Abstract

We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier

Pavel Malevich, Tsuneto Kanai, Heinar Hoogland, Ronald Holzwarth, Andrius Baltuška, and Audrius Pugžlys
Opt. Lett. 41(5) 930-933 (2016)

High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers

P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua
Opt. Lett. 38(15) 2746-2749 (2013)

Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier

Tsuneto Kanai, Pavel Malevich, Sarayoo Sasidharan Kangaparambil, Kakuta Ishida, Makoto Mizui, Kaoru Yamanouchi, Heinar Hoogland, Ronald Holzwarth, Audrius Pugzlys, and Andrius Baltuska
Opt. Lett. 42(4) 683-686 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem. 60(1), 21–38 (2009).
    [Crossref] [PubMed]
  2. R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14190–14196 (2007).
    [Crossref] [PubMed]
  3. M. T. Zanni and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11(5), 516–522 (2001).
    [Crossref] [PubMed]
  4. S. Woutersen and P. Hamm, “Nonlinear two-dimensional vibrational spectroscopy of peptides,” J. Phys. Condens. Matter 14(39), R1035–R1062 (2002).
    [Crossref]
  5. C. R. Baiz, D. Schach, and A. Tokmakoff, “Ultrafast 2D IR microscopy,” Opt. Express 22(15), 18724–18735 (2014).
    [Crossref] [PubMed]
  6. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
    [Crossref] [PubMed]
  7. T. Popmintchev, M.-C. Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M. M. Murnane, and H. C. Kapteyn, “Extended phase matching of high harmonics driven by mid-infrared light,” Opt. Lett. 33(18), 2128–2130 (2008).
    [Crossref] [PubMed]
  8. J. D. Cyran and A. T. Krummel, “Probing structural features of self-assembled violanthrone-79 using two dimensional infrared spectroscopy,” J. Chem. Phys. 142(21), 212435 (2015).
    [Crossref] [PubMed]
  9. S. Garrett-Roe and P. Hamm, “Purely absorptive three-dimensional infrared spectroscopy,” J. Chem. Phys. 130(16), 164510 (2009).
    [Crossref] [PubMed]
  10. F. Ding and M. T. Zanni, “Heterodyned 3D IR spectroscopy,” Chem. Phys. 341(1-3), 95–105 (2007).
    [Crossref]
  11. F. Perakis, J. A. Borek, and P. Hamm, “Three-dimensional infrared spectroscopy of isotope-diluted ice Ih,” J. Chem. Phys. 139(1), 014501 (2013).
    [Crossref] [PubMed]
  12. J. A. Gruetzmacher and N. F. Scherer, “Few-cycle mid-infrared pulse generation, characterization, and coherent propagation in optically dense media,” Rev. Sci. Instrum. 73(6), 2227–2236 (2002).
    [Crossref]
  13. G. R. Holtom, R. A. Crowell, and X. S. Xie, “High-repetition-rate femtosecond optical parametric oscillator-amplifier system near 3 μm,” J. Opt. Soc. Am. B 12(9), 1723–1731 (1995).
    [Crossref]
  14. C. J. Fecko, J. J. Loparo, and A. Tokmakoff, “Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier,” Opt. Commun. 241(4-6), 521–528 (2004).
    [Crossref]
  15. V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 µm by second-order nonlinear processes in optical crystals,” J. Opt. Pure Appl. Opt. 3(3), R1–R19 (2001).
    [Crossref]
  16. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  17. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20(7), 713–715 (1995).
    [Crossref] [PubMed]
  18. J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
    [Crossref] [PubMed]
  19. Y. Akahane, M. Aoyama, K. Ogawa, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification,” Opt. Lett. 32(13), 1899–1901 (2007).
    [Crossref] [PubMed]
  20. C. Erny, L. Gallmann, and U. Keller, “High-repetition-rate femtosecond optical parametric chirped-pulse amplifier in the mid-infrared,” Appl. Phys. B 96(2-3), 257–269 (2009).
    [Crossref]
  21. A. Thai, M. Hemmer, P. K. Bates, O. Chalus, and J. Biegert, “Sub-250-mrad, passively carrier-envelope-phase-stable mid-infrared OPCPA source at high repetition rate,” Opt. Lett. 36(19), 3918–3920 (2011).
    [Crossref] [PubMed]
  22. J. Moses, S.-W. Huang, K.-H. Hong, O. D. Mücke, E. L. Falcão-Filho, A. Benedick, F. Ö. Ilday, A. Dergachev, J. A. Bolger, B. J. Eggleton, and F. X. Kärtner, “Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression,” Opt. Lett. 34(11), 1639–1641 (2009).
    [Crossref] [PubMed]
  23. C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA,” Opt. Express 20(24), 26888–26894 (2012).
    [Crossref] [PubMed]
  24. A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, “High-energy femtosecond pulse amlification in a quasi-phase-matched parametric amplifier,” Opt. Lett. 23(3), 210–212 (1998).
    [Crossref] [PubMed]
  25. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
    [Crossref]
  26. B. W. Mayer, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μm,” Opt. Lett. 38(21), 4265–4268 (2013).
    [Crossref] [PubMed]
  27. M. Baudisch, M. Hemmer, H. Pires, and J. Biegert, “Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power,” Opt. Lett. 39(20), 5802–5805 (2014).
    [Crossref] [PubMed]
  28. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 µm from a compact fiber source,” Opt. Lett. 32(9), 1138–1140 (2007).
    [Crossref] [PubMed]
  29. O. Chalus, P. K. Bates, M. Smolarski, and J. Biegert, “Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz,” Opt. Express 17(5), 3587–3594 (2009).
    [Crossref] [PubMed]
  30. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
    [Crossref]
  31. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  32. K.-H. Hong, S.-W. Huang, J. Moses, X. Fu, C.-J. Lai, G. Cirmi, A. Sell, E. Granados, P. Keathley, and F. X. Kärtner, “High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1 μm pumped by a picosecond cryogenic Yb:YAG laser,” Opt. Express 19(16), 15538–15548 (2011).
    [Crossref] [PubMed]
  33. B. A. Reagan, K. A. Wernsing, A. H. Curtis, F. J. Furch, B. M. Luther, D. Patel, C. S. Menoni, and J. J. Rocca, “Demonstration of a 100 Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser,” Opt. Lett. 37(17), 3624–3626 (2012).
    [Crossref] [PubMed]
  34. J. Dörring, A. Killi, U. Morgner, A. Lang, M. Lederer, and D. Kopf, “Period doubling and deterministic chaos in continuously pumped regenerative amplifiers,” Opt. Express 12(8), 1759–1768 (2004).
    [Crossref] [PubMed]
  35. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
    [Crossref] [PubMed]
  36. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144(1-3), 125–133 (1997).
    [Crossref]
  37. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn yn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
    [Crossref]
  38. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
    [Crossref]
  39. G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
    [Crossref]
  40. N. P. Barnes and J. A. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B 12(1), 124 (1995).
    [Crossref]
  41. I. Amat-Roldán, I. Cormack, P. Loza-Alvarez, E. Gualda, and D. Artigas, “Ultrashort pulse characterisation with SHG collinear-FROG,” Opt. Express 12(6), 1169–1178 (2004).
    [Crossref] [PubMed]
  42. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737–739 (1994).
    [Crossref] [PubMed]
  43. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B 17(12), 2086 (2000).
    [Crossref]
  44. S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31(6), 838–840 (2006).
    [Crossref] [PubMed]
  45. S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
    [Crossref] [PubMed]

2015 (1)

J. D. Cyran and A. T. Krummel, “Probing structural features of self-assembled violanthrone-79 using two dimensional infrared spectroscopy,” J. Chem. Phys. 142(21), 212435 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

2012 (2)

2011 (2)

2009 (7)

S. Garrett-Roe and P. Hamm, “Purely absorptive three-dimensional infrared spectroscopy,” J. Chem. Phys. 130(16), 164510 (2009).
[Crossref] [PubMed]

M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem. 60(1), 21–38 (2009).
[Crossref] [PubMed]

C. Erny, L. Gallmann, and U. Keller, “High-repetition-rate femtosecond optical parametric chirped-pulse amplifier in the mid-infrared,” Appl. Phys. B 96(2-3), 257–269 (2009).
[Crossref]

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref] [PubMed]

O. Chalus, P. K. Bates, M. Smolarski, and J. Biegert, “Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz,” Opt. Express 17(5), 3587–3594 (2009).
[Crossref] [PubMed]

J. Moses, S.-W. Huang, K.-H. Hong, O. D. Mücke, E. L. Falcão-Filho, A. Benedick, F. Ö. Ilday, A. Dergachev, J. A. Bolger, B. J. Eggleton, and F. X. Kärtner, “Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression,” Opt. Lett. 34(11), 1639–1641 (2009).
[Crossref] [PubMed]

T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (5)

C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 µm from a compact fiber source,” Opt. Lett. 32(9), 1138–1140 (2007).
[Crossref] [PubMed]

Y. Akahane, M. Aoyama, K. Ogawa, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification,” Opt. Lett. 32(13), 1899–1901 (2007).
[Crossref] [PubMed]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[Crossref]

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14190–14196 (2007).
[Crossref] [PubMed]

F. Ding and M. T. Zanni, “Heterodyned 3D IR spectroscopy,” Chem. Phys. 341(1-3), 95–105 (2007).
[Crossref]

2006 (2)

2005 (1)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

2004 (3)

2003 (2)

2002 (2)

J. A. Gruetzmacher and N. F. Scherer, “Few-cycle mid-infrared pulse generation, characterization, and coherent propagation in optically dense media,” Rev. Sci. Instrum. 73(6), 2227–2236 (2002).
[Crossref]

S. Woutersen and P. Hamm, “Nonlinear two-dimensional vibrational spectroscopy of peptides,” J. Phys. Condens. Matter 14(39), R1035–R1062 (2002).
[Crossref]

2001 (2)

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 µm by second-order nonlinear processes in optical crystals,” J. Opt. Pure Appl. Opt. 3(3), R1–R19 (2001).
[Crossref]

M. T. Zanni and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11(5), 516–522 (2001).
[Crossref] [PubMed]

2000 (1)

1998 (2)

1997 (2)

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144(1-3), 125–133 (1997).
[Crossref]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

1995 (3)

1994 (2)

C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737–739 (1994).
[Crossref] [PubMed]

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

1971 (1)

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

Adler, F.

Agrawal, G. P.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[Crossref]

Akahane, Y.

Amat-Roldán, I.

Aoyama, M.

Arbore, M. A.

Artigas, D.

Backus, S.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn yn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Baiz, C. R.

Balcou, P.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Barnes, N. P.

Bass, M.

Bates, P. K.

Baudisch, M.

Benedick, A.

Biegert, J.

Bolger, J. A.

Borek, J. A.

F. Perakis, J. A. Borek, and P. Hamm, “Three-dimensional infrared spectroscopy of isotope-diluted ice Ih,” J. Chem. Phys. 139(1), 014501 (2013).
[Crossref] [PubMed]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Boyd, G. D.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

Boyd, R. W.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[Crossref]

Brauch, U.

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Buckley, J.

Buehler, E.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

Chalus, O.

Chen, M.-C.

Chong, A.

Cirmi, G.

Cohen, O.

Collier, J. L.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144(1-3), 125–133 (1997).
[Crossref]

Corkum, P. B.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Cormack, I.

Crowell, R. A.

Curtis, A. H.

Cyran, J. D.

J. D. Cyran and A. T. Krummel, “Probing structural features of self-assembled violanthrone-79 using two dimensional infrared spectroscopy,” J. Chem. Phys. 142(21), 212435 (2015).
[Crossref] [PubMed]

Deng, P.

Dergachev, A.

Ding, F.

F. Ding and M. T. Zanni, “Heterodyned 3D IR spectroscopy,” Chem. Phys. 341(1-3), 95–105 (2007).
[Crossref]

Dong, J.

Dörring, J.

Durfee, C. G.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn yn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Eggleton, B. J.

Erny, C.

Falcão-Filho, E. L.

Fauchet, P. M.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[Crossref]

Fayer, M. D.

M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem. 60(1), 21–38 (2009).
[Crossref] [PubMed]

Fecko, C. J.

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, “Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier,” Opt. Commun. 241(4-6), 521–528 (2004).
[Crossref]

Fejer, M. M.

Fu, X.

Fulmer, E. C.

Furch, F. J.

Gallmann, L.

Galvanauskas, A.

Gan, F.

Garrett-Roe, S.

S. Garrett-Roe and P. Hamm, “Purely absorptive three-dimensional infrared spectroscopy,” J. Chem. Phys. 130(16), 164510 (2009).
[Crossref] [PubMed]

Giesen, A.

Goswami, D.

Granados, E.

Grisham, M. E.

Gruetzmacher, J. A.

J. A. Gruetzmacher and N. F. Scherer, “Few-cycle mid-infrared pulse generation, characterization, and coherent propagation in optically dense media,” Rev. Sci. Instrum. 73(6), 2227–2236 (2002).
[Crossref]

Gualda, E.

Hamm, P.

F. Perakis, J. A. Borek, and P. Hamm, “Three-dimensional infrared spectroscopy of isotope-diluted ice Ih,” J. Chem. Phys. 139(1), 014501 (2013).
[Crossref] [PubMed]

S. Garrett-Roe and P. Hamm, “Purely absorptive three-dimensional infrared spectroscopy,” J. Chem. Phys. 130(16), 164510 (2009).
[Crossref] [PubMed]

S. Woutersen and P. Hamm, “Nonlinear two-dimensional vibrational spectroscopy of peptides,” J. Phys. Condens. Matter 14(39), R1035–R1062 (2002).
[Crossref]

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B 17(12), 2086 (2000).
[Crossref]

Hariharan, A.

Harter, D.

Heese, C.

Hemmer, M.

Hillegas, C. W.

Hochstrasser, R. M.

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14190–14196 (2007).
[Crossref] [PubMed]

M. T. Zanni and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11(5), 516–522 (2001).
[Crossref] [PubMed]

Holtom, G. R.

Hong, K.-H.

Huang, S.-W.

Ilday, F. Ö.

Ivanov, M. Y.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Kaindl, R. A.

Kapteyn, H. C.

Kapteyn yn, H. C.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn yn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Karszewski, M.

Kärtner, F. X.

Kawanaka, J.

Keathley, P.

Keller, U.

Kienberger, R.

Killi, A.

Kopf, D.

Krausz, F.

Krummel, A. T.

J. D. Cyran and A. T. Krummel, “Probing structural features of self-assembled violanthrone-79 using two dimensional infrared spectroscopy,” J. Chem. Phys. 142(21), 212435 (2015).
[Crossref] [PubMed]

Kühlke, D.

L’Huillier, A.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Lai, C.-J.

Lang, A.

Langley, A. J.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144(1-3), 125–133 (1997).
[Crossref]

Lederer, M.

Leitenstorfer, A.

Lewenstein, M.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Lin, Q.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[Crossref]

Loparo, J. J.

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, “Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier,” Opt. Commun. 241(4-6), 521–528 (2004).
[Crossref]

Loza-Alvarez, P.

Luther, B. M.

Mao, Y.

Matousek, P.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144(1-3), 125–133 (1997).
[Crossref]

Mayer, B. W.

Menoni, C. S.

Metzger, T.

Morgner, U.

Moses, J.

Moutzouris, K.

Mücke, O. D.

Murnane, M. M.

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Nishioka, H.

Noack, F.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 µm by second-order nonlinear processes in optical crystals,” J. Opt. Pure Appl. Opt. 3(3), R1–R19 (2001).
[Crossref]

Ogawa, K.

Patel, D.

Perakis, F.

F. Perakis, J. A. Borek, and P. Hamm, “Three-dimensional infrared spectroscopy of isotope-diluted ice Ih,” J. Chem. Phys. 139(1), 014501 (2013).
[Crossref] [PubMed]

Petrov, V.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 µm by second-order nonlinear processes in optical crystals,” J. Opt. Pure Appl. Opt. 3(3), R1–R19 (2001).
[Crossref]

Phillips, C. R.

Piredda, G.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[Crossref]

Pires, H.

Popmintchev, T.

Reagan, B. A.

Reimann, K.

Renninger, W.

Rocca, J. J.

Ross, I. N.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144(1-3), 125–133 (1997).
[Crossref]

Rotermund, F.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 µm by second-order nonlinear processes in optical crystals,” J. Opt. Pure Appl. Opt. 3(3), R1–R19 (2001).
[Crossref]

Schach, D.

Scherer, N. F.

J. A. Gruetzmacher and N. F. Scherer, “Few-cycle mid-infrared pulse generation, characterization, and coherent propagation in optically dense media,” Rev. Sci. Instrum. 73(6), 2227–2236 (2002).
[Crossref]

Schwarz, A.

Sell, A.

Shim, S.-H.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref] [PubMed]

S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31(6), 838–840 (2006).
[Crossref] [PubMed]

Smolarski, M.

Stewen, C.

Storz, F. G.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

Strasfeld, D. B.

Strickland, D.

Sutter, D.

Teisset, C. Y.

Thai, A.

Tokita, S.

Tokmakoff, A.

C. R. Baiz, D. Schach, and A. Tokmakoff, “Ultrafast 2D IR microscopy,” Opt. Express 22(15), 18724–18735 (2014).
[Crossref] [PubMed]

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, “Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier,” Opt. Commun. 241(4-6), 521–528 (2004).
[Crossref]

Towrie, M.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144(1-3), 125–133 (1997).
[Crossref]

Tsuji, K.

Tull, J. X.

Ueda, K.

Voss, A.

Warren, W. S.

Weiner, A. M.

Wernsing, K. A.

Williams-Byrd, J. A.

Wise, F.

Woerner, M.

Woutersen, S.

S. Woutersen and P. Hamm, “Nonlinear two-dimensional vibrational spectroscopy of peptides,” J. Phys. Condens. Matter 14(39), R1035–R1062 (2002).
[Crossref]

Wurm, M.

Xie, X. S.

Yamakawa, K.

Zanni, M. T.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref] [PubMed]

F. Ding and M. T. Zanni, “Heterodyned 3D IR spectroscopy,” Chem. Phys. 341(1-3), 95–105 (2007).
[Crossref]

S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31(6), 838–840 (2006).
[Crossref] [PubMed]

M. T. Zanni and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11(5), 516–522 (2001).
[Crossref] [PubMed]

Zhang, J.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[Crossref]

Annu. Rev. Phys. Chem. (1)

M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem. 60(1), 21–38 (2009).
[Crossref] [PubMed]

Appl. Phys. B (1)

C. Erny, L. Gallmann, and U. Keller, “High-repetition-rate femtosecond optical parametric chirped-pulse amplifier in the mid-infrared,” Appl. Phys. B 96(2-3), 257–269 (2009).
[Crossref]

Appl. Phys. Lett. (2)

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[Crossref]

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

Chem. Phys. (1)

F. Ding and M. T. Zanni, “Heterodyned 3D IR spectroscopy,” Chem. Phys. 341(1-3), 95–105 (2007).
[Crossref]

Curr. Opin. Struct. Biol. (1)

M. T. Zanni and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11(5), 516–522 (2001).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

J. Chem. Phys. (3)

J. D. Cyran and A. T. Krummel, “Probing structural features of self-assembled violanthrone-79 using two dimensional infrared spectroscopy,” J. Chem. Phys. 142(21), 212435 (2015).
[Crossref] [PubMed]

S. Garrett-Roe and P. Hamm, “Purely absorptive three-dimensional infrared spectroscopy,” J. Chem. Phys. 130(16), 164510 (2009).
[Crossref] [PubMed]

F. Perakis, J. A. Borek, and P. Hamm, “Three-dimensional infrared spectroscopy of isotope-diluted ice Ih,” J. Chem. Phys. 139(1), 014501 (2013).
[Crossref] [PubMed]

J. Opt. Pure Appl. Opt. (1)

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 µm by second-order nonlinear processes in optical crystals,” J. Opt. Pure Appl. Opt. 3(3), R1–R19 (2001).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Condens. Matter (1)

S. Woutersen and P. Hamm, “Nonlinear two-dimensional vibrational spectroscopy of peptides,” J. Phys. Condens. Matter 14(39), R1035–R1062 (2002).
[Crossref]

Opt. Commun. (2)

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, “Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier,” Opt. Commun. 241(4-6), 521–528 (2004).
[Crossref]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144(1-3), 125–133 (1997).
[Crossref]

Opt. Express (7)

Opt. Lett. (14)

C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737–739 (1994).
[Crossref] [PubMed]

S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31(6), 838–840 (2006).
[Crossref] [PubMed]

U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20(7), 713–715 (1995).
[Crossref] [PubMed]

J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
[Crossref] [PubMed]

Y. Akahane, M. Aoyama, K. Ogawa, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification,” Opt. Lett. 32(13), 1899–1901 (2007).
[Crossref] [PubMed]

A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, “High-energy femtosecond pulse amlification in a quasi-phase-matched parametric amplifier,” Opt. Lett. 23(3), 210–212 (1998).
[Crossref] [PubMed]

A. Thai, M. Hemmer, P. K. Bates, O. Chalus, and J. Biegert, “Sub-250-mrad, passively carrier-envelope-phase-stable mid-infrared OPCPA source at high repetition rate,” Opt. Lett. 36(19), 3918–3920 (2011).
[Crossref] [PubMed]

J. Moses, S.-W. Huang, K.-H. Hong, O. D. Mücke, E. L. Falcão-Filho, A. Benedick, F. Ö. Ilday, A. Dergachev, J. A. Bolger, B. J. Eggleton, and F. X. Kärtner, “Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression,” Opt. Lett. 34(11), 1639–1641 (2009).
[Crossref] [PubMed]

B. W. Mayer, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μm,” Opt. Lett. 38(21), 4265–4268 (2013).
[Crossref] [PubMed]

M. Baudisch, M. Hemmer, H. Pires, and J. Biegert, “Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power,” Opt. Lett. 39(20), 5802–5805 (2014).
[Crossref] [PubMed]

C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 µm from a compact fiber source,” Opt. Lett. 32(9), 1138–1140 (2007).
[Crossref] [PubMed]

T. Popmintchev, M.-C. Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M. M. Murnane, and H. C. Kapteyn, “Extended phase matching of high harmonics driven by mid-infrared light,” Opt. Lett. 33(18), 2128–2130 (2008).
[Crossref] [PubMed]

B. A. Reagan, K. A. Wernsing, A. H. Curtis, F. J. Furch, B. M. Luther, D. Patel, C. S. Menoni, and J. J. Rocca, “Demonstration of a 100 Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser,” Opt. Lett. 37(17), 3624–3626 (2012).
[Crossref] [PubMed]

T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref] [PubMed]

Phys. Rev. A (1)

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14190–14196 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

J. A. Gruetzmacher and N. F. Scherer, “Few-cycle mid-infrared pulse generation, characterization, and coherent propagation in optically dense media,” Rev. Sci. Instrum. 73(6), 2227–2236 (2002).
[Crossref]

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn yn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Layout of the 2D IR spectrometer. The output from the Y-Fi oscillator seeds the regenerative amplifier and pumps a MgO:PPLN OPO generating the pump and signal beams of the OPCPA respectively. The OPO output is stretched and amplified in three stages of MgO:PPLN and the resulting signal and idler are compressed in a grating and Si compressor, respectively. The compressed beams are then used as the pump and signal beams in a ZGP DFG stage generating a 4.65μm idler. The ZGP idler is split with one line sent to a pulse shaper to generate the pump pulse pair and the second line used as the probe line in a 2D IR spectrometer.
Fig. 2
Fig. 2 Output energies vs. pump power for the cryocooled Yb:YAG regenerative amplifier. The blue curve shows 50 kHz operation including the main and post pulses, while the red curve shows the output power at 50 kHz in the main pulse alone after the cleanup Pockels cell. The green curve shows the output power in the main pulse alone for 100 kHz. The inset shows the spatial profile of the regenerative amplifier taken at 30 W pump
Fig. 3
Fig. 3 Output energies vs. pump power for the cryocooled Yb:YAG multi-pass amplifier. The blue curve shows 100 kHz operation. A linear fit to the low energy points is included to show loss of efficiency due to thermal lensing.
Fig. 4
Fig. 4 100 kHz output powers for the third stage PPLN versus 1030 nm pump power.
Fig. 5
Fig. 5 a) Measured FROG of the compressed 2.67 μm idler. b) Recovered 235 fs, 2.67 μm intensity and temporal phase. c) Measured FROG of the compressed 1.68 μm signal. d) Recovered 210 fs, 1.68 μm intensity and temporal phase. Inset shows the 1.68 μm signal beam’s spatial profile as observed by two photon absorption on a silicon CCD camera.
Fig. 6
Fig. 6 a) Measured ZGP idler spectrum b) Measured collinear FROG of the 4.65 μm ZGP idler. c) Recovered 220fs, 4.65 μm intensity and temporal phase with a 220 fs FWHM.
Fig. 7
Fig. 7 a) Single 2D spectrum of KOCN in DMF b) 20 spectra average. c) 100 spectra average.

Metrics