Abstract

A CPA laser system for high pulse energy at high average power has been developed. The system is based on Yb:YAG thin-disk technology. It provides two laser beams with more than 500 mJ pulse energy each at 100 Hz repetition rate and 2 ps pulse duration. The system consists of a common oscillator, a grating stretcher and compressor and two identical amplifier chains that are both equipped with a regenerative amplifier and a ring amplifier. The compressor supports an individual alignment of the dispersion for the two laser channels.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-repetition-rate regenerative thin-disk amplifier with 116 μJ pulse energy and 250 fs pulse duration

Mikhail Larionov, Frank Butze, Detlef Nickel, and Adolf Giesen
Opt. Lett. 32(5) 494-496 (2007)

High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy

J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner
Opt. Lett. 34(9) 1378-1380 (2009)

Combined Yb/Nd driver for optical parametric chirped pulse amplifiers

Kirilas Michailovas, Andrius Baltuska, Audrius Pugzlys, Valerijus Smilgevicius, Andrejus Michailovas, Audrius Zaukevicius, Rokas Danilevicius, Saulius Frankinas, and Nerijus Rusteika
Opt. Express 24(19) 22261-22271 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Metzger, M. Gorjan, M. Ueffing, C. Y. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, “Picosecond thin-disk lasers,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh4L.1.
  2. F. J. Furch, S. Birkner, F. Kelkensberg, A. Giree, A. Anderson, C. P. Schulz, and M. J. J. Vrakking, “Carrier-envelope phase stable few-cycle pulses at 400 kHz for electron-ion coincidence experiments,” Opt. Express 21(19), 22671–22682 (2013).
    [Crossref] [PubMed]
  3. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 45–62 (2014).
    [Crossref]
  4. D. W. E. Noom, S. Witte, J. Morgenweg, R. K. Altmann, and K. S. E. Eikema, “High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system,” Opt. Lett. 38(16), 3021–3023 (2013).
    [Crossref] [PubMed]
  5. M. Ruiz-Lopez and D. Bleiner, “Implementing the plasma-lasing potential for tabletop nano-imaging,” Appl. Phys. B 115(3), 311–324 (2014).
    [Crossref]
  6. G. V. Cojocaru, R. G. Ungureanu, R. A. Banici, D. Ursescu, O. Delmas, M. Pittman, O. Guilbaud, S. Kazamias, K. Cassou, J. Demailly, O. Neveu, E. Baynard, and D. Ros, “Thin film beam splitter multiple short pulse generation for enhanced Ni-like Ag x-ray laser emission,” Opt. Lett. 39(8), 2246–2249 (2014).
    [Crossref] [PubMed]
  7. I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
    [Crossref] [PubMed]
  8. J. Tümmler, R. Jung, T. Nubbemeyer, I. Will, and W. Sandner, “Providing thin-disk technology for high laser pulse energy at high average power,” in Frontiers in Optics 2011/Laser Science XXVII, OSA Technical Digest (Optical Society of America, 2011), paper FThB3.
  9. J. Speiser, “Thin disk laser – Energy scaling,” Laser Phys. 19(2), 274–280 (2009).
    [Crossref]
  10. D. L. Brown, I. Will, and W. Seka, “Large-aperture ring amplifier with gains in excess of 40,000 and several-joule output capability,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 1993), paper CTuN37.
  11. I. Will, J. Tümmler, Th. Nubbemeyer, R. Jung, and W. Sandner, “Vorrichtung zur Verstärkung von gepulster Laserstrahlung mit hoher Energie der Laserpulse und hoher mittlerer Leistung”, Patent DE 10 2013 208 377 (2013).
  12. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34(9), 1378–1380 (2009).
    [Crossref] [PubMed]
  13. R. Jung, J. Tümmler, and I. Will, “Regenerative thin-disk amplifier for 300 mJ pulse energy,” Opt. Express 24(2), 883–887 (2016).
    [Crossref] [PubMed]
  14. R. Jung, J. Tümmler, T. Nubbemeyer, and I. Will, “Two-channel thin-disk laser for high pulse energy,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AW3A.7.
  15. R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
    [Crossref]
  16. R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm Broad Area Diode Lasers Optimized for High Pulse-Power Fiber Coupled Applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
    [Crossref]

2016 (1)

2015 (1)

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (3)

2009 (2)

Alismail, A.

Alsaif, B.

Altmann, R. K.

Anderson, A.

Arisholm, G.

Azzeer, A. M.

Banici, R. A.

Barros, H. G.

Baumann, J.

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

Baynard, E.

Birkner, S.

Bleiner, D.

M. Ruiz-Lopez and D. Bleiner, “Implementing the plasma-lasing potential for tabletop nano-imaging,” Appl. Phys. B 115(3), 311–324 (2014).
[Crossref]

Brons, J.

Cassou, K.

Ciappina, M.

Cojocaru, G. V.

Crump, P.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm Broad Area Diode Lasers Optimized for High Pulse-Power Fiber Coupled Applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

Delmas, O.

Demailly, J.

Eikema, K. S. E.

Eppich, B.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm Broad Area Diode Lasers Optimized for High Pulse-Power Fiber Coupled Applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

Erbert, G.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm Broad Area Diode Lasers Optimized for High Pulse-Power Fiber Coupled Applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Fattahi, H.

Furch, F. J.

Geng, X. T.

Giree, A.

Gorjan, M.

Grötzsch, D.

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

Guilbaud, O.

Günther, S.

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

Haefner, M.

Jung, R.

R. Jung, J. Tümmler, and I. Will, “Regenerative thin-disk amplifier for 300 mJ pulse energy,” Opt. Express 24(2), 883–887 (2016).
[Crossref] [PubMed]

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34(9), 1378–1380 (2009).
[Crossref] [PubMed]

Kanngiesser, B.

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

Karpowicz, N.

Kazamias, S.

Kelkensberg, F.

Kim, D.-E.

Knigge, S.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm Broad Area Diode Lasers Optimized for High Pulse-Power Fiber Coupled Applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

Krausz, F.

Maaßdorf, A.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm Broad Area Diode Lasers Optimized for High Pulse-Power Fiber Coupled Applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

Major, Z.

Malchus, M.

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Mantouvalou, I.

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

Metzger, T.

Morgenweg, J.

Neitzel, M.

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

Neveu, O.

Nickles, P. V.

Noom, D. W. E.

Nubbemeyer, T.

Pittman, M.

Pittroff, W.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm Broad Area Diode Lasers Optimized for High Pulse-Power Fiber Coupled Applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Platz, R.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm Broad Area Diode Lasers Optimized for High Pulse-Power Fiber Coupled Applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Prinz, S.

Pronin, O.

Ros, D.

Ruiz-Lopez, M.

M. Ruiz-Lopez and D. Bleiner, “Implementing the plasma-lasing potential for tabletop nano-imaging,” Appl. Phys. B 115(3), 311–324 (2014).
[Crossref]

Sandner, W.

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34(9), 1378–1380 (2009).
[Crossref] [PubMed]

Schultze, M.

Schulz, C. P.

Schwarz, A.

Speiser, J.

J. Speiser, “Thin disk laser – Energy scaling,” Laser Phys. 19(2), 274–280 (2009).
[Crossref]

Stiel, H.

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34(9), 1378–1380 (2009).
[Crossref] [PubMed]

Sutter, D.

Teisset, C. Y.

Tränkle, G.

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Tümmler, J.

Ueffing, M.

Ungureanu, R. G.

Ursescu, D.

Vámos, L.

Vogel, K.

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Vrakking, M. J. J.

Will, I.

Witte, K.

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

Witte, S.

Yakovlev, V. S.

Appl. Phys. B (1)

M. Ruiz-Lopez and D. Bleiner, “Implementing the plasma-lasing potential for tabletop nano-imaging,” Appl. Phys. B 115(3), 311–324 (2014).
[Crossref]

High Power Laser Sci. Eng. (1)

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm Broad Area Diode Lasers Optimized for High Pulse-Power Fiber Coupled Applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

Laser Phys. (1)

J. Speiser, “Thin disk laser – Energy scaling,” Laser Phys. 19(2), 274–280 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Rev. Sci. Instrum. (1)

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngiesser, and W. Sandner, “High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy,” Rev. Sci. Instrum. 86(3), 035116 (2015).
[Crossref] [PubMed]

Other (5)

J. Tümmler, R. Jung, T. Nubbemeyer, I. Will, and W. Sandner, “Providing thin-disk technology for high laser pulse energy at high average power,” in Frontiers in Optics 2011/Laser Science XXVII, OSA Technical Digest (Optical Society of America, 2011), paper FThB3.

T. Metzger, M. Gorjan, M. Ueffing, C. Y. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, “Picosecond thin-disk lasers,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh4L.1.

D. L. Brown, I. Will, and W. Seka, “Large-aperture ring amplifier with gains in excess of 40,000 and several-joule output capability,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 1993), paper CTuN37.

I. Will, J. Tümmler, Th. Nubbemeyer, R. Jung, and W. Sandner, “Vorrichtung zur Verstärkung von gepulster Laserstrahlung mit hoher Energie der Laserpulse und hoher mittlerer Leistung”, Patent DE 10 2013 208 377 (2013).

R. Jung, J. Tümmler, T. Nubbemeyer, and I. Will, “Two-channel thin-disk laser for high pulse energy,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AW3A.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Block diagram of the laser system.

Fig. 2
Fig. 2

Optical scheme of the oscillator.

Fig. 3
Fig. 3

Setup of the thin-disk regenerative amplifier. For in- and out-coupling the polarizing elements (waveplates, polarizer, Pockels cell, Faraday rotator) are used. The Yb:YAG thin-disk serves as one end-mirror. The other end-mirror is motorized for remote controlled alignment. It can also be used to adjust the length of the resonator. Convex and concave mirrors are used to adapt the mode diameter on the laser disk.

Fig. 4
Fig. 4

Setup of the thin-disk laser large aperture ring amplifier. For in- and out-coupling a set of polarizers together with a Pockels cell and a wave plate is used. A spatial filter cleans the beam at every round trip. The lenses L1 and L2 are mounted outside the vacuum to support all degrees of freedom for compensating wavefront pertubation.

Fig. 5
Fig. 5

Output pulse energy of both channels depending on the seed pulse energy. At an input pulse energy of 80 mJ an output pulse energy of more than 600 mJ is reached in each channel.

Fig. 6
Fig. 6

Beam profile of one of the ring amplifier operating at 600 mJ pulse energy with 4 round trips in the ring.

Fig. 7
Fig. 7

Pulse compressor with split folding mirror to adjust compressor length for both pulses independently.

Fig. 8
Fig. 8

Autocorrelation trace of one amplifier channel. Pulse duration is 2.2 ps (FWHM). Pre- or post-pulses are not visible, even with longer scan range.

Fig. 9
Fig. 9

Synchronicity between the two laser channels. The fluctuating width of the curve gives the jitter of the pulses (<0.3 ps rms), the slope shows the temporal drift (0.6 ps in 2000 s, or 1.1 ps/h).

Metrics