Abstract

Liquid lens offers a simple solution to achieve tunable optical powers. This approach, however, suffers from deteriorated resolution at high diopters. In this study, a plano-convex liquid lens with aspherical cross-section is developed. Such configuration allows for the lens profiles at high diopters to be close to spherical shapes by alleviating the edge-clamping effects. Resolution tests of a 6mm lens with optimized asphericity exhibit improved resolutions in both center and peripheral regions at 40 and 100 diopters than the lenses with planar membranes. It shows that aspherical membranes can improve the resolving power of liquid lenses at high diopters, thus providing a new route of optimizing the imaging performance of adaptive liquid lenses for various applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spherical aberration free liquid-filled tunable lens with variable thickness membrane

Pengpeng Zhao, Çağlar Ataman, and Hans Zappe
Opt. Express 23(16) 21264-21278 (2015)

Surface profiling of an aspherical liquid lens with a varied thickness membrane

Zengqian Ding, Chinhua Wang, Zhixiong Hu, Zhenggang Cao, Zhen Zhou, Xiangyu Chen, Hongyu Chen, and Wen Qiao
Opt. Express 25(4) 3122-3132 (2017)

Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation

Hongbin Yu, Guangya Zhou, Hui Min Leung, and Fook Siong Chau
Opt. Express 18(10) 9945-9954 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26, 1773–1788 (2012).
  2. D. Graham-Rowe, “Liquid lenses make a splash,” Nat. Photonics sample, 2–4 (2006).
    [Crossref]
  3. N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
    [Crossref] [PubMed]
  4. M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” in SPIE Optical Systems Design (ISOP, 2011), paper 81670W.
  5. A. Miks and J. Novak, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18(7), 6797–6810 (2010).
    [Crossref] [PubMed]
  6. Q. Hao, X. Cheng, and K. Du, “Four-group stabilized zoom lens design of two focal-length-variable elements,” Opt. Express 21(6), 7758–7767 (2013).
    [Crossref] [PubMed]
  7. N. Savidis, G. Peyman, N. Peyghambarian, and J. Schwiegerling, “Nonmechanical zoom system through pressure-controlled tunable fluidic lenses,” Appl. Opt. 52(12), 2858–2865 (2013).
    [Crossref] [PubMed]
  8. S. Casutt, M. Bueeler, M. Blum, and M. Aschwanden, “Fast and precise continuous focusing with focus tunable lenses,” in SPIE OPTO (ISOP, 2014), paper 89820Y.
  9. M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” in SPIE MOEMS-MEMS (ISOP, 2012), pp. 825207–825211.
  10. Y.-S. Lu, L.-Y. Tsai, K.-C. Huang, C. G. Tsai, C.-C. Yang, and J. A. Yeh, “Three-dimensional illumination system using dielectric liquid lenses,” Opt. Express 19(S4Suppl 4), A740–A746 (2011).
    [Crossref] [PubMed]
  11. D. P. Goren, “Method of driving focusing element in barcode imaging scanner,” (Google Patents, 2012).
  12. M. J. Amin and N. A. Riza, “Smart imaging using laser targeting: a multiple barcodes application,” in SPIE Photonics Europe (ISOP, 2014), paper 91411H.
  13. Y.-P. Huang, C.-W. Chen, M. Cho, and B. Javidi, “Liquid crystal lens for axially distributed three-dimensional sensing,” in SPIE Defense, Security, and Sensing (ISOP, 2013), paper 873804.
  14. R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling, and N. Peyghambarian, “Adjustable fluidic lenses for ophthalmic corrections,” Opt. Lett. 34(4), 515–517 (2009).
    [Crossref] [PubMed]
  15. R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling, and N. Peyghambarian, “Adjustable adaptive compact fluidic phoropter with no mechanical translation of lenses,” Opt. Lett. 35(5), 739–741 (2010).
    [Crossref] [PubMed]
  16. N. A. Riza, M. J. Amin, and M. N. Riza, “Eye vision system using programmable micro-optics and micro-electronics,” in SPIE BiOS (ISOP, 2014), 89300C.
  17. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
    [Crossref] [PubMed]
  18. B. F. Grewe, F. F. Voigt, M. van ’t Hoff, and F. Helmchen, “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2(7), 2035–2046 (2011).
    [Crossref] [PubMed]
  19. J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y.-S. L. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5(2), 645–652 (2014).
    [Crossref] [PubMed]
  20. R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between… On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2008).
    [Crossref]
  21. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses, Wiley Series in Pure and Applied Optics (Wiley, 2012).
  22. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
    [Crossref] [PubMed]
  23. W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express 19(3), 2347–2362 (2011).
    [Crossref] [PubMed]
  24. W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light Sci. Appl. 3(2), e145 (2014).
    [Crossref]
  25. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
    [Crossref]
  26. J.-Y. Yiu, R. Batchko, S. Robinson, and A. Szilagyi, “A fluidic lens with reduced optical aberration,” in IS&T/SPIE Electronic Imaging (ISOP, 2012), paper 830117.
  27. K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
    [Crossref] [PubMed]
  28. L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
    [Crossref]
  29. K. Wei, H. Zeng, and Y. Zhao, “Insect-Human Hybrid Eye (IHHE): an adaptive optofluidic lens combining the structural characteristics of insect and human eyes,” Lab Chip 14(18), 3594–3602 (2014).
    [Crossref] [PubMed]
  30. S. T. Choi, B. S. Son, G. W. Seo, S.-Y. Park, and K.-S. Lee, “Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses,” Opt. Express 22(5), 6133–6146 (2014).
    [Crossref] [PubMed]
  31. A. Miks, J. Novak, and P. Novak, “Algebraic and numerical analysis of imaging properties of thin tunable-focus fluidic membrane lenses with parabolic surfaces,” Appl. Opt. 52(10), 2136–2144 (2013).
    [Crossref] [PubMed]
  32. H. Ren and S.-T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [Crossref] [PubMed]
  33. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47(20), 3658–3668 (2008).
    [Crossref] [PubMed]
  34. H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18(10), 9945–9954 (2010).
    [Crossref] [PubMed]
  35. G. H. Feng and Y. C. Chou, “Flexible meniscus/biconvex lens system with fluidic-controlled tunable-focus applications,” Appl. Opt. 48(18), 3284–3290 (2009).
    [Crossref] [PubMed]
  36. D. Shaw and T. E. Sun, “Optical properties of variable-focus liquid-filled optical lenses with different membrane shapes,” Opt. Eng. 46(2), 024002 (2007).
    [Crossref]
  37. I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
    [Crossref]
  38. Q. Wang and Y. Zhao, “Miniaturized cell mechanical stimulator with controlled strain gradient for cellular mechanobiolgical study,” in 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (2011), pp. 1113–1115.
  39. M. Fauver, E. Seibel, J. R. Rahn, M. Meyer, F. Patten, T. Neumann, and A. Nelson, “Three-dimensional imaging of single isolated cell nuclei using optical projection tomography,” Opt. Express 13(11), 4210–4223 (2005).
    [Crossref] [PubMed]
  40. A. Santiago-Alvarado, J. González-García, F. Itubide-Jiménez, M. Campos-García, V. Cruz-Martinez, and P. Rafferty, “Simulating the functioning of variable focus length liquid-filled lenses using the finite element method (FEM),” Optik-International J. Light Electron Opt. 124(11), 1003–1010 (2013).
    [Crossref]
  41. P. Zhao, Ç. Ataman, and H. Zappe, “An endoscopic microscope with liquid-tunable aspheric lenses for continuous zoom capability,” in SPIE Photonics Europe (ISOP, 2014), pp. 913004–913011.

2015 (1)

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

2014 (6)

K. Wei, H. Zeng, and Y. Zhao, “Insect-Human Hybrid Eye (IHHE): an adaptive optofluidic lens combining the structural characteristics of insect and human eyes,” Lab Chip 14(18), 3594–3602 (2014).
[Crossref] [PubMed]

S. T. Choi, B. S. Son, G. W. Seo, S.-Y. Park, and K.-S. Lee, “Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses,” Opt. Express 22(5), 6133–6146 (2014).
[Crossref] [PubMed]

K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
[Crossref] [PubMed]

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y.-S. L. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5(2), 645–652 (2014).
[Crossref] [PubMed]

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light Sci. Appl. 3(2), e145 (2014).
[Crossref]

2013 (5)

2012 (1)

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26, 1773–1788 (2012).

2011 (3)

2010 (4)

2009 (2)

2008 (2)

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between… On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2008).
[Crossref]

Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47(20), 3658–3668 (2008).
[Crossref] [PubMed]

2007 (3)

D. Shaw and T. E. Sun, “Optical properties of variable-focus liquid-filled optical lenses with different membrane shapes,” Opt. Eng. 46(2), 024002 (2007).
[Crossref]

H. Ren and S.-T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
[Crossref] [PubMed]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

2006 (2)

2005 (1)

Aljasem, K.

Amin, M. J.

N. A. Riza, M. J. Amin, and M. N. Riza, “Eye vision system using programmable micro-optics and micro-electronics,” in SPIE BiOS (ISOP, 2014), 89300C.

Andelman, D.

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between… On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2008).
[Crossref]

Anderson, P. A.

Aschwanden, M.

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” in SPIE MOEMS-MEMS (ISOP, 2012), pp. 825207–825211.

Ataman, Ç.

P. Zhao, Ç. Ataman, and H. Zappe, “An endoscopic microscope with liquid-tunable aspheric lenses for continuous zoom capability,” in SPIE Photonics Europe (ISOP, 2014), pp. 913004–913011.

Berge, B.

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between… On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2008).
[Crossref]

Blum, M.

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” in SPIE MOEMS-MEMS (ISOP, 2012), pp. 825207–825211.

Büeler, M.

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” in SPIE MOEMS-MEMS (ISOP, 2012), pp. 825207–825211.

Campos-García, M.

A. Santiago-Alvarado, J. González-García, F. Itubide-Jiménez, M. Campos-García, V. Cruz-Martinez, and P. Rafferty, “Simulating the functioning of variable focus length liquid-filled lenses using the finite element method (FEM),” Optik-International J. Light Electron Opt. 124(11), 1003–1010 (2013).
[Crossref]

Carpi, F.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Chang, F.-C.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26, 1773–1788 (2012).

Chau, F. S.

Chen, J.-K.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26, 1773–1788 (2012).

Cheng, S.

Cheng, X.

Cheng, Y.-S. L.

Chiang, T.-J.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26, 1773–1788 (2012).

Chiu, C.-P.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26, 1773–1788 (2012).

Choi, S. T.

Chou, Y. C.

Christian, W.

Chu, C.-W.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26, 1773–1788 (2012).

Cruz-Martinez, V.

A. Santiago-Alvarado, J. González-García, F. Itubide-Jiménez, M. Campos-García, V. Cruz-Martinez, and P. Rafferty, “Simulating the functioning of variable focus length liquid-filled lenses using the finite element method (FEM),” Optik-International J. Light Electron Opt. 124(11), 1003–1010 (2013).
[Crossref]

Cuenca, R.

Domicone, N. W.

Du, K.

Fahrbach, F. O.

Fan, S.-K.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26, 1773–1788 (2012).

Fauver, M.

Feng, G. H.

Fox, D.

Ghilardi, M.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Giger, J.

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” in SPIE MOEMS-MEMS (ISOP, 2012), pp. 825207–825211.

González-García, J.

A. Santiago-Alvarado, J. González-García, F. Itubide-Jiménez, M. Campos-García, V. Cruz-Martinez, and P. Rafferty, “Simulating the functioning of variable focus length liquid-filled lenses using the finite element method (FEM),” Optik-International J. Light Electron Opt. 124(11), 1003–1010 (2013).
[Crossref]

Graham-Rowe, D.

D. Graham-Rowe, “Liquid lenses make a splash,” Nat. Photonics sample, 2–4 (2006).
[Crossref]

Grätzel, C.

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” in SPIE MOEMS-MEMS (ISOP, 2012), pp. 825207–825211.

Grewe, B. F.

Hao, Q.

Hayes, R.

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between… On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2008).
[Crossref]

Helmchen, F.

Huang, K.-C.

Huisken, J.

Itubide-Jiménez, F.

A. Santiago-Alvarado, J. González-García, F. Itubide-Jiménez, M. Campos-García, V. Cruz-Martinez, and P. Rafferty, “Simulating the functioning of variable focus length liquid-filled lenses using the finite element method (FEM),” Optik-International J. Light Electron Opt. 124(11), 1003–1010 (2013).
[Crossref]

Jabbour, J. M.

Jo, J. A.

Johnston, I.

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

Ko, F.-H.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26, 1773–1788 (2012).

Kobrin, P.

Kuo, S.-W.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26, 1773–1788 (2012).

Lee, K.-S.

Lee, S. S.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Lee, S. W.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Leung, H. M.

Lu, Y.-S.

Maffli, L.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Maitland, K. C.

Malik, B. H.

Marks, R.

Mathine, D. L.

McCluskey, D.

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

Meyer, M.

Miks, A.

Narayanaswamy, S.

Nelson, A.

Neumann, T.

Nguyen, N.-T.

N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
[Crossref] [PubMed]

Novak, J.

Novak, P.

Olsovsky, C.

Park, S.-Y.

Patten, F.

Peyghambarian, N.

Peyman, G.

Rafferty, P.

A. Santiago-Alvarado, J. González-García, F. Itubide-Jiménez, M. Campos-García, V. Cruz-Martinez, and P. Rafferty, “Simulating the functioning of variable focus length liquid-filled lenses using the finite element method (FEM),” Optik-International J. Light Electron Opt. 124(11), 1003–1010 (2013).
[Crossref]

Rahn, J. R.

Ren, H.

Riza, M. N.

N. A. Riza, M. J. Amin, and M. N. Riza, “Eye vision system using programmable micro-optics and micro-electronics,” in SPIE BiOS (ISOP, 2014), 89300C.

Riza, N. A.

N. A. Riza, M. J. Amin, and M. N. Riza, “Eye vision system using programmable micro-optics and micro-electronics,” in SPIE BiOS (ISOP, 2014), 89300C.

Rosset, S.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Santiago-Alvarado, A.

A. Santiago-Alvarado, J. González-García, F. Itubide-Jiménez, M. Campos-García, V. Cruz-Martinez, and P. Rafferty, “Simulating the functioning of variable focus length liquid-filled lenses using the finite element method (FEM),” Optik-International J. Light Electron Opt. 124(11), 1003–1010 (2013).
[Crossref]

Savidis, N.

Schmid, B.

Schwiegerling, J.

Seabury, C.

Seibel, E.

Seifert, A.

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light Sci. Appl. 3(2), e145 (2014).
[Crossref]

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express 19(3), 2347–2362 (2011).
[Crossref] [PubMed]

Seo, G. W.

Shamai, R.

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between… On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2008).
[Crossref]

Shaw, D.

D. Shaw and T. E. Sun, “Optical properties of variable-focus liquid-filled optical lenses with different membrane shapes,” Opt. Eng. 46(2), 024002 (2007).
[Crossref]

Shea, H.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Son, B. S.

Sun, T. E.

D. Shaw and T. E. Sun, “Optical properties of variable-focus liquid-filled optical lenses with different membrane shapes,” Opt. Eng. 46(2), 024002 (2007).
[Crossref]

Tan, C.

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

Tracey, M.

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

Tsai, C. G.

Tsai, L.-Y.

van ’t Hoff, M.

Voigt, F. F.

Wang, Q.

Q. Wang and Y. Zhao, “Miniaturized cell mechanical stimulator with controlled strain gradient for cellular mechanobiolgical study,” in 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (2011), pp. 1113–1115.

Wei, K.

K. Wei, H. Zeng, and Y. Zhao, “Insect-Human Hybrid Eye (IHHE): an adaptive optofluidic lens combining the structural characteristics of insect and human eyes,” Lab Chip 14(18), 3594–3602 (2014).
[Crossref] [PubMed]

K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
[Crossref] [PubMed]

Wright, J. M.

Wu, B.

Wu, S.-T.

Yang, C.-C.

Yang, Q.

Yeh, J. A.

Yu, H.

Zappe, H.

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light Sci. Appl. 3(2), e145 (2014).
[Crossref]

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express 19(3), 2347–2362 (2011).
[Crossref] [PubMed]

P. Zhao, Ç. Ataman, and H. Zappe, “An endoscopic microscope with liquid-tunable aspheric lenses for continuous zoom capability,” in SPIE Photonics Europe (ISOP, 2014), pp. 913004–913011.

Zeng, H.

K. Wei, H. Zeng, and Y. Zhao, “Insect-Human Hybrid Eye (IHHE): an adaptive optofluidic lens combining the structural characteristics of insect and human eyes,” Lab Chip 14(18), 3594–3602 (2014).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light Sci. Appl. 3(2), e145 (2014).
[Crossref]

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express 19(3), 2347–2362 (2011).
[Crossref] [PubMed]

Zhao, P.

P. Zhao, Ç. Ataman, and H. Zappe, “An endoscopic microscope with liquid-tunable aspheric lenses for continuous zoom capability,” in SPIE Photonics Europe (ISOP, 2014), pp. 913004–913011.

Zhao, Y.

K. Wei, H. Zeng, and Y. Zhao, “Insect-Human Hybrid Eye (IHHE): an adaptive optofluidic lens combining the structural characteristics of insect and human eyes,” Lab Chip 14(18), 3594–3602 (2014).
[Crossref] [PubMed]

K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
[Crossref] [PubMed]

Q. Wang and Y. Zhao, “Miniaturized cell mechanical stimulator with controlled strain gradient for cellular mechanobiolgical study,” in 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (2011), pp. 1113–1115.

Zhou, G.

Adv. Funct. Mater. (1)

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Biomed. Opt. Express (2)

Biomicrofluidics (1)

N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
[Crossref] [PubMed]

J. Adhes. Sci. Technol. (1)

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26, 1773–1788 (2012).

J. Micromech. Microeng. (1)

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

Lab Chip (1)

K. Wei, H. Zeng, and Y. Zhao, “Insect-Human Hybrid Eye (IHHE): an adaptive optofluidic lens combining the structural characteristics of insect and human eyes,” Lab Chip 14(18), 3594–3602 (2014).
[Crossref] [PubMed]

Light Sci. Appl. (1)

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light Sci. Appl. 3(2), e145 (2014).
[Crossref]

Nat. Photonics (1)

D. Graham-Rowe, “Liquid lenses make a splash,” Nat. Photonics sample, 2–4 (2006).
[Crossref]

Opt. Eng. (1)

D. Shaw and T. E. Sun, “Optical properties of variable-focus liquid-filled optical lenses with different membrane shapes,” Opt. Eng. 46(2), 024002 (2007).
[Crossref]

Opt. Express (10)

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18(10), 9945–9954 (2010).
[Crossref] [PubMed]

S. T. Choi, B. S. Son, G. W. Seo, S.-Y. Park, and K.-S. Lee, “Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses,” Opt. Express 22(5), 6133–6146 (2014).
[Crossref] [PubMed]

H. Ren and S.-T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
[Crossref] [PubMed]

F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
[Crossref] [PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express 19(3), 2347–2362 (2011).
[Crossref] [PubMed]

A. Miks and J. Novak, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18(7), 6797–6810 (2010).
[Crossref] [PubMed]

Q. Hao, X. Cheng, and K. Du, “Four-group stabilized zoom lens design of two focal-length-variable elements,” Opt. Express 21(6), 7758–7767 (2013).
[Crossref] [PubMed]

Y.-S. Lu, L.-Y. Tsai, K.-C. Huang, C. G. Tsai, C.-C. Yang, and J. A. Yeh, “Three-dimensional illumination system using dielectric liquid lenses,” Opt. Express 19(S4Suppl 4), A740–A746 (2011).
[Crossref] [PubMed]

M. Fauver, E. Seibel, J. R. Rahn, M. Meyer, F. Patten, T. Neumann, and A. Nelson, “Three-dimensional imaging of single isolated cell nuclei using optical projection tomography,” Opt. Express 13(11), 4210–4223 (2005).
[Crossref] [PubMed]

Opt. Lett. (3)

Optik-International J. Light Electron Opt. (1)

A. Santiago-Alvarado, J. González-García, F. Itubide-Jiménez, M. Campos-García, V. Cruz-Martinez, and P. Rafferty, “Simulating the functioning of variable focus length liquid-filled lenses using the finite element method (FEM),” Optik-International J. Light Electron Opt. 124(11), 1003–1010 (2013).
[Crossref]

Soft Matter (1)

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between… On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2008).
[Crossref]

Other (11)

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses, Wiley Series in Pure and Applied Optics (Wiley, 2012).

D. P. Goren, “Method of driving focusing element in barcode imaging scanner,” (Google Patents, 2012).

M. J. Amin and N. A. Riza, “Smart imaging using laser targeting: a multiple barcodes application,” in SPIE Photonics Europe (ISOP, 2014), paper 91411H.

Y.-P. Huang, C.-W. Chen, M. Cho, and B. Javidi, “Liquid crystal lens for axially distributed three-dimensional sensing,” in SPIE Defense, Security, and Sensing (ISOP, 2013), paper 873804.

S. Casutt, M. Bueeler, M. Blum, and M. Aschwanden, “Fast and precise continuous focusing with focus tunable lenses,” in SPIE OPTO (ISOP, 2014), paper 89820Y.

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” in SPIE MOEMS-MEMS (ISOP, 2012), pp. 825207–825211.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” in SPIE Optical Systems Design (ISOP, 2011), paper 81670W.

N. A. Riza, M. J. Amin, and M. N. Riza, “Eye vision system using programmable micro-optics and micro-electronics,” in SPIE BiOS (ISOP, 2014), 89300C.

J.-Y. Yiu, R. Batchko, S. Robinson, and A. Szilagyi, “A fluidic lens with reduced optical aberration,” in IS&T/SPIE Electronic Imaging (ISOP, 2012), paper 830117.

P. Zhao, Ç. Ataman, and H. Zappe, “An endoscopic microscope with liquid-tunable aspheric lenses for continuous zoom capability,” in SPIE Photonics Europe (ISOP, 2014), pp. 913004–913011.

Q. Wang and Y. Zhao, “Miniaturized cell mechanical stimulator with controlled strain gradient for cellular mechanobiolgical study,” in 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (2011), pp. 1113–1115.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the VTLL. (a) The perspective view of a VTLL with (b) a membrane having an aspherical cross-section. The top and bottom mounting cells fix the membrane in between by silicone adhesives. The optical fluid is concealed between the membrane and the bottom cover glass, which forms the elastomer-liquid lens when the membrane is deflected by hydraulic pressure. VTLL, varied thickness liquid lens.
Fig. 2
Fig. 2 Optical performance comparison between the CTLL and the VTLL. (a) Simulated optical profiles of CTLL and VTLLs, and (b) their spherical deviations at the center deflection of 0.805 mm; (c) their corresponding RMS spot radii from 0° to 6° field angle and (d) changes of spot radii with respect to 0° field angle at + 100 dpt. The spherical profile (green dotted curve) at the same center deflection is superimposed in (a) for comparison. The thickness ratio (TR) in the legend is defined as (tC - tE)/tE. For both the CTLL and VTLLs, tC = 0.3 mm. 85% aperture is used for optical simulation. The CTLL has the largest spherical deviation (0.111 mm) and the largest RMS spot radius at 6° field angle (135.47 μm). Among VTLLs, the lens with TR = 1 has the smallest RMS spot radius (26.41 μm) at 6° field angle and the smallest increase of RMS spot radius from 0° to 6° (23.3%). CTLL, constant thickness liquid lens; VTLL, varied thickness liquid lens; tC, center thickness; tE, edge thickness; dpt, diopter.
Fig. 3
Fig. 3 Optical performance of a VTLL with TR = 1. (a) Simulated optical profiles of the VTLL at the center deflection of 0.136, 0.199, 0.376, 0.585, 0.676, and 0.805 mm; (b) the corresponding spherical deviations; (c, d) the RMS spot radii for the VTLL and for a spherical plano-convex N-BK7 lens at + 16.7, 25, 40, 80, 100 and 117.6 dpt. VTLL, varied thickness liquid lens; TR, thickness ratio; dpt, diopter.
Fig. 4
Fig. 4 Fabrication process. (a) A two-setup replica molding process for creating the lens membrane with a desired aspherical cross-section; (b) the optical micrograph showing the cross-section of the aspherical membrane; (c) a snapshot of an assembled VTLL and (d) the VTLL without lensing effect. The refraction at the aspherical interface is minimized due to the refractive index match between the membrane and the optical fluid. Leaf veins outside and inside VTLL share the same focus. VTLL, varied thickness liquid lens.
Fig. 5
Fig. 5 BFLs (in dpt) of CTLL and VTLL as a function of hydrostatic pressure. The BFL was the mean value of four measurements (n = 4). BFL, back focal length; CTLL, constant thickness liquid lens; VTLL, varied thickness liquid lens; dpt, diopter.
Fig. 6
Fig. 6 Center and peripheral resolution comparison at + 100 dpt. The lenses focus on a Siemens star target at 5.0 × magnification and + 100 dpt. (a) CTLL, (b) VTLL, and (c) N-BK 7 plano-convex spherical lens. The first two columns show the original snapshots and their inverted images for visualization purposes (scale bar: 2 mm). The rest three columns show the center and peripheral regions on the meridional and sagittal planes of the images from the second column (scale bar: 0.5 mm); (d, e) relative luminance along the top and right edges (marked by dotted colored line) of the Siemens star target. CTLL, constant thickness liquid lens; VTLL, varied thickness liquid lens; dpt, diopter.
Fig. 7
Fig. 7 Center and peripheral resolution comparison at + 40 dpt. The lenses focus on a Siemens star target at 5.1 × magnification and + 40 dpt. (a) CTLL, (b) VTLL, and (c) N-BK 7 plano-convex spherical lens. The first two columns show the original snapshots and their inverted images for visualization purposes (scale bar: 2.1 mm). The rest three columns show the center and peripheral regions on the meridional and sagittal planes of the images from the second column (scale bar: 0.52 mm); (d, e) relative luminance along the top and right edges (marked by dotted colored line) of the Siemens star target. CTLL, constant thickness liquid lens; VTLL, varied thickness liquid lens; dpt, diopter.
Fig. 8
Fig. 8 Central resolution measurement by imaging a positive USAF 1951 resolution target. (a, b, c) show the measurements via the CTLL, the VTLL, and a solid lens at + 100 dpt, respectively. The insets are the magnified views (digital zoom: 2.5 × ) of the highlighted region of the left images; and (d) comparison of meridional MTF curves of CTLL and VTLL at + 100 dpt. The MTFs correspond to the center of the frame. VTLL presents a better contrast from 16 lp/mm to 91 lp/mm. MTF, modulus transfer function; CTLL, constant thickness liquid lens; VTLL, varied thickness liquid lens; dpt, diopter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y= C x 2 1+ 1( 1+k ) C 2 x 2 + n=2 6 A 2n x 2n +h
TR=( t C t E )/ t E
C M = I max I min I max + I min

Metrics