Abstract

Asymmetrically clipped optical orthogonal frequency-division multiplexing (ACO-OFDM) is a technique that sacrifices spectral efficiency in order to transmit an orthogonally frequency-division multiplexed signal over a unipolar channel, such as a directly modulated direct-detection fiber or free-space channel. Several methods have been proposed to regain this spectral efficiency, including: asymmetrically clipped DC-biased optical OFDM (ADO-OFDM), enhanced U-OFDM (EU-OFDM), spectral and energy efficient OFDM (SEE-OFDM), Hybrid-ACO-OFDM and Layered-ACO-OFDM. This paper presents simulations up to high-order constellation sizes to show that Layered-ACO-OFDM offers the highest receiver sensitivity for a given optical power at spectral efficiencies above 3 bit/s/Hz. For comparison purposes, white Gaussian noise is added at the receiver, component nonlinearities are not considered, and the fiber is considered to be linear and dispersion-less. The simulations show that LACO-OFDM has a 7-dB sensitivity advantage over DC-biased OFDM (DCO-OFDM) for 1024-QAM at 87.5% of DCO-OFDM’s spectral efficiency, at the same bit rate and optical power. This is approximately equivalent to a 4.4-dB advantage at the same spectral efficiency of 87.7% if 896-QAM were to be used for DCO-OFDM.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid Asymmetrically Clipped OFDM-Based IM/DD Optical Wireless System

Bilal Ranjha and Mohsen Kavehrad
J. Opt. Commun. Netw. 6(4) 387-396 (2014)

Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications

Mohamed Sufyan Islim and Harald Haas
Opt. Express 24(11) 11932-11949 (2016)

On the Performance of Different OFDM Based Optical Wireless Communication Systems

Raed Mesleh, Hany Elgala, and Harald Haas
J. Opt. Commun. Netw. 3(8) 620-628 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Lowery and J. Armstrong, “10 Gbit/s multimode fiber link using power-efficient orthogonal-frequency-division multiplexing,” Opt. Express 13(25), 10003–10009 (2005).
    [Crossref] [PubMed]
  2. J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–371 (2006).
    [Crossref]
  3. J. Armstrong, B. Schmidt, D. Kalra, H. A. Suraweera, and A. J. Lowery, “Performance of asymmetrically clipped optical OFDM in AWGN for an intensity modulated direct detection system,” in Proc. IEEE Global Communications Conference (GLOBECOM 2006) (IEEE, 2006), pp. SPC07.
    [Crossref]
  4. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
    [Crossref]
  5. B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightwave Technol. 28(4), 328–335 (2010).
    [Crossref]
  6. J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE J. Sel. Areas Commun. 14(3), 538–546 (1996).
    [Crossref]
  7. N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for unipolar communication systems,” IEEE Trans. Commun. 60(12), 3726–3733 (2012).
    [Crossref]
  8. J. I. Yong, “Modulation and demodulation apparatuses and methods for wired/wireless communication system,” in 7961798, USTPO, ed. (Jun Yong, US, 2011).
  9. D. Tsonev, S. Sinanovic, and H. Haas, “Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless,” in IEEE Vehicular Technology Conference (VTC Spring) (IEEE, 2012), pp. 1-5.
    [Crossref]
  10. L. Chen, B. Krongold, and J. Evans, “Diversity combining for asymmetrically clipped optical OFDM in IM/DD channels,” in Global Telecommunications Conference (GLOBECOM) (2009), pp. 1–6.
    [Crossref]
  11. C. Zhe, D. Tsonev, and H. Haas, “Improved receivers for asymmetrically-clipped optical OFDM,” in Vehicular Technology Conference (VTC Spring) (2014), pp. 1–5.
  12. E. Katz, A. Laufer, and Y. Bar-Ness, “A new improved-performance decoding technique for Asymmetrically-Clipped Optical-OFDM,” in Ann. Conf. Information Sciences and Systems (CISS) (2012), pp. 1–6.
    [Crossref]
  13. S. D. Dissanayake and J. Armstrong, “Novel techniques for combating DC offset in diversity combined ACO-OFDM,” IEEE Commun. Lett. 15(11), 1237–1239 (2011).
    [Crossref]
  14. J. Krause Perin, M. Sharif, and J. M. Kahn, “Modulation schemes for single-laser 100 Gb/s links: multicarrier,” J. Lightwave Technol. 33(24), 5122–5132 (2015).
    [Crossref]
  15. S. D. Dissanayake and J. Armstrong, “Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems,” J. Lightwave Technol. 31(7), 1063–1072 (2013).
    [Crossref]
  16. N. Wu and Y. Bar-Ness, “A novel power-efficient scheme for asymmetrically and symetrically clipping optical (ASCOC)-OFDM for IM/DD optical systems,” EURASIP J. Adv. Signal Process. 2015, 1–10 (2015).
  17. B. Ranjha and M. Kavehrad, “Hybrid asymmetrically clipped OFDM-based IM/DD optical wireless system,” J. Opt. Commun. Netw. 6(4), 387–396 (2014).
    [Crossref]
  18. S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, “PAM-DMT for intensity-modulated and direct-detection optical communication systems,” IEEE Photonics Technol. Lett. 21(23), 1749–1751 (2009).
    [Crossref]
  19. D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Comm. 33(9), 1758–1770 (2015).
    [Crossref]
  20. H. Elgala and T. D. C. Little, “SEE-OFDM: Spectral and energy efficient OFDM for optical IM/DD systems,” in IEEE 25th Ann. Int. Symp. Personal Indoor Mob. Radio Commun. (PIMRC), (2014), pp. 851–855.
    [Crossref]
  21. E. Lam, S. K. Wilson, H. Elgala, and T. D. C. Little, “Spectrally and energy efficient OFDM (SEE-OFDM) for intensity modulated optical wireless systems,” http://arxiv.org/abs/1510.08172
  22. Q. Wang, C. Qian, X. Guo, Z. Wang, D. G. Cunningham, and I. H. White, “Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission,” Opt. Express 23(9), 12382–12393 (2015).
    [Crossref] [PubMed]
  23. A. J. Lowery, “Enhanced asymmetrically clipped optical OFDM for high spectral efficiency and sensitivity,” in Optical Fiber Communications (OSA, 2016), pp. Th2A.30.
  24. H. V. Sorensen, D. L. Jones, M. Heideman, and C. S. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoustics Speech Sig. Proc. 35(6), 849–863 (1987).
    [Crossref]
  25. Y. Hong, A. J. Lowery, and E. Viterbo, “Sensitivity improvement and carrier power reduction in direct-detection optical OFDM systems by subcarrier pairing,” Opt. Express 20(2), 1635–1648 (2012).
    [Crossref] [PubMed]
  26. S. K. Wilson and J. Armstrong, “Transmitter and receiver methods for improving asymmetrically-clipped optical OFDM,” IEEE Trans. Wirel. Commun. 8(9), 4561–4567 (2009).
    [Crossref]
  27. S. Wang, S. Zhu, and G. Zhang, “A Walsh-Hadamard coded spectral efficient full frequency diversity OFDM system,” IEEEE Trans. Commun. 58(1), 28–34 (2010).
    [Crossref]
  28. J. Armstrong and B. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett. 12(5), 343–345 (2008).
    [Crossref]
  29. W.-R. Peng, X. Wu, K.-M. Feng, V. R. Arbab, B. Shamee, J.-Y. Yang, L. C. Christen, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express 17(11), 9099–9111 (2009).
    [Crossref] [PubMed]

2015 (4)

J. Krause Perin, M. Sharif, and J. M. Kahn, “Modulation schemes for single-laser 100 Gb/s links: multicarrier,” J. Lightwave Technol. 33(24), 5122–5132 (2015).
[Crossref]

N. Wu and Y. Bar-Ness, “A novel power-efficient scheme for asymmetrically and symetrically clipping optical (ASCOC)-OFDM for IM/DD optical systems,” EURASIP J. Adv. Signal Process. 2015, 1–10 (2015).

D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Comm. 33(9), 1758–1770 (2015).
[Crossref]

Q. Wang, C. Qian, X. Guo, Z. Wang, D. G. Cunningham, and I. H. White, “Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission,” Opt. Express 23(9), 12382–12393 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (2)

2011 (1)

S. D. Dissanayake and J. Armstrong, “Novel techniques for combating DC offset in diversity combined ACO-OFDM,” IEEE Commun. Lett. 15(11), 1237–1239 (2011).
[Crossref]

2010 (2)

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightwave Technol. 28(4), 328–335 (2010).
[Crossref]

S. Wang, S. Zhu, and G. Zhang, “A Walsh-Hadamard coded spectral efficient full frequency diversity OFDM system,” IEEEE Trans. Commun. 58(1), 28–34 (2010).
[Crossref]

2009 (3)

S. K. Wilson and J. Armstrong, “Transmitter and receiver methods for improving asymmetrically-clipped optical OFDM,” IEEE Trans. Wirel. Commun. 8(9), 4561–4567 (2009).
[Crossref]

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, “PAM-DMT for intensity-modulated and direct-detection optical communication systems,” IEEE Photonics Technol. Lett. 21(23), 1749–1751 (2009).
[Crossref]

W.-R. Peng, X. Wu, K.-M. Feng, V. R. Arbab, B. Shamee, J.-Y. Yang, L. C. Christen, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express 17(11), 9099–9111 (2009).
[Crossref] [PubMed]

2008 (1)

J. Armstrong and B. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett. 12(5), 343–345 (2008).
[Crossref]

2006 (2)

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–371 (2006).
[Crossref]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
[Crossref]

2005 (1)

1996 (1)

J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE J. Sel. Areas Commun. 14(3), 538–546 (1996).
[Crossref]

1987 (1)

H. V. Sorensen, D. L. Jones, M. Heideman, and C. S. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoustics Speech Sig. Proc. 35(6), 849–863 (1987).
[Crossref]

Arbab, V. R.

Armstrong, J.

S. D. Dissanayake and J. Armstrong, “Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems,” J. Lightwave Technol. 31(7), 1063–1072 (2013).
[Crossref]

S. D. Dissanayake and J. Armstrong, “Novel techniques for combating DC offset in diversity combined ACO-OFDM,” IEEE Commun. Lett. 15(11), 1237–1239 (2011).
[Crossref]

S. K. Wilson and J. Armstrong, “Transmitter and receiver methods for improving asymmetrically-clipped optical OFDM,” IEEE Trans. Wirel. Commun. 8(9), 4561–4567 (2009).
[Crossref]

J. Armstrong and B. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett. 12(5), 343–345 (2008).
[Crossref]

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–371 (2006).
[Crossref]

A. J. Lowery and J. Armstrong, “10 Gbit/s multimode fiber link using power-efficient orthogonal-frequency-division multiplexing,” Opt. Express 13(25), 10003–10009 (2005).
[Crossref] [PubMed]

J. Armstrong, B. Schmidt, D. Kalra, H. A. Suraweera, and A. J. Lowery, “Performance of asymmetrically clipped optical OFDM in AWGN for an intensity modulated direct detection system,” in Proc. IEEE Global Communications Conference (GLOBECOM 2006) (IEEE, 2006), pp. SPC07.
[Crossref]

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
[Crossref]

Bar-Ness, Y.

N. Wu and Y. Bar-Ness, “A novel power-efficient scheme for asymmetrically and symetrically clipping optical (ASCOC)-OFDM for IM/DD optical systems,” EURASIP J. Adv. Signal Process. 2015, 1–10 (2015).

E. Katz, A. Laufer, and Y. Bar-Ness, “A new improved-performance decoding technique for Asymmetrically-Clipped Optical-OFDM,” in Ann. Conf. Information Sciences and Systems (CISS) (2012), pp. 1–6.
[Crossref]

Breyer, F.

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, “PAM-DMT for intensity-modulated and direct-detection optical communication systems,” IEEE Photonics Technol. Lett. 21(23), 1749–1751 (2009).
[Crossref]

Burrus, C. S.

H. V. Sorensen, D. L. Jones, M. Heideman, and C. S. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoustics Speech Sig. Proc. 35(6), 849–863 (1987).
[Crossref]

Carruthers, J. B.

J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE J. Sel. Areas Commun. 14(3), 538–546 (1996).
[Crossref]

Chen, L.

L. Chen, B. Krongold, and J. Evans, “Diversity combining for asymmetrically clipped optical OFDM in IM/DD channels,” in Global Telecommunications Conference (GLOBECOM) (2009), pp. 1–6.
[Crossref]

Chi, S.

Christen, L. C.

Cunningham, D. G.

Dissanayake, S. D.

S. D. Dissanayake and J. Armstrong, “Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems,” J. Lightwave Technol. 31(7), 1063–1072 (2013).
[Crossref]

S. D. Dissanayake and J. Armstrong, “Novel techniques for combating DC offset in diversity combined ACO-OFDM,” IEEE Commun. Lett. 15(11), 1237–1239 (2011).
[Crossref]

Du, L. B.

Elgala, H.

H. Elgala and T. D. C. Little, “SEE-OFDM: Spectral and energy efficient OFDM for optical IM/DD systems,” in IEEE 25th Ann. Int. Symp. Personal Indoor Mob. Radio Commun. (PIMRC), (2014), pp. 851–855.
[Crossref]

Evans, J.

L. Chen, B. Krongold, and J. Evans, “Diversity combining for asymmetrically clipped optical OFDM in IM/DD channels,” in Global Telecommunications Conference (GLOBECOM) (2009), pp. 1–6.
[Crossref]

Feng, K.-M.

Fernando, N.

N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for unipolar communication systems,” IEEE Trans. Commun. 60(12), 3726–3733 (2012).
[Crossref]

Guo, X.

Haas, H.

D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Comm. 33(9), 1758–1770 (2015).
[Crossref]

D. Tsonev, S. Sinanovic, and H. Haas, “Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless,” in IEEE Vehicular Technology Conference (VTC Spring) (IEEE, 2012), pp. 1-5.
[Crossref]

C. Zhe, D. Tsonev, and H. Haas, “Improved receivers for asymmetrically-clipped optical OFDM,” in Vehicular Technology Conference (VTC Spring) (2014), pp. 1–5.

Heideman, M.

H. V. Sorensen, D. L. Jones, M. Heideman, and C. S. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoustics Speech Sig. Proc. 35(6), 849–863 (1987).
[Crossref]

Hong, Y.

Jones, D. L.

H. V. Sorensen, D. L. Jones, M. Heideman, and C. S. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoustics Speech Sig. Proc. 35(6), 849–863 (1987).
[Crossref]

Kahn, J. M.

J. Krause Perin, M. Sharif, and J. M. Kahn, “Modulation schemes for single-laser 100 Gb/s links: multicarrier,” J. Lightwave Technol. 33(24), 5122–5132 (2015).
[Crossref]

J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE J. Sel. Areas Commun. 14(3), 538–546 (1996).
[Crossref]

Kalra, D.

J. Armstrong, B. Schmidt, D. Kalra, H. A. Suraweera, and A. J. Lowery, “Performance of asymmetrically clipped optical OFDM in AWGN for an intensity modulated direct detection system,” in Proc. IEEE Global Communications Conference (GLOBECOM 2006) (IEEE, 2006), pp. SPC07.
[Crossref]

Katz, E.

E. Katz, A. Laufer, and Y. Bar-Ness, “A new improved-performance decoding technique for Asymmetrically-Clipped Optical-OFDM,” in Ann. Conf. Information Sciences and Systems (CISS) (2012), pp. 1–6.
[Crossref]

Kavehrad, M.

Koonen, A. M. J.

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, “PAM-DMT for intensity-modulated and direct-detection optical communication systems,” IEEE Photonics Technol. Lett. 21(23), 1749–1751 (2009).
[Crossref]

Krause Perin, J.

Krongold, B.

L. Chen, B. Krongold, and J. Evans, “Diversity combining for asymmetrically clipped optical OFDM in IM/DD channels,” in Global Telecommunications Conference (GLOBECOM) (2009), pp. 1–6.
[Crossref]

Laufer, A.

E. Katz, A. Laufer, and Y. Bar-Ness, “A new improved-performance decoding technique for Asymmetrically-Clipped Optical-OFDM,” in Ann. Conf. Information Sciences and Systems (CISS) (2012), pp. 1–6.
[Crossref]

Lee, S. C. J.

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, “PAM-DMT for intensity-modulated and direct-detection optical communication systems,” IEEE Photonics Technol. Lett. 21(23), 1749–1751 (2009).
[Crossref]

Little, T. D. C.

H. Elgala and T. D. C. Little, “SEE-OFDM: Spectral and energy efficient OFDM for optical IM/DD systems,” in IEEE 25th Ann. Int. Symp. Personal Indoor Mob. Radio Commun. (PIMRC), (2014), pp. 851–855.
[Crossref]

Lowery, A. J.

Y. Hong, A. J. Lowery, and E. Viterbo, “Sensitivity improvement and carrier power reduction in direct-detection optical OFDM systems by subcarrier pairing,” Opt. Express 20(2), 1635–1648 (2012).
[Crossref] [PubMed]

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightwave Technol. 28(4), 328–335 (2010).
[Crossref]

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–371 (2006).
[Crossref]

A. J. Lowery and J. Armstrong, “10 Gbit/s multimode fiber link using power-efficient orthogonal-frequency-division multiplexing,” Opt. Express 13(25), 10003–10009 (2005).
[Crossref] [PubMed]

J. Armstrong, B. Schmidt, D. Kalra, H. A. Suraweera, and A. J. Lowery, “Performance of asymmetrically clipped optical OFDM in AWGN for an intensity modulated direct detection system,” in Proc. IEEE Global Communications Conference (GLOBECOM 2006) (IEEE, 2006), pp. SPC07.
[Crossref]

A. J. Lowery, “Enhanced asymmetrically clipped optical OFDM for high spectral efficiency and sensitivity,” in Optical Fiber Communications (OSA, 2016), pp. Th2A.30.

Peng, W.-R.

Qian, C.

Randel, S.

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, “PAM-DMT for intensity-modulated and direct-detection optical communication systems,” IEEE Photonics Technol. Lett. 21(23), 1749–1751 (2009).
[Crossref]

Ranjha, B.

Schmidt, B.

J. Armstrong and B. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett. 12(5), 343–345 (2008).
[Crossref]

J. Armstrong, B. Schmidt, D. Kalra, H. A. Suraweera, and A. J. Lowery, “Performance of asymmetrically clipped optical OFDM in AWGN for an intensity modulated direct detection system,” in Proc. IEEE Global Communications Conference (GLOBECOM 2006) (IEEE, 2006), pp. SPC07.
[Crossref]

Schmidt, B. J. C.

Shamee, B.

Sharif, M.

Shieh, W.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
[Crossref]

Sinanovic, S.

D. Tsonev, S. Sinanovic, and H. Haas, “Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless,” in IEEE Vehicular Technology Conference (VTC Spring) (IEEE, 2012), pp. 1-5.
[Crossref]

Sorensen, H. V.

H. V. Sorensen, D. L. Jones, M. Heideman, and C. S. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoustics Speech Sig. Proc. 35(6), 849–863 (1987).
[Crossref]

Suraweera, H. A.

J. Armstrong, B. Schmidt, D. Kalra, H. A. Suraweera, and A. J. Lowery, “Performance of asymmetrically clipped optical OFDM in AWGN for an intensity modulated direct detection system,” in Proc. IEEE Global Communications Conference (GLOBECOM 2006) (IEEE, 2006), pp. SPC07.
[Crossref]

Tsonev, D.

D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Comm. 33(9), 1758–1770 (2015).
[Crossref]

D. Tsonev, S. Sinanovic, and H. Haas, “Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless,” in IEEE Vehicular Technology Conference (VTC Spring) (IEEE, 2012), pp. 1-5.
[Crossref]

C. Zhe, D. Tsonev, and H. Haas, “Improved receivers for asymmetrically-clipped optical OFDM,” in Vehicular Technology Conference (VTC Spring) (2014), pp. 1–5.

Videv, S.

D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Comm. 33(9), 1758–1770 (2015).
[Crossref]

Viterbo, E.

Wang, Q.

Wang, S.

S. Wang, S. Zhu, and G. Zhang, “A Walsh-Hadamard coded spectral efficient full frequency diversity OFDM system,” IEEEE Trans. Commun. 58(1), 28–34 (2010).
[Crossref]

Wang, Z.

White, I. H.

Willner, A. E.

Wilson, S. K.

S. K. Wilson and J. Armstrong, “Transmitter and receiver methods for improving asymmetrically-clipped optical OFDM,” IEEE Trans. Wirel. Commun. 8(9), 4561–4567 (2009).
[Crossref]

Wu, N.

N. Wu and Y. Bar-Ness, “A novel power-efficient scheme for asymmetrically and symetrically clipping optical (ASCOC)-OFDM for IM/DD optical systems,” EURASIP J. Adv. Signal Process. 2015, 1–10 (2015).

Wu, X.

Yang, J.-Y.

Zan, Z.

Zhang, G.

S. Wang, S. Zhu, and G. Zhang, “A Walsh-Hadamard coded spectral efficient full frequency diversity OFDM system,” IEEEE Trans. Commun. 58(1), 28–34 (2010).
[Crossref]

Zhe, C.

C. Zhe, D. Tsonev, and H. Haas, “Improved receivers for asymmetrically-clipped optical OFDM,” in Vehicular Technology Conference (VTC Spring) (2014), pp. 1–5.

Zhu, S.

S. Wang, S. Zhu, and G. Zhang, “A Walsh-Hadamard coded spectral efficient full frequency diversity OFDM system,” IEEEE Trans. Commun. 58(1), 28–34 (2010).
[Crossref]

Electron. Lett. (2)

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–371 (2006).
[Crossref]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
[Crossref]

EURASIP J. Adv. Signal Process. (1)

N. Wu and Y. Bar-Ness, “A novel power-efficient scheme for asymmetrically and symetrically clipping optical (ASCOC)-OFDM for IM/DD optical systems,” EURASIP J. Adv. Signal Process. 2015, 1–10 (2015).

IEEE Commun. Lett. (2)

S. D. Dissanayake and J. Armstrong, “Novel techniques for combating DC offset in diversity combined ACO-OFDM,” IEEE Commun. Lett. 15(11), 1237–1239 (2011).
[Crossref]

J. Armstrong and B. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett. 12(5), 343–345 (2008).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

D. Tsonev, S. Videv, and H. Haas, “Unlocking spectral efficiency in intensity modulation and direct detection systems,” IEEE J. Sel. Areas Comm. 33(9), 1758–1770 (2015).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE J. Sel. Areas Commun. 14(3), 538–546 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, “PAM-DMT for intensity-modulated and direct-detection optical communication systems,” IEEE Photonics Technol. Lett. 21(23), 1749–1751 (2009).
[Crossref]

IEEE Trans. Acoustics Speech Sig. Proc. (1)

H. V. Sorensen, D. L. Jones, M. Heideman, and C. S. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoustics Speech Sig. Proc. 35(6), 849–863 (1987).
[Crossref]

IEEE Trans. Commun. (1)

N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for unipolar communication systems,” IEEE Trans. Commun. 60(12), 3726–3733 (2012).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

S. K. Wilson and J. Armstrong, “Transmitter and receiver methods for improving asymmetrically-clipped optical OFDM,” IEEE Trans. Wirel. Commun. 8(9), 4561–4567 (2009).
[Crossref]

IEEEE Trans. Commun. (1)

S. Wang, S. Zhu, and G. Zhang, “A Walsh-Hadamard coded spectral efficient full frequency diversity OFDM system,” IEEEE Trans. Commun. 58(1), 28–34 (2010).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Opt. Express (4)

Other (9)

A. J. Lowery, “Enhanced asymmetrically clipped optical OFDM for high spectral efficiency and sensitivity,” in Optical Fiber Communications (OSA, 2016), pp. Th2A.30.

H. Elgala and T. D. C. Little, “SEE-OFDM: Spectral and energy efficient OFDM for optical IM/DD systems,” in IEEE 25th Ann. Int. Symp. Personal Indoor Mob. Radio Commun. (PIMRC), (2014), pp. 851–855.
[Crossref]

E. Lam, S. K. Wilson, H. Elgala, and T. D. C. Little, “Spectrally and energy efficient OFDM (SEE-OFDM) for intensity modulated optical wireless systems,” http://arxiv.org/abs/1510.08172

J. Armstrong, B. Schmidt, D. Kalra, H. A. Suraweera, and A. J. Lowery, “Performance of asymmetrically clipped optical OFDM in AWGN for an intensity modulated direct detection system,” in Proc. IEEE Global Communications Conference (GLOBECOM 2006) (IEEE, 2006), pp. SPC07.
[Crossref]

J. I. Yong, “Modulation and demodulation apparatuses and methods for wired/wireless communication system,” in 7961798, USTPO, ed. (Jun Yong, US, 2011).

D. Tsonev, S. Sinanovic, and H. Haas, “Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless,” in IEEE Vehicular Technology Conference (VTC Spring) (IEEE, 2012), pp. 1-5.
[Crossref]

L. Chen, B. Krongold, and J. Evans, “Diversity combining for asymmetrically clipped optical OFDM in IM/DD channels,” in Global Telecommunications Conference (GLOBECOM) (2009), pp. 1–6.
[Crossref]

C. Zhe, D. Tsonev, and H. Haas, “Improved receivers for asymmetrically-clipped optical OFDM,” in Vehicular Technology Conference (VTC Spring) (2014), pp. 1–5.

E. Katz, A. Laufer, and Y. Bar-Ness, “A new improved-performance decoding technique for Asymmetrically-Clipped Optical-OFDM,” in Ann. Conf. Information Sciences and Systems (CISS) (2012), pp. 1–6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Odd-subcarrier ACO-OFDM system block diagram. Top: system block diagram. Bottom: illustrative spectrum after the clipping process.

Fig. 2
Fig. 2

Musical analogy for generating an LACO-OFDM signal at the transmitter, by adding together the clipped waveforms of several chords, illustrated in the spectral domain. Note that there are only 16 possible subcarriers in this example (14 are used, in 3 chords), for clarity: the simulations will use 56 out of 64 possible subcarriers. The frequencies are normalized so that the subcarrier separation in Chord 0 is unity, implying a unity-duration OFDM symbol.

Fig. 3
Fig. 3

Process for cancelling the signal and distortion products from Chord 0, enabling Chord 1 to be processed. The QAM symbols in C1 can also be extracted after the slicer.

Fig. 4
Fig. 4

Electrical spectrum of the transmitted LACO-OFDM signal (brown) with the spectra of Chords 0 (red), 1 (green) and 2 (blue). The spectra are averaged over 8 simulation runs and has a resolution bandwidth of 50 MHz. Note how only 56 out of the 64 possible locations are occupied if only 3 chords are used.

Fig. 5
Fig. 5

Simulated constellations for a 3-chord LACO-OFDM system (with and without cancellation) and a DCO-OFDM system biased at 6.2 dB. All have 56-subcarriers and operate at the same received optical power and receiver noise, giving the same SNR. All the chords in the LACO-OFDM system out-perform the DCO-OFDM system, and the necessity of using cancellation to recover chords C1 and C2 is clear.

Fig. 6
Fig. 6

Error Vector Magnitude (estimated from constellation spreads) versus signal to noise ratio for 4-QAM LACO-OFDM and DCO-OFDM (8 biases). The dashed line is the EVM that would be obtained with a (single chord) 56-subcarrier ACO-OFDM system using approximately twice the spectral bandwidth of the other systems. The EVM of the DCO-OFDM systems is ultimately limited by clipping distortion. Note how the curves for LACO-OFDM converge for high SNRs due to the improbability of errors in the slicing process. Without slicing the separation of the LACO-curves remains approximately constant over all SNRs.

Fig. 7
Fig. 7

EVM (estimated from constellation spreads) versus signal to noise ratio for 1024-QAM LACO-OFDM and 1024-QAM DCO-OFDM (8 biases). The slicers work very effectively well at BERs better than 10−3, but not quite as effectively as for 4-QAM.

Fig. 8
Fig. 8

Cost, in terms of electrical SNR, of using a higher spectral efficiency to support a fixed data rate at a fixed optical power, for ACO/LACO/DCO/ADO/SEE and EU-OFDM.

Fig. 9
Fig. 9

Comparison of the performance of LACO-OFDM with and without the slicing operation in the cancellation process. The simulation parameters are as in Fig. 6. Without slicing, the higher chords (C1, green; C2, blue) suffer 2- and 4-dB penalties with respect to C0 (red) at all SNRs. With slicing, the penalties reduce to almost nothing above 15-dB SNR. Even at low SNRs, the slicing reduces these penalties.

Metrics