Abstract

For some crystalline materials, a regime can be found where continuous ductile cutting is feasible. Using precision diamond turning, such materials can be cut into complex optical components with high surface quality and form accuracy. In this work we use diamond-turning to machine a monolithic, square-shaped, doubly-resonant LiNbO3 cavity with two flat and two convex facets. When additional mild polishing is implemented, the Q-factor of the resonator is found to be limited only by the material absorption loss. We show how our monolithic square resonator may be operated as an optical parametric oscillator that is evanescently coupled to free-space beams via birefringent prisms. The prism arrangement allows for independent and large tuning of the fundamental and second harmonic coupling rates. We measure 2.6 ± 0.5 dB of vacuum squeezing at 1064 nm using our system. Potential improvements to obtain higher degrees of squeezing are discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Whispering gallery mode diamond resonator

V. S. Ilchenko, A. M. Bennett, P. Santini, A. A. Savchenkov, A. B. Matsko, and L. Maleki
Opt. Lett. 38(21) 4320-4323 (2013)

Direct generation of a multi-transverse mode non-classical state of light

Benoît Chalopin, Francesco Scazza, Claude Fabre, and Nicolas Treps
Opt. Express 19(5) 4405-4410 (2011)

Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator

S. Schiller and R. L. Byer
J. Opt. Soc. Am. B 10(9) 1696-1707 (1993)

References

  • View by:
  • |
  • |
  • |

  1. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
    [Crossref] [PubMed]
  2. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of-9 db quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15, 4321–4327 (2007).
    [Crossref] [PubMed]
  3. P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
    [Crossref]
  4. S. Schiller and R. L. Byer, “Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator,” JOSA B 10, 1696–1707 (1993).
    [Crossref]
  5. K. Fiedler, S. Schiller, R. Paschotta, P. Kürz, and J. Mlynek, “Highly efficient frequency doubling with a doubly resonant monolithic total-internal-reflection ring resonator,” Opt. Lett. 18, 1786–1788 (1993).
    [Crossref] [PubMed]
  6. R. Paschotta, K. Fiedler, P. Kürz, and J. Mlynek, “Nonlinear mode coupling in doubly resonant frequency doublers,” Appl. Phys. B 58, 117–122 (1994).
    [Crossref]
  7. J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett. 106, 113901 (2011).
    [Crossref] [PubMed]
  8. M. Förtsch, G. Schunk, J. U. Fürst, D. Strekalov, T. Gerrits, M. J. Stevens, F. Sedlmeir, H. G. L. Schwefel, S. W. Nam, G. Leuchs, and C. Marquardt, “Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source,” Phys. Rev. A 91, 023812 (2015).
    [Crossref]
  9. G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U. Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern,” Opt. Express 22, 30795–30806 (2014).
    [Crossref]
  10. A. B. Matsko, Practical applications of microresonators in optics and photonics, (CRC Press, 2009).
    [Crossref]
  11. I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
    [Crossref]
  12. B. Ngoi and P. Sreejith, “Ductile regime finish machining-a review,” Int. J. Adv. Manuf. 16, 547–550 (2000).
    [Crossref]
  13. F. Z. Fang and V. C. Venkatesh, “Diamond cutting of silicon with nanometric finish,” CIRP Ann.-Manuf. Techn. 47, 45–49 (1998).
    [Crossref]
  14. B. A. Fuchs, C. Syn, and S. P. Velsko, “Diamond turning of lithium niobate for optical applications,” App. Opt. 31, 5788–5793 (1992).
    [Crossref]
  15. J. Fürst, D. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
    [Crossref] [PubMed]
  16. D. Bryan, R. Rice, R. Gerson, H. Tomaschke, K. Sweeney, and L. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 241138 (1985).
    [Crossref]
  17. T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” JOSA B 11, 1681–1687 (1994).
    [Crossref]
  18. S. Schiller, I. Yu, M. M. Fejer, and R. L. Byer, “Fused-silica monolithic total-internal-reflection resonator,” Opt. Lett. 17, 378–380 (1992).
    [Crossref] [PubMed]
  19. Y.-L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square µ cavity,” Appl. Phys. Lett. 82, 487–489 (2003).
    [Crossref]
  20. P. L. Hansen and P. Buchhave, “Thermal self-frequency locking of a doubly resonant optical parametric oscillator,” Opt. Lett. 22, 1074–1076 (1997).
    [Crossref] [PubMed]
  21. J. H. Chow, B. S. Sheard, D. E. McClelland, M. B. Gray, and I. C. M. Littler, “Photothermal effects in passive fiber bragg grating resonators,” Opt. Lett. 30, 708–710 (2005).
    [Crossref] [PubMed]
  22. G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).
    [Crossref]
  23. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A 81, 013814 (2010).
    [Crossref]
  24. M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
    [Crossref]

2015 (2)

M. Förtsch, G. Schunk, J. U. Fürst, D. Strekalov, T. Gerrits, M. J. Stevens, F. Sedlmeir, H. G. L. Schwefel, S. W. Nam, G. Leuchs, and C. Marquardt, “Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source,” Phys. Rev. A 91, 023812 (2015).
[Crossref]

G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).
[Crossref]

2014 (1)

2012 (1)

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

2011 (1)

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

2010 (3)

J. Fürst, D. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A 81, 013814 (2010).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

2007 (1)

2006 (1)

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

2005 (1)

2003 (1)

Y.-L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square µ cavity,” Appl. Phys. Lett. 82, 487–489 (2003).
[Crossref]

2000 (1)

B. Ngoi and P. Sreejith, “Ductile regime finish machining-a review,” Int. J. Adv. Manuf. 16, 547–550 (2000).
[Crossref]

1998 (1)

F. Z. Fang and V. C. Venkatesh, “Diamond cutting of silicon with nanometric finish,” CIRP Ann.-Manuf. Techn. 47, 45–49 (1998).
[Crossref]

1997 (1)

1994 (2)

R. Paschotta, K. Fiedler, P. Kürz, and J. Mlynek, “Nonlinear mode coupling in doubly resonant frequency doublers,” Appl. Phys. B 58, 117–122 (1994).
[Crossref]

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” JOSA B 11, 1681–1687 (1994).
[Crossref]

1993 (2)

S. Schiller and R. L. Byer, “Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator,” JOSA B 10, 1696–1707 (1993).
[Crossref]

K. Fiedler, S. Schiller, R. Paschotta, P. Kürz, and J. Mlynek, “Highly efficient frequency doubling with a doubly resonant monolithic total-internal-reflection ring resonator,” Opt. Lett. 18, 1786–1788 (1993).
[Crossref] [PubMed]

1992 (3)

P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

B. A. Fuchs, C. Syn, and S. P. Velsko, “Diamond turning of lithium niobate for optical applications,” App. Opt. 31, 5788–5793 (1992).
[Crossref]

S. Schiller, I. Yu, M. M. Fejer, and R. L. Byer, “Fused-silica monolithic total-internal-reflection resonator,” Opt. Lett. 17, 378–380 (1992).
[Crossref] [PubMed]

1985 (1)

D. Bryan, R. Rice, R. Gerson, H. Tomaschke, K. Sweeney, and L. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 241138 (1985).
[Crossref]

Aiello, A.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

J. Fürst, D. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Bauchrowitz, J.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Bryan, D.

D. Bryan, R. Rice, R. Gerson, H. Tomaschke, K. Sweeney, and L. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 241138 (1985).
[Crossref]

Buchhave, P.

Buchler, B. C.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

Byer, R. L.

S. Schiller and R. L. Byer, “Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator,” JOSA B 10, 1696–1707 (1993).
[Crossref]

S. Schiller, I. Yu, M. M. Fejer, and R. L. Byer, “Fused-silica monolithic total-internal-reflection resonator,” Opt. Lett. 17, 378–380 (1992).
[Crossref] [PubMed]

Chang, R. K.

Y.-L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square µ cavity,” Appl. Phys. Lett. 82, 487–489 (2003).
[Crossref]

Chow, J. H.

Christiansen, S.

Chua, S. S. Y.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

Danzmann, K.

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A 81, 013814 (2010).
[Crossref]

Eberle, T.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

J. Fürst, D. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Fang, F. Z.

F. Z. Fang and V. C. Venkatesh, “Diamond cutting of silicon with nanometric finish,” CIRP Ann.-Manuf. Techn. 47, 45–49 (1998).
[Crossref]

Fejer, M. M.

Fiedler, K.

R. Paschotta, K. Fiedler, P. Kürz, and J. Mlynek, “Nonlinear mode coupling in doubly resonant frequency doublers,” Appl. Phys. B 58, 117–122 (1994).
[Crossref]

K. Fiedler, S. Schiller, R. Paschotta, P. Kürz, and J. Mlynek, “Highly efficient frequency doubling with a doubly resonant monolithic total-internal-reflection ring resonator,” Opt. Lett. 18, 1786–1788 (1993).
[Crossref] [PubMed]

P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

Förtsch, M.

Fuchs, B. A.

B. A. Fuchs, C. Syn, and S. P. Velsko, “Diamond turning of lithium niobate for optical applications,” App. Opt. 31, 5788–5793 (1992).
[Crossref]

Fürst, J.

J. Fürst, D. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Fürst, J. U.

M. Förtsch, G. Schunk, J. U. Fürst, D. Strekalov, T. Gerrits, M. J. Stevens, F. Sedlmeir, H. G. L. Schwefel, S. W. Nam, G. Leuchs, and C. Marquardt, “Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source,” Phys. Rev. A 91, 023812 (2015).
[Crossref]

G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U. Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern,” Opt. Express 22, 30795–30806 (2014).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

Furusawa, A.

Gerrits, T.

M. Förtsch, G. Schunk, J. U. Fürst, D. Strekalov, T. Gerrits, M. J. Stevens, F. Sedlmeir, H. G. L. Schwefel, S. W. Nam, G. Leuchs, and C. Marquardt, “Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source,” Phys. Rev. A 91, 023812 (2015).
[Crossref]

Gerson, R.

D. Bryan, R. Rice, R. Gerson, H. Tomaschke, K. Sweeney, and L. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 241138 (1985).
[Crossref]

Göbelt, M.

Gray, M. B.

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

Halliburton, L.

D. Bryan, R. Rice, R. Gerson, H. Tomaschke, K. Sweeney, and L. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 241138 (1985).
[Crossref]

Händchen, V.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Hansen, P. L.

Ilchenko, V. S.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

Khalaidovski, A.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

Kürz, P.

R. Paschotta, K. Fiedler, P. Kürz, and J. Mlynek, “Nonlinear mode coupling in doubly resonant frequency doublers,” Appl. Phys. B 58, 117–122 (1994).
[Crossref]

K. Fiedler, S. Schiller, R. Paschotta, P. Kürz, and J. Mlynek, “Highly efficient frequency doubling with a doubly resonant monolithic total-internal-reflection ring resonator,” Opt. Lett. 18, 1786–1788 (1993).
[Crossref] [PubMed]

P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

Lam, P. K.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

Lassen, M.

J. Fürst, D. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Lastzka, N.

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A 81, 013814 (2010).
[Crossref]

Leuchs, G.

G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).
[Crossref]

M. Förtsch, G. Schunk, J. U. Fürst, D. Strekalov, T. Gerrits, M. J. Stevens, F. Sedlmeir, H. G. L. Schwefel, S. W. Nam, G. Leuchs, and C. Marquardt, “Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source,” Phys. Rev. A 91, 023812 (2015).
[Crossref]

G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U. Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern,” Opt. Express 22, 30795–30806 (2014).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

J. Fürst, D. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

Littler, I. C. M.

Maleki, L.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

Marquardt, C.

M. Förtsch, G. Schunk, J. U. Fürst, D. Strekalov, T. Gerrits, M. J. Stevens, F. Sedlmeir, H. G. L. Schwefel, S. W. Nam, G. Leuchs, and C. Marquardt, “Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source,” Phys. Rev. A 91, 023812 (2015).
[Crossref]

G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).
[Crossref]

G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U. Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern,” Opt. Express 22, 30795–30806 (2014).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

J. Fürst, D. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Matsko, A. B.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

A. B. Matsko, Practical applications of microresonators in optics and photonics, (CRC Press, 2009).
[Crossref]

McClelland, D. E.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

J. H. Chow, B. S. Sheard, D. E. McClelland, M. B. Gray, and I. C. M. Littler, “Photothermal effects in passive fiber bragg grating resonators,” Opt. Lett. 30, 708–710 (2005).
[Crossref] [PubMed]

Mehmet, M.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A 81, 013814 (2010).
[Crossref]

Mlynek, J.

R. Paschotta, K. Fiedler, P. Kürz, and J. Mlynek, “Nonlinear mode coupling in doubly resonant frequency doublers,” Appl. Phys. B 58, 117–122 (1994).
[Crossref]

K. Fiedler, S. Schiller, R. Paschotta, P. Kürz, and J. Mlynek, “Highly efficient frequency doubling with a doubly resonant monolithic total-internal-reflection ring resonator,” Opt. Lett. 18, 1786–1788 (1993).
[Crossref] [PubMed]

P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

Mow-Lowry, C. M.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

Müller-Ebhardt, H.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Nam, S. W.

M. Förtsch, G. Schunk, J. U. Fürst, D. Strekalov, T. Gerrits, M. J. Stevens, F. Sedlmeir, H. G. L. Schwefel, S. W. Nam, G. Leuchs, and C. Marquardt, “Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source,” Phys. Rev. A 91, 023812 (2015).
[Crossref]

Ngoi, B.

B. Ngoi and P. Sreejith, “Ductile regime finish machining-a review,” Int. J. Adv. Manuf. 16, 547–550 (2000).
[Crossref]

Pan, Y.-L.

Y.-L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square µ cavity,” Appl. Phys. Lett. 82, 487–489 (2003).
[Crossref]

Paschotta, R.

R. Paschotta, K. Fiedler, P. Kürz, and J. Mlynek, “Nonlinear mode coupling in doubly resonant frequency doublers,” Appl. Phys. B 58, 117–122 (1994).
[Crossref]

K. Fiedler, S. Schiller, R. Paschotta, P. Kürz, and J. Mlynek, “Highly efficient frequency doubling with a doubly resonant monolithic total-internal-reflection ring resonator,” Opt. Lett. 18, 1786–1788 (1993).
[Crossref] [PubMed]

P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

Rice, R.

D. Bryan, R. Rice, R. Gerson, H. Tomaschke, K. Sweeney, and L. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 241138 (1985).
[Crossref]

Rubinina, N.

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” JOSA B 11, 1681–1687 (1994).
[Crossref]

Savchenkov, A. A.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

Schiller, S.

Schnabel, R.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A 81, 013814 (2010).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Schunk, G.

Schwefel, H. G. L.

Sedlmeir, F.

Shaddock, D. A.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

Sheard, B. S.

Sizmann, A.

P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

Sreejith, P.

B. Ngoi and P. Sreejith, “Ductile regime finish machining-a review,” Int. J. Adv. Manuf. 16, 547–550 (2000).
[Crossref]

Stefszky, M. S.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

Steinlechner, S.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Stevens, M. J.

M. Förtsch, G. Schunk, J. U. Fürst, D. Strekalov, T. Gerrits, M. J. Stevens, F. Sedlmeir, H. G. L. Schwefel, S. W. Nam, G. Leuchs, and C. Marquardt, “Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source,” Phys. Rev. A 91, 023812 (2015).
[Crossref]

Strekalov, D.

M. Förtsch, G. Schunk, J. U. Fürst, D. Strekalov, T. Gerrits, M. J. Stevens, F. Sedlmeir, H. G. L. Schwefel, S. W. Nam, G. Leuchs, and C. Marquardt, “Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source,” Phys. Rev. A 91, 023812 (2015).
[Crossref]

J. Fürst, D. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

Strekalov, D. V.

Sweeney, K.

D. Bryan, R. Rice, R. Gerson, H. Tomaschke, K. Sweeney, and L. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 241138 (1985).
[Crossref]

Syn, C.

B. A. Fuchs, C. Syn, and S. P. Velsko, “Diamond turning of lithium niobate for optical applications,” App. Opt. 31, 5788–5793 (1992).
[Crossref]

Takeno, Y.

Tomaschke, H.

D. Bryan, R. Rice, R. Gerson, H. Tomaschke, K. Sweeney, and L. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 241138 (1985).
[Crossref]

Vahlbruch, H.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A 81, 013814 (2010).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Velsko, S. P.

B. A. Fuchs, C. Syn, and S. P. Velsko, “Diamond turning of lithium niobate for optical applications,” App. Opt. 31, 5788–5793 (1992).
[Crossref]

Venkatesh, V. C.

F. Z. Fang and V. C. Venkatesh, “Diamond cutting of silicon with nanometric finish,” CIRP Ann.-Manuf. Techn. 47, 45–49 (1998).
[Crossref]

Vogl, U.

Volk, T.

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” JOSA B 11, 1681–1687 (1994).
[Crossref]

Wöhlecke, M.

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” JOSA B 11, 1681–1687 (1994).
[Crossref]

Yonezawa, H.

Yu, I.

Yukawa, M.

App. Opt. (1)

B. A. Fuchs, C. Syn, and S. P. Velsko, “Diamond turning of lithium niobate for optical applications,” App. Opt. 31, 5788–5793 (1992).
[Crossref]

Appl. Phys. B (2)

P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

R. Paschotta, K. Fiedler, P. Kürz, and J. Mlynek, “Nonlinear mode coupling in doubly resonant frequency doublers,” Appl. Phys. B 58, 117–122 (1994).
[Crossref]

Appl. Phys. Lett. (1)

Y.-L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square µ cavity,” Appl. Phys. Lett. 82, 487–489 (2003).
[Crossref]

CIRP Ann.-Manuf. Techn. (1)

F. Z. Fang and V. C. Venkatesh, “Diamond cutting of silicon with nanometric finish,” CIRP Ann.-Manuf. Techn. 47, 45–49 (1998).
[Crossref]

Classical Quant. Grav. (1)

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quant. Grav. 29, 145015 (2012).
[Crossref]

Int. J. Adv. Manuf. (1)

B. Ngoi and P. Sreejith, “Ductile regime finish machining-a review,” Int. J. Adv. Manuf. 16, 547–550 (2000).
[Crossref]

JOSA B (2)

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” JOSA B 11, 1681–1687 (1994).
[Crossref]

S. Schiller and R. L. Byer, “Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator,” JOSA B 10, 1696–1707 (1993).
[Crossref]

Opt. Commun. (1)

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

Opt. Eng. (1)

D. Bryan, R. Rice, R. Gerson, H. Tomaschke, K. Sweeney, and L. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 241138 (1985).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Optica (1)

Phys. Rev. A (2)

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A 81, 013814 (2010).
[Crossref]

M. Förtsch, G. Schunk, J. U. Fürst, D. Strekalov, T. Gerrits, M. J. Stevens, F. Sedlmeir, H. G. L. Schwefel, S. W. Nam, G. Leuchs, and C. Marquardt, “Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source,” Phys. Rev. A 91, 023812 (2015).
[Crossref]

Phys. Rev. Lett. (3)

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

J. Fürst, D. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Other (1)

A. B. Matsko, Practical applications of microresonators in optics and photonics, (CRC Press, 2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the resonator. An optical crystal is cut into a square-shaped monolithic resonator that uses total internal reflection to define an optical mode. Two opposite faces are spheroidal to confine the optical mode while the remaining two faces are used to evanescently couple the circulating mode to a free-space optical mode via a prism. (b) Minimum linewidth achievable for the sub-harmonic. The measurement is performed by scanning the voltage applied across the resonator. To observe the intrinsic linewidth, the coupling prism is placed sufficiently far away that coupling losses are negligible relative to losses from absorption and scattering.

Fig. 2
Fig. 2

Illustration of the shape of the resonator from a top-down perspective (a) and of the curvature of one of the total internal reflection mirrors as seen from the side (b) with an aspect ratio of 40:1. An image of a complete, prism-coupled resonator is shown in (c). The lithium niobate resonator is sandwiched between two brass electrodes, and is illuminated with scattering from 532 nm pump light that is circulating in the resonator. A lead for voltage-tuning the resonator is in contact with the top electrode and a green calcite coupling prism can be seen contacting the resonator from the right.

Fig. 3
Fig. 3

Examples of the surfaces that result from (a) brittle and (b) ductile modes of material removal while diamond turning LiNbO3. Each images are the composition of 59 images each taken at one specific angle.

Fig. 4
Fig. 4

(Top) Illustration of the configuration of the prism couplers. (Bottom) Linewidths attainable by the system for each configuration. The yellow areas represent the possible finesses for 1064 nm sub-harmonic and 532 nm pump. The dark circles illustrate experimental data. The red lines are found using a lossless model and correspond to a displacement of the sub-harmonic coupler. The green lines correspond to the lossless model for displacements of the pump coupler.

Fig. 5
Fig. 5

Schematic of the set-up to prism-couple the resonator. The LN cavity is mounted on a brass oven that is stabilized to the phase-matching temperature. Two prisms, a green calcite prism to couple the pump and a fused silica prism to couple the sub-harmonic, are mounted on positioning stages and can be brought into the evanescent field of the cavity. Each positioning stack consists of a manual translation stage for coarse positioning, a prism mount for angular adjustments and a prism holder that integrates a piezo-driven flexure for fine positioning.

Fig. 6
Fig. 6

Demonstration of self-locking of the pump field to a cavity resonance. The resonance behavior of the pump is shown for a scan with increasing (a) and decreasing (b) speed at different pump powers: 1.07 mW (i), 1.18 mW (ii), 1.21 mW (iii), 1.24 mW (iv) and 1.3 mW (v). The different peaks have been realigned to a common origin for more clarity. (c) A network analyzer is used to modulate the laser frequency while monitoring the amplitude noise of the pump light reflected from the cavity while self-locked. The 3 dB roll-off of the noise reduction occurs at around 40 Hz for the pump powers that were typically used.

Fig. 7
Fig. 7

(a) The relative frequency separation between the pump and sub-harmonic resonances as a function of the piezo tuning voltage for the green calcite prism. (b) The linewidths for the pump (green) and sub-harmonic (red) for the same tuning range. Ideally, the linewidth for the sub-harmonic would be invariant as the distance of the green calcite prism is changed; however, imperfections in the alignment result in some leakage to the green calcite prism.

Fig. 8
Fig. 8

Observation of squeezing and anti-squeezing by scanning the local oscillator phase. For (a), the red and green calcite prisms are used to independently couple the pump and squeezed field, the local oscillator phase is scanned at 1 Hz and the measurement is performed at a sideband frequency of 5 MHz. For (b–d) the green calcite prism was used in conjunction with the SF11 prism, the local oscillator was scanned at 3 Hz and the measurement sideband frequency was (a) 3 MHz, (b) 100 MHz and (c) 150 MHz. The flat regions in (a) and (b) are due to a saturation of the amplifier that provides the piezo scan for the local oscillator phase.

Fig. 9
Fig. 9

(a) Schematic of the coupling media. (b) The three prisms which can be used as third medium.

Fig. 10
Fig. 10

Reflectivity R versus distance L between the prism and the resonator for 1064 nm (red) and 532 nm (green) for the SF11 prism (a), the red calcite (b) and the green calcite prism (c), and phase shift versus distance due to the reflection for the SF11 prism (d), the red calcite (e) and the green calcite prism (f).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

k r = k i x e x k i z e z ,
k 1 = k i x e x i α e z ,
k 2 = k i x e x i α e z ,
k t = k i x e x k t z e z ,
k 0 2 = k z 2 n o 2 + k x 2 n e 2 ,
k t z = k i x n p 1 2 γ ± n p 1 2 Δ 1 / 2 ,
t s = 2 ( 1 i α [ i α cosh ( α L ) + k t z sinh ( α L ) ] + 1 k i z [ i α sinh ( α L ) + k t z cosh ( α L ) ] ) 1 ,
r s = 1 i α [ i α + k t z tanh ( α L ) ] 1 k i z [ i α tanh ( α L ) + k t z ] 1 i α [ i α + k t z tanh ( α L ) ] + 1 k i z [ i α tanh ( α L ) + k t z ] .
H 0 + r s H 0 = H 10 + H 20 ,
H 10 e α L + H 20 e α L = t H H 0 .
( ε ¯ 1 ( H y z e x H y x e z ) ) e x = i H 0 ( ε ¯ 1 ( k z e x k x e z ) ) e x
r H S F 11 = n g 2 i α [ i α n g 2 + k t z n t 2 tanh ( α L ) ] n i o 2 k i z [ i α n g 2 tanh ( α L ) + k t z n t 2 ] n g 2 i α [ i α n g 2 + k t z n t 2 tanh ( α L ) ] + n i o 2 k i z [ i α n g 2 tanh ( α L ) + k t z n t 2 ] .
ε ( e x , e y , e z ) 1 = ( 1 / n p 1 2 0 1 / γ 0 1 / n o 2 0 1 / γ 0 1 / n p 2 2 ) .
H 0 k i z n i o 2 r H H 0 k i z n i o 2 = H 1 k 1 z n g 2 H 2 k 1 z n g 2 ,
H 1 k 1 z n g 2 e α L H 2 k 1 z n g 2 e α L = t H H 0 k t p ,
r H c a l c i t e = n g 2 i α [ i α n g 2 + k t p tanh ( α L ) ] n i o 2 k i z [ i α n g 2 tanh ( α L ) + k t p ] n g 2 i α [ i α n g 2 + k t p tanh ( α L ) ] + n i o 2 k i z [ i α n g 2 tanh ( α L ) + k t p ] .

Metrics