)

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4(10), 3451–3455 (1971).
[Crossref]

Abernathy, C. R.

S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86(24), 241904 (2005).
[Crossref]

Adelmann, C.

A. Bourret, C. Adelmann, B. Daudin, J. L. Rouvière, G. Feuillet, and G. Mula, “Strain relaxation in (0001) AlN/GaN heterostructures,” Phys. Rev. B 63(24), 245307 (2001).
[Crossref]

Ager, J. W.

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

Alam, A.

A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, “Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness,” Jpn. J. Appl. Phys. 39(Part 2, No. 11B), L1183–L1185 (2000).
[Crossref]

Allerman, A. A.

S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86(24), 241904 (2005).
[Crossref]

Antipov, V. G.

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

Beaumont, B.

E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 79(20), 3230–3232 (2001).
[Crossref]

Berishev, I.

C. A. Tran, A. Osinski, R. F. Karlicek, and I. Berishev, “Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 75(11), 1494–1496 (1999).
[Crossref]

Bettencourt, J. P.

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

Bimberg, D.

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4(10), 3451–3455 (1971).
[Crossref]

Bingqian, L.

L. Bingqian, F. Yuchun, and L. Yuhua, “An electrical model of InGaN based high power light emitting diodes with self-heating effect,” Proc. SPIE 6669, 66691C (2007).

Blasing, J.

A. Reiher, J. Blasing, A. Dadgar, A. Diez, and A. Krost, “Efficient stress relief in GaN heteroepitaxy on Si (111) using low-temperature AlN interlayers,” J. Cryst. Growth 248, 563–567 (2003).
[Crossref]

Bläsing, J.

J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, “The origin of stress reduction by low-temperature AlN interlayers,” Appl. Phys. Lett. 81(15), 2722–2724 (2002).
[Crossref]

A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, “Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in situ SixNy masking,” Appl. Phys. Lett. 80(20), 3670–3672 (2002).
[Crossref]

A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, “Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness,” Jpn. J. Appl. Phys. 39(Part 2, No. 11B), L1183–L1185 (2000).
[Crossref]

Boeykens, S.

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

Borghs, G.

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

Bour, D. P.

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[Crossref]

Bourret, A.

A. Bourret, C. Adelmann, B. Daudin, J. L. Rouvière, G. Feuillet, and G. Mula, “Strain relaxation in (0001) AlN/GaN heterostructures,” Phys. Rev. B 63(24), 245307 (2001).
[Crossref]

Brandt, O.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Bremser, M. D.

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

Briggs, R. J.

R. J. Briggs and A. K. Ramdas, “Piezospectroscopic study of the Raman spectrum of cadmium sulfide,” Phys. Rev. B 13(12), 5518–5529 (1976).
[Crossref]

Chelakara, R. V.

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

Chen, H.

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. 21(45), 4641–4646 (2009).
[Crossref]

Chen, P.

Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87(25), 251915 (2005).
[Crossref]

Cheng, K.

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

Chow, T. P.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Chu, S. N. G.

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

Chua, S. J.

Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87(25), 251915 (2005).
[Crossref]

Cong, G. W.

Y. Lu, G. W. Cong, X. L. Liu, D. C. Lu, Z. G. Wang, and M. F. Wu, “Depth distribution of the strain in the GaN layer with low-temperature AlN interlayer on Si(111) substrate studied by Rutherford backscattering/channeling,” Appl. Phys. Lett. 85(23), 5562–5564 (2004).
[Crossref]

Dadgar, A.

A. Reiher, J. Blasing, A. Dadgar, A. Diez, and A. Krost, “Efficient stress relief in GaN heteroepitaxy on Si (111) using low-temperature AlN interlayers,” J. Cryst. Growth 248, 563–567 (2003).
[Crossref]

J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, “The origin of stress reduction by low-temperature AlN interlayers,” Appl. Phys. Lett. 81(15), 2722–2724 (2002).
[Crossref]

A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, “Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in situ SixNy masking,” Appl. Phys. Lett. 80(20), 3670–3672 (2002).
[Crossref]

A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, “Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness,” Jpn. J. Appl. Phys. 39(Part 2, No. 11B), L1183–L1185 (2000).
[Crossref]

Daele, B. V.

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

Datta, R.

M. E. Vickers, M. J. Kappers, R. Datta, C. McAleese, T. M. Smeeton, F. D. Rayment, and C. J. Humphreys, “In-plane imperfections in GaN studied by x-ray diffraction,” J. Phys. D Appl. Phys. 38(10A), A99–A104 (2005).
[Crossref]

Daudin, B.

A. Bourret, C. Adelmann, B. Daudin, J. L. Rouvière, G. Feuillet, and G. Mula, “Strain relaxation in (0001) AlN/GaN heterostructures,” Phys. Rev. B 63(24), 245307 (2001).
[Crossref]

Davis, R. F.

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

de Mierry, P.

E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 79(20), 3230–3232 (2001).
[Crossref]

Degroote, S.

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

Derluyn, J.

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

Detchprohm, T.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Diez, A.

A. Reiher, J. Blasing, A. Dadgar, A. Diez, and A. Krost, “Efficient stress relief in GaN heteroepitaxy on Si (111) using low-temperature AlN interlayers,” J. Cryst. Growth 248, 563–567 (2003).
[Crossref]

J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, “The origin of stress reduction by low-temperature AlN interlayers,” Appl. Phys. Lett. 81(15), 2722–2724 (2002).
[Crossref]

A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, “Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in situ SixNy masking,” Appl. Phys. Lett. 80(20), 3670–3672 (2002).
[Crossref]

A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, “Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness,” Jpn. J. Appl. Phys. 39(Part 2, No. 11B), L1183–L1185 (2000).
[Crossref]

Do, Y. G.

M. H. Kim, Y. G. Do, H. C. Kang, D. Y. Noh, and S. J. Park, “Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 79(17), 2713–2715 (2001).
[Crossref]

Drift, E. W.

S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennegues, E. W. Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates,” J. Cryst. Growth 248, 568–572 (2003).
[Crossref]

Engelen, J.

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

Faleev, N. N.

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

Fehse, K.

A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, “Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in situ SixNy masking,” Appl. Phys. Lett. 80(20), 3670–3672 (2002).
[Crossref]

Feltin, E.

E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 79(20), 3230–3232 (2001).
[Crossref]

Feuillet, G.

A. Bourret, C. Adelmann, B. Daudin, J. L. Rouvière, G. Feuillet, and G. Mula, “Strain relaxation in (0001) AlN/GaN heterostructures,” Phys. Rev. B 63(24), 245307 (2001).
[Crossref]

Follstaedt, D. M.

S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86(24), 241904 (2005).
[Crossref]

Fonstad, C. G.

Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87(25), 251915 (2005).
[Crossref]

Francoeur, S.

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

Germain, M.

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

Gibart, P.

E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 79(20), 3230–3232 (2001).
[Crossref]

Grahn, H. T.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Grave de Peralta, L.

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

Green, D. S.

S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra, “Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE,” IEEE Electron Device Lett. 25(5), 247–249 (2004).
[Crossref]

Grobe, E.

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4(10), 3451–3455 (1971).
[Crossref]

Grzegorczyk, A.

S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennegues, E. W. Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates,” J. Cryst. Growth 248, 568–572 (2003).
[Crossref]

Guo, L.

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. 21(45), 4641–4646 (2009).
[Crossref]

Haffouz, S.

S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennegues, E. W. Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates,” J. Cryst. Growth 248, 568–572 (2003).
[Crossref]

Hageman, P. R.

S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennegues, E. W. Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates,” J. Cryst. Growth 248, 568–572 (2003).
[Crossref]

Heikman, S. J.

S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra, “Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE,” IEEE Electron Device Lett. 25(5), 247–249 (2004).
[Crossref]

Heuken, M.

A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, “Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness,” Jpn. J. Appl. Phys. 39(Part 2, No. 11B), L1183–L1185 (2000).
[Crossref]

Hibino, M.

S. Tanaka, Y. Honda, N. Sawaki, and M. Hibino, “Structural characterization of GaN laterally overgrown on a (111)Si substrate,” Appl. Phys. Lett. 79(7), 955–957 (2001).
[Crossref]

Hoke, W. E.

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

Holtz, M.

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

Honda, Y.

S. Tanaka, Y. Honda, N. Sawaki, and M. Hibino, “Structural characterization of GaN laterally overgrown on a (111)Si substrate,” Appl. Phys. Lett. 79(7), 955–957 (2001).
[Crossref]

Horng, R. H.

Humphreys, C. J.

D. Zhu, D. J. Wallis, and C. J. Humphreys, “Prospects of III-nitride optoelectronics grown on Si,” Rep. Prog. Phys. 76(10), 106501 (2013).
[Crossref] [PubMed]

M. E. Vickers, M. J. Kappers, R. Datta, C. McAleese, T. M. Smeeton, F. D. Rayment, and C. J. Humphreys, “In-plane imperfections in GaN studied by x-ray diffraction,” J. Phys. D Appl. Phys. 38(10A), A99–A104 (2005).
[Crossref]

Hwang, K.

Jia, H.

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. 21(45), 4641–4646 (2009).
[Crossref]

Jones, E.

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

Kang, H. C.

M. H. Kim, Y. G. Do, H. C. Kang, D. Y. Noh, and S. J. Park, “Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 79(17), 2713–2715 (2001).
[Crossref]

Kappers, M. J.

M. E. Vickers, M. J. Kappers, R. Datta, C. McAleese, T. M. Smeeton, F. D. Rayment, and C. J. Humphreys, “In-plane imperfections in GaN studied by x-ray diffraction,” J. Phys. D Appl. Phys. 38(10A), A99–A104 (2005).
[Crossref]

Karlicek, R. F.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

C. A. Tran, A. Osinski, R. F. Karlicek, and I. Berishev, “Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 75(11), 1494–1496 (1999).
[Crossref]

Kazior, T. E.

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

Kennedy, T. D.

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

Kerr, A. J.

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

Kim, J. J.

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Kim, M. H.

M. H. Kim, Y. G. Do, H. C. Kang, D. Y. Noh, and S. J. Park, “Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 79(17), 2713–2715 (2001).
[Crossref]

Kim, S. J.

Kim, S. T.

Kisielowski, C.

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

Koleske, D. D.

S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86(24), 241904 (2005).
[Crossref]

Krames, M. R.

S. Nakamura and M. R. Krames, “History of gallium-nitride-based light-emitting diodes for illumination,” Proc. IEEE 101(10), 2211–2220 (2013).
[Crossref]

Krost, A.

A. Reiher, J. Blasing, A. Dadgar, A. Diez, and A. Krost, “Efficient stress relief in GaN heteroepitaxy on Si (111) using low-temperature AlN interlayers,” J. Cryst. Growth 248, 563–567 (2003).
[Crossref]

J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, “The origin of stress reduction by low-temperature AlN interlayers,” Appl. Phys. Lett. 81(15), 2722–2724 (2002).
[Crossref]

A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, “Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in situ SixNy masking,” Appl. Phys. Lett. 80(20), 3670–3672 (2002).
[Crossref]

A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, “Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness,” Jpn. J. Appl. Phys. 39(Part 2, No. 11B), L1183–L1185 (2000).
[Crossref]

Krüger, J.

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

Kudo, H.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

Kuo, H. C.

Lahrèche, H.

E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 79(20), 3230–3232 (2001).
[Crossref]

LaRoche, J. R.

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

Larsen, P. K.

S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennegues, E. W. Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates,” J. Cryst. Growth 248, 568–572 (2003).
[Crossref]

Lau, K. M.

J. Ma, X. Zhu, K. M. Wong, X. Zou, and K. M. Lau, “Improved GaN-based LED grown on silicon (111) substrates using stress/dislocation-engineered interlayers,” J. Cryst. Growth 370, 265–268 (2013).
[Crossref]

Laügt, M.

E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 79(20), 3230–3232 (2001).
[Crossref]

Lee, H. S.

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

Lee, K. J.

Lee, S. R.

S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86(24), 241904 (2005).
[Crossref]

Leroux, M.

E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 79(20), 3230–3232 (2001).
[Crossref]

Leys, M.

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

Li, Z.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Liliental-Weber, Z.

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

Liu, X. L.

Y. Lu, G. W. Cong, X. L. Liu, D. C. Lu, Z. G. Wang, and M. F. Wu, “Depth distribution of the strain in the GaN layer with low-temperature AlN interlayer on Si(111) substrate studied by Rutherford backscattering/channeling,” Appl. Phys. Lett. 85(23), 5562–5564 (2004).
[Crossref]

Lu, D. C.

Y. Lu, G. W. Cong, X. L. Liu, D. C. Lu, Z. G. Wang, and M. F. Wu, “Depth distribution of the strain in the GaN layer with low-temperature AlN interlayer on Si(111) substrate studied by Rutherford backscattering/channeling,” Appl. Phys. Lett. 85(23), 5562–5564 (2004).
[Crossref]

Lu, Y.

Y. Lu, G. W. Cong, X. L. Liu, D. C. Lu, Z. G. Wang, and M. F. Wu, “Depth distribution of the strain in the GaN layer with low-temperature AlN interlayer on Si(111) substrate studied by Rutherford backscattering/channeling,” Appl. Phys. Lett. 85(23), 5562–5564 (2004).
[Crossref]

Ma, J.

J. Ma, X. Zhu, K. M. Wong, X. Zou, and K. M. Lau, “Improved GaN-based LED grown on silicon (111) substrates using stress/dislocation-engineered interlayers,” J. Cryst. Growth 370, 265–268 (2013).
[Crossref]

McAleese, C.

M. E. Vickers, M. J. Kappers, R. Datta, C. McAleese, T. M. Smeeton, F. D. Rayment, and C. J. Humphreys, “In-plane imperfections in GaN studied by x-ray diffraction,” J. Phys. D Appl. Phys. 38(10A), A99–A104 (2005).
[Crossref]

Menniger, J.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Mishra, U. K.

S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra, “Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE,” IEEE Electron Device Lett. 25(5), 247–249 (2004).
[Crossref]

Morkoç, H.

S. Strite and H. Morkoç, “GaN, AIN, and InN: A review,” J. Vac. Sci. Technol. B 10(4), 1237–1266 (1992).
[Crossref]

Mosca, J. J.

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

Mula, G.

A. Bourret, C. Adelmann, B. Daudin, J. L. Rouvière, G. Feuillet, and G. Mula, “Strain relaxation in (0001) AlN/GaN heterostructures,” Phys. Rev. B 63(24), 245307 (2001).
[Crossref]

Nagashima, M.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

Nakamura, S.

S. Nakamura and M. R. Krames, “History of gallium-nitride-based light-emitting diodes for illumination,” Proc. IEEE 101(10), 2211–2220 (2013).
[Crossref]

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

Nikishin, S. A.

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

Noh, D. Y.

M. H. Kim, Y. G. Do, H. C. Kang, D. Y. Noh, and S. J. Park, “Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 79(17), 2713–2715 (2001).
[Crossref]

Okagawa, H.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

Osinski, A.

C. A. Tran, A. Osinski, R. F. Karlicek, and I. Berishev, “Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 75(11), 1494–1496 (1999).
[Crossref]

Ou, S. L.

Palacios, T.

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

Park, S. J.

K. J. Lee, S. J. Kim, J. J. Kim, K. Hwang, S. T. Kim, and S. J. Park, “Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers,” Opt. Express 22(S4Suppl 4), A1164–A1173 (2014).
[Crossref] [PubMed]

M. H. Kim, Y. G. Do, H. C. Kang, D. Y. Noh, and S. J. Park, “Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 79(17), 2713–2715 (2001).
[Crossref]

Ploog, K. H.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Poblenz, C.

S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra, “Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE,” IEEE Electron Device Lett. 25(5), 247–249 (2004).
[Crossref]

Ponce, F. A.

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[Crossref]

Poschenrieder, M.

A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, “Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in situ SixNy masking,” Appl. Phys. Lett. 80(20), 3670–3672 (2002).
[Crossref]

Prokofyeva, T. I.

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

Provencio, P. P.

S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86(24), 241904 (2005).
[Crossref]

Rajan, S.

S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra, “Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE,” IEEE Electron Device Lett. 25(5), 247–249 (2004).
[Crossref]

Ramdas, A. K.

R. J. Briggs and A. K. Ramdas, “Piezospectroscopic study of the Raman spectrum of cadmium sulfide,” Phys. Rev. B 13(12), 5518–5529 (1976).
[Crossref]

Ramsteiner, M.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Rayment, F. D.

M. E. Vickers, M. J. Kappers, R. Datta, C. McAleese, T. M. Smeeton, F. D. Rayment, and C. J. Humphreys, “In-plane imperfections in GaN studied by x-ray diffraction,” J. Phys. D Appl. Phys. 38(10A), A99–A104 (2005).
[Crossref]

Reiche, M.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Reiher, A.

A. Reiher, J. Blasing, A. Dadgar, A. Diez, and A. Krost, “Efficient stress relief in GaN heteroepitaxy on Si (111) using low-temperature AlN interlayers,” J. Cryst. Growth 248, 563–567 (2003).
[Crossref]

J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, “The origin of stress reduction by low-temperature AlN interlayers,” Appl. Phys. Lett. 81(15), 2722–2724 (2002).
[Crossref]

Rouvière, J. L.

A. Bourret, C. Adelmann, B. Daudin, J. L. Rouvière, G. Feuillet, and G. Mula, “Strain relaxation in (0001) AlN/GaN heterostructures,” Phys. Rev. B 63(24), 245307 (2001).
[Crossref]

Rubin, M.

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

Ruvimov, S.

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

Sasaki, C.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

Sawaki, N.

S. Tanaka, Y. Honda, N. Sawaki, and M. Hibino, “Structural characterization of GaN laterally overgrown on a (111)Si substrate,” Appl. Phys. Lett. 79(7), 955–957 (2001).
[Crossref]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Seryogin, G. A.

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

Smeeton, T. M.

M. E. Vickers, M. J. Kappers, R. Datta, C. McAleese, T. M. Smeeton, F. D. Rayment, and C. J. Humphreys, “In-plane imperfections in GaN studied by x-ray diffraction,” J. Phys. D Appl. Phys. 38(10A), A99–A104 (2005).
[Crossref]

Sondergeld, M.

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4(10), 3451–3455 (1971).
[Crossref]

Speck, J. S.

S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra, “Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE,” IEEE Electron Device Lett. 25(5), 247–249 (2004).
[Crossref]

Strite, S.

S. Strite and H. Morkoç, “GaN, AIN, and InN: A review,” J. Vac. Sci. Technol. B 10(4), 1237–1266 (1992).
[Crossref]

Suski, T.

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

Tadatomo, K.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

Taguchi, T.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

Tanaka, S.

S. Tanaka, Y. Honda, N. Sawaki, and M. Hibino, “Structural characterization of GaN laterally overgrown on a (111)Si substrate,” Appl. Phys. Lett. 79(7), 955–957 (2001).
[Crossref]

Temkin, H.

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

Tendeloo, G. G.

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

Tien, C. H.

Torabi, A.

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

Trampert, A.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Tran, C. A.

C. A. Tran, A. Osinski, R. F. Karlicek, and I. Berishev, “Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 75(11), 1494–1496 (1999).
[Crossref]

Tripathy, S.

Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87(25), 251915 (2005).
[Crossref]

Ueki, Y.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

Vennegues, P.

S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennegues, E. W. Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates,” J. Cryst. Growth 248, 568–572 (2003).
[Crossref]

Vennéguès, P.

E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 79(20), 3230–3232 (2001).
[Crossref]

Vickers, M. E.

M. E. Vickers, M. J. Kappers, R. Datta, C. McAleese, T. M. Smeeton, F. D. Rayment, and C. J. Humphreys, “In-plane imperfections in GaN studied by x-ray diffraction,” J. Phys. D Appl. Phys. 38(10A), A99–A104 (2005).
[Crossref]

Waldrip, K. E.

S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86(24), 241904 (2005).
[Crossref]

Waldron, J.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Wallis, D. J.

D. Zhu, D. J. Wallis, and C. J. Humphreys, “Prospects of III-nitride optoelectronics grown on Si,” Rep. Prog. Phys. 76(10), 106501 (2013).
[Crossref] [PubMed]

Waltereit, P.

S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra, “Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE,” IEEE Electron Device Lett. 25(5), 247–249 (2004).
[Crossref]

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Wang, W.

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. 21(45), 4641–4646 (2009).
[Crossref]

Wang, Y. D.

Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87(25), 251915 (2005).
[Crossref]

Wang, Z. G.

Y. Lu, G. W. Cong, X. L. Liu, D. C. Lu, Z. G. Wang, and M. F. Wu, “Depth distribution of the strain in the GaN layer with low-temperature AlN interlayer on Si(111) substrate studied by Rutherford backscattering/channeling,” Appl. Phys. Lett. 85(23), 5562–5564 (2004).
[Crossref]

Watanabe, S.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

Weber, E. R.

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

West, A. M.

S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86(24), 241904 (2005).
[Crossref]

Wetzel, C.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Wong, K. M.

J. Ma, X. Zhu, K. M. Wong, X. Zou, and K. M. Lau, “Improved GaN-based LED grown on silicon (111) substrates using stress/dislocation-engineered interlayers,” J. Cryst. Growth 370, 265–268 (2013).
[Crossref]

Wu, B. R.

Wu, M. F.

Y. Lu, G. W. Cong, X. L. Liu, D. C. Lu, Z. G. Wang, and M. F. Wu, “Depth distribution of the strain in the GaN layer with low-temperature AlN interlayer on Si(111) substrate studied by Rutherford backscattering/channeling,” Appl. Phys. Lett. 85(23), 5562–5564 (2004).
[Crossref]

Wuu, D. S.

Yamada, N.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

Yamada, Y.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

Yang, M. H.

Yuchun, F.

L. Bingqian, F. Yuchun, and L. Yuhua, “An electrical model of InGaN based high power light emitting diodes with self-heating effect,” Proc. SPIE 6669, 66691C (2007).

Yuhua, L.

L. Bingqian, F. Yuchun, and L. Yuhua, “An electrical model of InGaN based high power light emitting diodes with self-heating effect,” Proc. SPIE 6669, 66691C (2007).

Zang, K. Y.

Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87(25), 251915 (2005).
[Crossref]

Zhu, D.

D. Zhu, D. J. Wallis, and C. J. Humphreys, “Prospects of III-nitride optoelectronics grown on Si,” Rep. Prog. Phys. 76(10), 106501 (2013).
[Crossref] [PubMed]

Zhu, X.

J. Ma, X. Zhu, K. M. Wong, X. Zou, and K. M. Lau, “Improved GaN-based LED grown on silicon (111) substrates using stress/dislocation-engineered interlayers,” J. Cryst. Growth 370, 265–268 (2013).
[Crossref]

Zou, X.

J. Ma, X. Zhu, K. M. Wong, X. Zou, and K. M. Lau, “Improved GaN-based LED grown on silicon (111) substrates using stress/dislocation-engineered interlayers,” J. Cryst. Growth 370, 265–268 (2013).
[Crossref]

Adv. Mater. (1)

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. 21(45), 4641–4646 (2009).
[Crossref]

Appl. Phys. Lett. (12)

C. A. Tran, A. Osinski, R. F. Karlicek, and I. Berishev, “Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 75(11), 1494–1496 (1999).
[Crossref]

A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, “Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in situ SixNy masking,” Appl. Phys. Lett. 80(20), 3670–3672 (2002).
[Crossref]

S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia,” Appl. Phys. Lett. 75(14), 2073–2075 (1999).
[Crossref]

S. Tanaka, Y. Honda, N. Sawaki, and M. Hibino, “Structural characterization of GaN laterally overgrown on a (111)Si substrate,” Appl. Phys. Lett. 79(7), 955–957 (2001).
[Crossref]

M. H. Kim, Y. G. Do, H. C. Kang, D. Y. Noh, and S. J. Park, “Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 79(17), 2713–2715 (2001).
[Crossref]

E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 79(20), 3230–3232 (2001).
[Crossref]

J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, “The origin of stress reduction by low-temperature AlN interlayers,” Appl. Phys. Lett. 81(15), 2722–2724 (2002).
[Crossref]

Y. Lu, G. W. Cong, X. L. Liu, D. C. Lu, Z. G. Wang, and M. F. Wu, “Depth distribution of the strain in the GaN layer with low-temperature AlN interlayer on Si(111) substrate studied by Rutherford backscattering/channeling,” Appl. Phys. Lett. 85(23), 5562–5564 (2004).
[Crossref]

S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86(24), 241904 (2005).
[Crossref]

Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87(25), 251915 (2005).
[Crossref]

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[Crossref]

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

IEEE Electron Device Lett. (1)

S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra, “Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE,” IEEE Electron Device Lett. 25(5), 247–249 (2004).
[Crossref]

J. Cryst. Growth (3)

S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennegues, E. W. Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates,” J. Cryst. Growth 248, 568–572 (2003).
[Crossref]

A. Reiher, J. Blasing, A. Dadgar, A. Diez, and A. Krost, “Efficient stress relief in GaN heteroepitaxy on Si (111) using low-temperature AlN interlayers,” J. Cryst. Growth 248, 563–567 (2003).
[Crossref]

J. Ma, X. Zhu, K. M. Wong, X. Zou, and K. M. Lau, “Improved GaN-based LED grown on silicon (111) substrates using stress/dislocation-engineered interlayers,” J. Cryst. Growth 370, 265–268 (2013).
[Crossref]

J. Electron. Mater. (1)

K. Cheng, M. Leys, S. Degroote, B. V. Daele, S. Boeykens, J. Derluyn, M. Germain, G. G. Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater. 35(4), 592–598 (2006).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. E. Vickers, M. J. Kappers, R. Datta, C. McAleese, T. M. Smeeton, F. D. Rayment, and C. J. Humphreys, “In-plane imperfections in GaN studied by x-ray diffraction,” J. Phys. D Appl. Phys. 38(10A), A99–A104 (2005).
[Crossref]

J. Vac. Sci. Technol. (1)

W. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, and T. Palacios, “Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit,” J. Vac. Sci. Technol. 30, 2101 (2012).

J. Vac. Sci. Technol. B (1)

S. Strite and H. Morkoç, “GaN, AIN, and InN: A review,” J. Vac. Sci. Technol. B 10(4), 1237–1266 (1992).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, “Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness,” Jpn. J. Appl. Phys. 39(Part 2, No. 11B), L1183–L1185 (2000).
[Crossref]

Nature (2)

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[Crossref]

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (3)

A. Bourret, C. Adelmann, B. Daudin, J. L. Rouvière, G. Feuillet, and G. Mula, “Strain relaxation in (0001) AlN/GaN heterostructures,” Phys. Rev. B 63(24), 245307 (2001).
[Crossref]

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4(10), 3451–3455 (1971).
[Crossref]

R. J. Briggs and A. K. Ramdas, “Piezospectroscopic study of the Raman spectrum of cadmium sulfide,” Phys. Rev. B 13(12), 5518–5529 (1976).
[Crossref]

Phys. Rev. B Condens. Matter (1)

C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B Condens. Matter 54(24), 17745–17753 (1996).
[Crossref] [PubMed]

Proc. IEEE (1)

S. Nakamura and M. R. Krames, “History of gallium-nitride-based light-emitting diodes for illumination,” Proc. IEEE 101(10), 2211–2220 (2013).
[Crossref]

Proc. SPIE (1)

L. Bingqian, F. Yuchun, and L. Yuhua, “An electrical model of InGaN based high power light emitting diodes with self-heating effect,” Proc. SPIE 6669, 66691C (2007).

Rep. Prog. Phys. (1)

D. Zhu, D. J. Wallis, and C. J. Humphreys, “Prospects of III-nitride optoelectronics grown on Si,” Rep. Prog. Phys. 76(10), 106501 (2013).
[Crossref] [PubMed]

Science (2)

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Photograph image of an LED epitaxial layer with and without the nanoporous (NP) GaN grown on a 2-inch silicon (111) substrate. (b) Cross-sectional SEM image of a GaN-based LED epitaxial layer with the NP GaN layer. The inset shows an enlarged SEM image of nanopores in the NP GaN layer.
Fig. 2
Fig. 2 (a) XRD omega-scan for the symmetric (0002) plane of regrown GaN on the silicon (111) substrate with and without NP GaN. The inset shows XRD omega scans for the asymmetric (10-12) plane of regrown GaN on the silicon (111) substrate with and without NP GaN. (b) Room-temperature Raman spectra of regrown GaN with and without the NP GaN layer. The inset shows room-temperature Raman spectra of the A1 (LO) mode peak.
Fig. 3
Fig. 3 (a) Room-temperature PL spectra of the GaN-based LED with and without NP GaN layer (denoted as the NP LED and reference LED, respectively). (b) Arrhenius plots of the reference LED and NP LED.
Fig. 4
Fig. 4 (a) Simulated electric-field contour map of the reference LED and NP LED. (b) Simulated electric field intensities from the upper (in ambient air) and bottom (in ambient silicon) detectors in the reference LED, and (c) simulated electric field intensities from the upper (in ambient air) and bottom (in ambient silicon) detectors in NP LED.
Fig. 5
Fig. 5 (a) I-V characteristics of LEDs with and without the NP GaN layer. (b) Optical output power of LEDs with and without the NP GaN layer as a function of injection current.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ s = β (0002) 2 / ( 2πln2× | b c | 2 )
ρ e = β (1012) 2 / ( 2πln2× | b a | 2 )
Δ ω γ = ω γ ω o = K γ σ xx
I(T)= I 0 1+ C 1 exp( E 1 / k B T)+ C 2 exp( E 2 / k B T)

Metrics