Abstract

Formation of subsurface damage has an inseparable relationship with microscopic material behaviors. In this work, our research results indicate that the formation process of subsurface damage often accompanies with the local densification effect of fused silica material, which seriously influences microscopic material properties. Interestingly, we find ion beam sputtering (IBS) is very sensitive to the local densification, and this microscopic phenomenon makes IBS as a promising technique for the detection of nanoscale subsurface damages. Additionally, to control the densification effect and subsurface damage during the fabrication of high-performance optical components, a combined polishing technology integrating chemical-mechanical polishing (CMP) and ion beam figuring (IBF) is proposed. With this combined technology, fused silica without subsurface damage is obtained through the final experimental investigation, which demonstrates the feasibility of our proposed method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of local densification on microscopic morphology evolution during ion-beam sputtering of fused-silica surfaces

Wenlin Liao, Yifan Dai, Xuhui Xie, and Lin Zhou
Appl. Opt. 53(11) 2487-2493 (2014)

Investigation of laser-induced damage threshold improvement mechanism during ion beam sputtering of fused silica

Mingjin Xu, Feng Shi, Lin Zhou, Yifan Dai, Xiaoqiang Peng, and Wenlin Liao
Opt. Express 25(23) 29260-29271 (2017)

Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica

Feng Shi, Yaoyu Zhong, Yifan Dai, Xiaoqiang Peng, Mingjin Xu, and Tingting Sui
Opt. Express 24(18) 20842-20854 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Laheurte, P. Darnis, N. Darbois, O. Cahuc, and J. Neauport, “Subsurface damage distribution characterization of ground surfaces using Abbott-Firestone curves,” Opt. Express 20(12), 13551–13559 (2012).
    [Crossref] [PubMed]
  2. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
    [Crossref] [PubMed]
  3. J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
    [Crossref] [PubMed]
  4. W. Liao, Y. Dai, X. Xie, and L. Zhou, “Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces,” Opt. Express 22(1), 377–386 (2014).
    [Crossref] [PubMed]
  5. M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009).
    [Crossref]
  6. J. L. Ladison, J. F. Ellison, D. C. Allan, D. R. Fladd, A. W. Fanning, and R. Priestley, “Achieving low wavefront specifications for DUV lithography: impact of residual stress in HPFS fused silica,” Proc. SPIE 4346, 1416–1423 (2001).
    [Crossref]
  7. N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
    [Crossref] [PubMed]
  8. N. I. Chkhalo, S. A. Churin, A. E. Pestov, N. N. Salashchenko, Y. A. Vainer, and M. V. Zorina, “Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics,” Opt. Express 22(17), 20094–20106 (2014).
    [Crossref] [PubMed]
  9. K. Xin and J. C. Lambropoulos, “Densification of fused silica: effects on nanoindentation,” Proc. SPIE 4102, 112–121 (2000).
    [Crossref]
  10. H. M. Cohen and R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).
  11. T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107(9), 094903 (2010).
    [Crossref]
  12. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
    [Crossref] [PubMed]
  13. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  14. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44(12), 2241–2249 (2005).
    [Crossref] [PubMed]
  15. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
    [Crossref]
  16. J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
    [Crossref]
  17. T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
    [Crossref]
  18. R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
    [Crossref]
  19. P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184(2), 383–416 (1969).
    [Crossref]
  20. M. Xu, Y. Dai, X. Xie, L. Zhou, and W. Liao, “Structure optimization and fabricating capability analysis of an ion-beam machine for a subnanometer optical surface,” Appl. Opt. 54(27), 8055–8061 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

2012 (1)

2011 (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

2010 (1)

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107(9), 094903 (2010).
[Crossref]

2009 (3)

2006 (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

2005 (1)

2001 (1)

J. L. Ladison, J. F. Ellison, D. C. Allan, D. R. Fladd, A. W. Fanning, and R. Priestley, “Achieving low wavefront specifications for DUV lithography: impact of residual stress in HPFS fused silica,” Proc. SPIE 4346, 1416–1423 (2001).
[Crossref]

2000 (1)

K. Xin and J. C. Lambropoulos, “Densification of fused silica: effects on nanoindentation,” Proc. SPIE 4102, 112–121 (2000).
[Crossref]

1999 (1)

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[Crossref]

1995 (1)

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[Crossref]

1988 (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[Crossref]

1969 (1)

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184(2), 383–416 (1969).
[Crossref]

1965 (1)

H. M. Cohen and R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

Allan, D. C.

J. L. Ladison, J. F. Ellison, D. C. Allan, D. R. Fladd, A. W. Fanning, and R. Priestley, “Achieving low wavefront specifications for DUV lithography: impact of residual stress in HPFS fused silica,” Proc. SPIE 4346, 1416–1423 (2001).
[Crossref]

Ambard, C.

Augereau, F.

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107(9), 094903 (2010).
[Crossref]

Baxamusa, S.

Bifano, T. G.

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[Crossref]

Bradley, R. M.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[Crossref]

Bude, J.

Bude, J. D.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Cahuc, O.

Carr, C. W.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Carr, W.

Chkhalo, N. I.

Churin, S. A.

Cohen, H. M.

H. M. Cohen and R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

Cormont, P.

Cross, D.

Dai, Y.

Darbois, N.

Darnis, P.

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Destribats, J.

Drueding, T. W.

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[Crossref]

Ellison, J. F.

J. L. Ladison, J. F. Ellison, D. C. Allan, D. R. Fladd, A. W. Fanning, and R. Priestley, “Achieving low wavefront specifications for DUV lithography: impact of residual stress in HPFS fused silica,” Proc. SPIE 4346, 1416–1423 (2001).
[Crossref]

Fanning, A. W.

J. L. Ladison, J. F. Ellison, D. C. Allan, D. R. Fladd, A. W. Fanning, and R. Priestley, “Achieving low wavefront specifications for DUV lithography: impact of residual stress in HPFS fused silica,” Proc. SPIE 4346, 1416–1423 (2001).
[Crossref]

Fawcett, S. C.

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[Crossref]

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Fladd, D. R.

J. L. Ladison, J. F. Ellison, D. C. Allan, D. R. Fladd, A. W. Fanning, and R. Priestley, “Achieving low wavefront specifications for DUV lithography: impact of residual stress in HPFS fused silica,” Proc. SPIE 4346, 1416–1423 (2001).
[Crossref]

Funkenbusch, P.

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[Crossref]

Guin, J. P.

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107(9), 094903 (2010).
[Crossref]

Harper, J. M. E.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[Crossref]

Jacobs, S. D.

Ji, H.

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107(9), 094903 (2010).
[Crossref]

Ladison, J. L.

J. L. Ladison, J. F. Ellison, D. C. Allan, D. R. Fladd, A. W. Fanning, and R. Priestley, “Achieving low wavefront specifications for DUV lithography: impact of residual stress in HPFS fused silica,” Proc. SPIE 4346, 1416–1423 (2001).
[Crossref]

Laheurte, R.

Lambropoulos, J. C.

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44(12), 2241–2249 (2005).
[Crossref] [PubMed]

K. Xin and J. C. Lambropoulos, “Densification of fused silica: effects on nanoindentation,” Proc. SPIE 4102, 112–121 (2000).
[Crossref]

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[Crossref]

Laurence, T.

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Li, Y.

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[Crossref]

Liao, W.

Luitot, C.

Menapace, J.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Miller, P.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Monticelli, M.

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Neauport, J.

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Pestov, A. E.

Priestley, R.

J. L. Ladison, J. F. Ellison, D. C. Allan, D. R. Fladd, A. W. Fanning, and R. Priestley, “Achieving low wavefront specifications for DUV lithography: impact of residual stress in HPFS fused silica,” Proc. SPIE 4346, 1416–1423 (2001).
[Crossref]

Randi, J. A.

Rondeau, O.

Rouxel, T.

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107(9), 094903 (2010).
[Crossref]

Roy, R.

H. M. Cohen and R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

Ruckman, J.

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[Crossref]

Ruffle, B.

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107(9), 094903 (2010).
[Crossref]

Salashchenko, N. N.

Shen, N.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Sigmund, P.

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184(2), 383–416 (1969).
[Crossref]

Steele, R.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Steele, W.

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Suratwala, T.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Vainer, Y. A.

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Weiser, M.

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009).
[Crossref]

Wong, L.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Xie, X.

Xin, K.

K. Xin and J. C. Lambropoulos, “Densification of fused silica: effects on nanoindentation,” Proc. SPIE 4102, 112–121 (2000).
[Crossref]

Xu, M.

Zhou, L.

Zorina, M. V.

Appl. Opt. (2)

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

J. Appl. Phys. (1)

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107(9), 094903 (2010).
[Crossref]

J. Non-Cryst. Solids (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

J. Vac. Sci. Technol. A (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009).
[Crossref]

Opt. Express (7)

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

R. Laheurte, P. Darnis, N. Darbois, O. Cahuc, and J. Neauport, “Subsurface damage distribution characterization of ground surfaces using Abbott-Firestone curves,” Opt. Express 20(12), 13551–13559 (2012).
[Crossref] [PubMed]

W. Liao, Y. Dai, X. Xie, and L. Zhou, “Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces,” Opt. Express 22(1), 377–386 (2014).
[Crossref] [PubMed]

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

N. I. Chkhalo, S. A. Churin, A. E. Pestov, N. N. Salashchenko, Y. A. Vainer, and M. V. Zorina, “Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics,” Opt. Express 22(17), 20094–20106 (2014).
[Crossref] [PubMed]

Phys. Chem. Glasses (1)

H. M. Cohen and R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

Phys. Rev. (1)

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184(2), 383–416 (1969).
[Crossref]

Precis. Eng. (1)

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[Crossref]

Proc. SPIE (3)

J. L. Ladison, J. F. Ellison, D. C. Allan, D. R. Fladd, A. W. Fanning, and R. Priestley, “Achieving low wavefront specifications for DUV lithography: impact of residual stress in HPFS fused silica,” Proc. SPIE 4346, 1416–1423 (2001).
[Crossref]

K. Xin and J. C. Lambropoulos, “Densification of fused silica: effects on nanoindentation,” Proc. SPIE 4102, 112–121 (2000).
[Crossref]

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Sketch map of (a) basic structure unit of SiO2 and (b) microscopic densification.
Fig. 2
Fig. 2 Analysis of mechanical effect on fused silica surface and common microscopic scratches generated during the traditional polishing. First Row: (a) sketch map of continuous cutting effect and (b) sketch map of rolling cutting effect. Second row: AFM images of (c) continuous type scratch; (d) Hertzian type scratch; (e) mixed type scratch.
Fig. 3
Fig. 3 IBS of densified fused silica material related to these defects described in Fig. 2. The AFM images in first row indicate the convex morphologies after IBS: (a) continuous type nanowall, (b) bilateral type nanowall and (c) convex nanowall corresponded to the Hertzian type scratch. Second row indicates the estimated mechanical effects during the formations of the initially existing damages before IBS: (d) compressive stress, (e) lateral compressive stress and (f) rolling compressive stress.
Fig. 4
Fig. 4 Measurement results of surface morphology and elastic modulus distribution: (a) Original surface morphology; (b) Sketch map of measurement method; (c) Surface morphology after IBS; (d) The corresponding elastic modulus distribution.
Fig. 5
Fig. 5 Measurement results of nanoscale SSD measured with the assistance of IBS: (a) Taper machined by IBS; (b)-(d) Microscopic morphology after the removal depth increasing from 40nm, 60nm to 80nm.
Fig. 6
Fig. 6 Microscopic morphology after removing different material depth (a) 40nm, (b) 60nm and (c) 80nm with HF etching method.
Fig. 7
Fig. 7 Cross-sectional HRTEM image showing surface/subsurface of fused silica: (a) fused silica sample after ion beam thinning; (b) Hydrolysis layer formed during CMP that an obvious interface is observed; (c) damage-free machining is obtained by IBF; (d) the TEM image of subsurface.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

v ( x , y ) = J M t ρ t ( x , y ) N A Y ( x , y )
Y ( x , y ) = 1 U b ( x , y ) 3 ε 4 π 2 2 π β C m exp ( σ 2 2 α 2 )
v ( x , y ) 1 ρ t ( x , y ) U b ( x , y )

Metrics