Abstract

We demonstrate a scheme for coherent narrowband direct optical frequency comb spectroscopy. An extended cavity diode laser is injection locked to a single mode of an optical frequency comb, frequency shifted, and used as a local oscillator to optically down-mix the interrogating comb on a fast photodetector. The high spectral coherence of the injection lock generates a microwave frequency comb at the output of the photodiode with very narrow features, enabling spectral information to be further down-mixed to RF frequencies, allowing optical transmittance and phase to be obtained using electronics commonly found in the lab. We demonstrate two methods for achieving this step: a serial mode-by-mode approach and a parallel dual-comb approach, with the Cs D1 transition at 894 nm as a test case.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent cavity-enhanced dual-comb spectroscopy

Adam J. Fleisher, David A. Long, Zachary D. Reed, Joseph T. Hodges, and David F. Plusquellic
Opt. Express 24(10) 10424-10434 (2016)

Accurate frequency referencing for fieldable dual-comb spectroscopy

Gar-Wing Truong, Eleanor M. Waxman, Kevin C. Cossel, Esther Baumann, Andrew Klose, Fabrizio R. Giorgetta, William C. Swann, Nathan R. Newbury, and Ian Coddington
Opt. Express 24(26) 30495-30504 (2016)

Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy

Pedro Martín-Mateos, Borja Jerez, and Pablo Acedo
Opt. Express 23(16) 21149-21158 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
    [Crossref] [PubMed]
  2. L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, “Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb,” Appl. Phys. B 119, 327–338 (2015).
    [Crossref]
  3. K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, “Analysis of trace impurities in semiconductor gas viaácavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 100, 917–924 (2010).
    [Crossref]
  4. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref] [PubMed]
  5. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
    [Crossref]
  6. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
    [Crossref] [PubMed]
  7. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nature Commun. 5, 3375 (2014).
    [Crossref]
  8. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref] [PubMed]
  9. C. J. Bordé, “Base units of the si, fundamental constants and modern quantum physics,” Philos. Trans. R. Soc., A 363, 2177–2201 (2005).
    [Crossref]
  10. G.-W. Truong, J. Anstie, E. May, T. Stace, and A. Luiten, “Accurate lineshape spectroscopy and the boltzmann constant,” Nature Commun. 6, 8345 (2015).
    [Crossref]
  11. J. D. Prestage, R. L. Tjoelker, and L. Maleki, “Atomic clocks and variations of the fine structure constant,” Phys. Rev. Lett. 74, 3511 (1995).
    [Crossref] [PubMed]
  12. V. Gerginov, K. Calkins, C. Tanner, J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2–6p2p1/2(D1) transitions in Cs 133 and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
    [Crossref]
  13. J.-D. Deschênes and J. Genest, “Frequency-noise removal and on-line calibration for accurate frequency comb interference spectroscopy of acetylene,” Appl. Opt. 53, 731–735 (2014).
    [Crossref] [PubMed]
  14. K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
    [Crossref]
  15. N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
    [Crossref] [PubMed]
  16. D. S. Wu, R. Slavík, G. Marra, and D. J. Richardson, “Robust optical injection locking to a 250 mhz frequency comb without narrow-band optical pre-filtering,” in “Conference on Lasers and Electro-Optics/Pacific Rim,” (Optical Society of America, 2011), p. C258.
  17. N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
    [Crossref] [PubMed]
  18. D. A. Steck, “Cesium d line data,” Unpublished (2008).

2015 (3)

L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, “Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb,” Appl. Phys. B 119, 327–338 (2015).
[Crossref]

G.-W. Truong, J. Anstie, E. May, T. Stace, and A. Luiten, “Accurate lineshape spectroscopy and the boltzmann constant,” Nature Commun. 6, 8345 (2015).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref] [PubMed]

2014 (3)

2012 (1)

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[Crossref]

2010 (1)

K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, “Analysis of trace impurities in semiconductor gas viaácavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 100, 917–924 (2010).
[Crossref]

2008 (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref] [PubMed]

2007 (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

2006 (1)

V. Gerginov, K. Calkins, C. Tanner, J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2–6p2p1/2(D1) transitions in Cs 133 and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

2005 (1)

C. J. Bordé, “Base units of the si, fundamental constants and modern quantum physics,” Philos. Trans. R. Soc., A 363, 2177–2201 (2005).
[Crossref]

2004 (1)

1995 (1)

J. D. Prestage, R. L. Tjoelker, and L. Maleki, “Atomic clocks and variations of the fine structure constant,” Phys. Rev. Lett. 74, 3511 (1995).
[Crossref] [PubMed]

Adler, F.

K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, “Analysis of trace impurities in semiconductor gas viaácavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 100, 917–924 (2010).
[Crossref]

Anstie, J.

G.-W. Truong, J. Anstie, E. May, T. Stace, and A. Luiten, “Accurate lineshape spectroscopy and the boltzmann constant,” Nature Commun. 6, 8345 (2015).
[Crossref]

Anstie, J. D.

Balslev-Clausen, D.

Bartels, A.

V. Gerginov, K. Calkins, C. Tanner, J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2–6p2p1/2(D1) transitions in Cs 133 and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Bertness, K. A.

K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, “Analysis of trace impurities in semiconductor gas viaácavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 100, 917–924 (2010).
[Crossref]

Bordé, C. J.

C. J. Bordé, “Base units of the si, fundamental constants and modern quantum physics,” Philos. Trans. R. Soc., A 363, 2177–2201 (2005).
[Crossref]

Boudreau, S.

Calkins, K.

V. Gerginov, K. Calkins, C. Tanner, J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2–6p2p1/2(D1) transitions in Cs 133 and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Cossel, K. C.

K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, “Analysis of trace impurities in semiconductor gas viaácavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 100, 917–924 (2010).
[Crossref]

Deschênes, J.-D.

Diddams, S.

V. Gerginov, K. Calkins, C. Tanner, J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2–6p2p1/2(D1) transitions in Cs 133 and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Diddams, S. A.

L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, “Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb,” Appl. Phys. B 119, 327–338 (2015).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Feng, J.

K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, “Analysis of trace impurities in semiconductor gas viaácavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 100, 917–924 (2010).
[Crossref]

Genest, J.

Gerginov, V.

V. Gerginov, K. Calkins, C. Tanner, J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2–6p2p1/2(D1) transitions in Cs 133 and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Giorgetta, F. R.

L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, “Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb,” Appl. Phys. B 119, 327–338 (2015).
[Crossref]

Gohle, C.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
[Crossref] [PubMed]

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nature Commun. 5, 3375 (2014).
[Crossref]

Hänsch, T. W.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nature Commun. 5, 3375 (2014).
[Crossref]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Hébert, N. B.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

V. Gerginov, K. Calkins, C. Tanner, J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2–6p2p1/2(D1) transitions in Cs 133 and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Holzwarth, R.

Ideguchi, T.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nature Commun. 5, 3375 (2014).
[Crossref]

Keilmann, F.

Kirchner, M. S.

Luiten, A.

G.-W. Truong, J. Anstie, E. May, T. Stace, and A. Luiten, “Accurate lineshape spectroscopy and the boltzmann constant,” Nature Commun. 6, 8345 (2015).
[Crossref]

Luiten, A. N.

Maleki, L.

J. D. Prestage, R. L. Tjoelker, and L. Maleki, “Atomic clocks and variations of the fine structure constant,” Phys. Rev. Lett. 74, 3511 (1995).
[Crossref] [PubMed]

Marra, G.

D. S. Wu, R. Slavík, G. Marra, and D. J. Richardson, “Robust optical injection locking to a 250 mhz frequency comb without narrow-band optical pre-filtering,” in “Conference on Lasers and Electro-Optics/Pacific Rim,” (Optical Society of America, 2011), p. C258.

May, E.

G.-W. Truong, J. Anstie, E. May, T. Stace, and A. Luiten, “Accurate lineshape spectroscopy and the boltzmann constant,” Nature Commun. 6, 8345 (2015).
[Crossref]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

McFerran, J.

V. Gerginov, K. Calkins, C. Tanner, J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2–6p2p1/2(D1) transitions in Cs 133 and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Michaud-Belleau, V.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Nugent-Glandorf, L.

L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, “Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb,” Appl. Phys. B 119, 327–338 (2015).
[Crossref]

Picqué, N.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nature Commun. 5, 3375 (2014).
[Crossref]

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nature Commun. 5, 3375 (2014).
[Crossref]

Prestage, J. D.

J. D. Prestage, R. L. Tjoelker, and L. Maleki, “Atomic clocks and variations of the fine structure constant,” Phys. Rev. Lett. 74, 3511 (1995).
[Crossref] [PubMed]

Raynor, M. W.

K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, “Analysis of trace impurities in semiconductor gas viaácavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 100, 917–924 (2010).
[Crossref]

Richardson, D. J.

D. S. Wu, R. Slavík, G. Marra, and D. J. Richardson, “Robust optical injection locking to a 250 mhz frequency comb without narrow-band optical pre-filtering,” in “Conference on Lasers and Electro-Optics/Pacific Rim,” (Optical Society of America, 2011), p. C258.

Sakai, O.

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[Crossref]

Schliesser, A.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Slavík, R.

D. S. Wu, R. Slavík, G. Marra, and D. J. Richardson, “Robust optical injection locking to a 250 mhz frequency comb without narrow-band optical pre-filtering,” in “Conference on Lasers and Electro-Optics/Pacific Rim,” (Optical Society of America, 2011), p. C258.

Stace, T.

G.-W. Truong, J. Anstie, E. May, T. Stace, and A. Luiten, “Accurate lineshape spectroscopy and the boltzmann constant,” Nature Commun. 6, 8345 (2015).
[Crossref]

Steck, D. A.

D. A. Steck, “Cesium d line data,” Unpublished (2008).

Stein, B.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Tanner, C.

V. Gerginov, K. Calkins, C. Tanner, J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2–6p2p1/2(D1) transitions in Cs 133 and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Thorpe, M. J.

K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, “Analysis of trace impurities in semiconductor gas viaácavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 100, 917–924 (2010).
[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref] [PubMed]

Tjoelker, R. L.

J. D. Prestage, R. L. Tjoelker, and L. Maleki, “Atomic clocks and variations of the fine structure constant,” Phys. Rev. Lett. 74, 3511 (1995).
[Crossref] [PubMed]

Truong, G.-W.

G.-W. Truong, J. Anstie, E. May, T. Stace, and A. Luiten, “Accurate lineshape spectroscopy and the boltzmann constant,” Nature Commun. 6, 8345 (2015).
[Crossref]

Udem, T.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Urabe, K.

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[Crossref]

Wu, D. S.

D. S. Wu, R. Slavík, G. Marra, and D. J. Richardson, “Robust optical injection locking to a 250 mhz frequency comb without narrow-band optical pre-filtering,” in “Conference on Lasers and Electro-Optics/Pacific Rim,” (Optical Society of America, 2011), p. C258.

Ye, J.

K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, “Analysis of trace impurities in semiconductor gas viaácavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 100, 917–924 (2010).
[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (2)

L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, “Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb,” Appl. Phys. B 119, 327–338 (2015).
[Crossref]

K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, “Analysis of trace impurities in semiconductor gas viaácavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 100, 917–924 (2010).
[Crossref]

Appl. Phys. Lett. (1)

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[Crossref]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Nature Commun. (2)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nature Commun. 5, 3375 (2014).
[Crossref]

G.-W. Truong, J. Anstie, E. May, T. Stace, and A. Luiten, “Accurate lineshape spectroscopy and the boltzmann constant,” Nature Commun. 6, 8345 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Philos. Trans. R. Soc., A (1)

C. J. Bordé, “Base units of the si, fundamental constants and modern quantum physics,” Philos. Trans. R. Soc., A 363, 2177–2201 (2005).
[Crossref]

Phys. Rev. A (1)

V. Gerginov, K. Calkins, C. Tanner, J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2–6p2p1/2(D1) transitions in Cs 133 and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Phys. Rev. Lett. (3)

J. D. Prestage, R. L. Tjoelker, and L. Maleki, “Atomic clocks and variations of the fine structure constant,” Phys. Rev. Lett. 74, 3511 (1995).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Other (2)

D. S. Wu, R. Slavík, G. Marra, and D. J. Richardson, “Robust optical injection locking to a 250 mhz frequency comb without narrow-band optical pre-filtering,” in “Conference on Lasers and Electro-Optics/Pacific Rim,” (Optical Society of America, 2011), p. C258.

D. A. Steck, “Cesium d line data,” Unpublished (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical down-mixing scheme. A small amount of comb light is used to actively injection lock an extended cavity diode laser (ECDL) to a single comb mode. This light is then passed through a Fabry-Perot filter, frequency shifted and power stabilised before being combined with the main part of the interrogating comb light. This signal is then passed through a sample and reference arm of a spectrometer with the resulting optical signals recorded by a pair of fast photodetectors.

Fig. 2
Fig. 2

Optical to microwave down-mixing. The frequency-shifted CW local oscillator interferes with each comb mode producing a series of optical beat-notes. The solid line indicates how the absorption spectrum is folded about the local oscillator at the output of the photo-detector. Also present are large signals at the harmonics of the interrogating comb’s repetition rate (grey).

Fig. 3
Fig. 3

Microwave to RF down-mixing scheme. Microwave interrogation signals provided by either a stepped CW source (pink region) or microwave comb generated by a step recovery diode (SRD) (blue region) are mixed with the optically down-mixed signals Vsig and Vref (see Fig. 1). The mixing products are recorded by the two input channels of a fast Fourier transform (FFT) vector signal analyser.

Fig. 4
Fig. 4

Reconstructed complex spectrum measured via the serial interrogation method, including calibration. Darker points represent the spectrum retrieved with the comb held at a repetition rate of 250 MHz, with the other points derived by shifting the comb mode frequencies by a quarter of the repetition rate. Solid curves represent a complex Voigt profile fit to the spectrum.

Fig. 5
Fig. 5

Reconstructed complex spectrum measured via the dual-comb interrogation method, including calibration. Again, darker points represent the spectrum retrieved with the comb held at a repetition rate of 250 MHz, with the other points derived by shifting the comb mode frequencies, as before. Solid curves represent a complex Voigt profile fit to the spectrum.

Metrics