Abstract

We report a novel MEMS fiber scanner with an electrothermal silicon microactuator and a directly mounted optical fiber. The microactuator comprises double hot arm and cold arm structures with a linking bridge and an optical fiber is aligned along a silicon fiber groove. The unique feature induces separation of resonant scanning frequencies of a single optical fiber in lateral and vertical directions, which realizes Lissajous scanning during the resonant motion. The footprint dimension of microactuator is 1.28 x 7 x 0.44 mm3. The resonant scanning frequencies of a 20 mm long optical fiber are 239.4 Hz and 218.4 Hz in lateral and vertical directions, respectively. The full scanned area indicates 451 μm x 558 μm under a 16 Vpp pulse train. This novel laser scanner can provide many opportunities for laser scanning endomicroscopic applications.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Reid, P. L. Blount, Z. Feng, and D. S. Levine, “Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia,” Am. J. Gastroenterol. 95(11), 3089–3096 (2000).
    [Crossref] [PubMed]
  2. W. Hatta, K. Uno, T. Koike, K. Iijima, N. Asano, A. Imatani, and T. Shimosegawa, “A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma,” Gastrointest. Endosc. 76(3), 548–555 (2012).
    [Crossref] [PubMed]
  3. T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
    [Crossref] [PubMed]
  4. C. Duan, X. Zhang, D. Wang, Z. Zhou, P. Liang, A. Pozzi, and H. Xie, “An endoscopic forward-viewing OCT imaging probe based on a two-axis scanning mems mirror,” in Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on(2014), pp. 1397–1400.
    [Crossref]
  5. T. Meinert, N. Weber, H. Zappe, and A. Seifert, “Varifocal MOEMS fiber scanner for confocal endomicroscopy,” Opt. Express 22(25), 31529–31544 (2014).
    [Crossref] [PubMed]
  6. J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
    [Crossref] [PubMed]
  7. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
    [Crossref] [PubMed]
  8. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25(20), 1520–1522 (2000).
    [Crossref] [PubMed]
  9. W. Jung, D. T. McCormick, Y.-C. Ahn, A. Sepehr, M. Brenner, B. Wong, N. C. Tien, and Z. Chen, “In vivo three-dimensional spectral domain endoscopic optical coherence tomography using a microelectromechanical system mirror,” Opt. Lett. 32(22), 3239–3241 (2007).
    [Crossref] [PubMed]
  10. J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
    [Crossref] [PubMed]
  11. M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
    [Crossref] [PubMed]
  12. J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, “Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner,” Opt. Lett. 32(3), 256–258 (2007).
    [Crossref] [PubMed]
  13. H.-C. Park, C. Song, M. Kang, Y. Jeong, and K.-H. Jeong, “Forward imaging OCT endoscopic catheter based on MEMS lens scanning,” Opt. Lett. 37(13), 2673–2675 (2012).
    [Crossref] [PubMed]
  14. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
    [Crossref] [PubMed]
  15. H.-C. Park, Y.-H. Seo, and K.-H. Jeong, “Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation,” Opt. Express 22(5), 5818–5825 (2014).
    [Crossref] [PubMed]
  16. W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 0211081 (2012).
    [Crossref] [PubMed]
  17. H.-C. Park, Y.-H. Seo, K. Hwang, J.-K. Lim, S. Z. Yoon, and K.-H. Jeong, “Micromachined tethered silicon oscillator for an endomicroscopic Lissajous fiber scanner,” Opt. Lett. 39(23), 6675–6678 (2014).
    [Crossref] [PubMed]
  18. X. Zhang, C. Duan, L. Liu, X. Li, and H. Xie, “A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage,” Sens. Actuat. A Phys. 233, 239–245 (2015).
    [Crossref] [PubMed]
  19. O. M. El Rifai and K. Youcef-Toumi, “Coupling in piezoelectric tube scanners used in scanning probe microscopes,” in American Control Conference, 2001. Proceedings of the 2001(IEEE, 2001), pp. 3251–3255.
    [Crossref]
  20. T. Wu, Z. Ding, K. Wang, M. Chen, and C. Wang, “Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography,” Opt. Express 17(16), 13819–13829 (2009).
    [Crossref] [PubMed]
  21. D. Yan, A. Khajepour, and R. Mansour, “Modeling of two-hot-arm horizontal thermal actuator,” J. Micromech. Microeng. 13(2), 312–322 (2003).
    [Crossref]
  22. R. R. A. Syms, H. Zou, J. Yao, D. Uttamchandani, and J. Stagg, “Scalable electrothermal MEMS actuator for optical fibre alignment,” J. Micromech. Microeng. 14(12), 1633–1639 (2004).
    [Crossref]
  23. H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. G. Lovell, “Thermo-magnetic metal flexure actuators,” in Solid-State Sensor and Actuator Workshop, 1992. 5th Technical Digest., IEEE (Hilton Head Island, SC, USA, 1992), pp. 73–75.
    [Crossref]
  24. Y. S. Chiu, K. S. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
    [Crossref]

2015 (1)

X. Zhang, C. Duan, L. Liu, X. Li, and H. Xie, “A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage,” Sens. Actuat. A Phys. 233, 239–245 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

2012 (4)

H.-C. Park, C. Song, M. Kang, Y. Jeong, and K.-H. Jeong, “Forward imaging OCT endoscopic catheter based on MEMS lens scanning,” Opt. Lett. 37(13), 2673–2675 (2012).
[Crossref] [PubMed]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 0211081 (2012).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

W. Hatta, K. Uno, T. Koike, K. Iijima, N. Asano, A. Imatani, and T. Shimosegawa, “A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma,” Gastrointest. Endosc. 76(3), 548–555 (2012).
[Crossref] [PubMed]

2011 (1)

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2007 (2)

2006 (1)

Y. S. Chiu, K. S. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[Crossref]

2004 (3)

R. R. A. Syms, H. Zou, J. Yao, D. Uttamchandani, and J. Stagg, “Scalable electrothermal MEMS actuator for optical fibre alignment,” J. Micromech. Microeng. 14(12), 1633–1639 (2004).
[Crossref]

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
[Crossref] [PubMed]

2003 (1)

D. Yan, A. Khajepour, and R. Mansour, “Modeling of two-hot-arm horizontal thermal actuator,” J. Micromech. Microeng. 13(2), 312–322 (2003).
[Crossref]

2000 (2)

B. J. Reid, P. L. Blount, Z. Feng, and D. S. Levine, “Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia,” Am. J. Gastroenterol. 95(11), 3089–3096 (2000).
[Crossref] [PubMed]

X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25(20), 1520–1522 (2000).
[Crossref] [PubMed]

Ahn, Y.-C.

Asano, N.

W. Hatta, K. Uno, T. Koike, K. Iijima, N. Asano, A. Imatani, and T. Shimosegawa, “A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma,” Gastrointest. Endosc. 76(3), 548–555 (2012).
[Crossref] [PubMed]

Blount, P. L.

B. J. Reid, P. L. Blount, Z. Feng, and D. S. Levine, “Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia,” Am. J. Gastroenterol. 95(11), 3089–3096 (2000).
[Crossref] [PubMed]

Bouma, B. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Brenner, M.

Brown, C. M.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Cai, X.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Carruth, R. W.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Chang, K. S.

Y. S. Chiu, K. S. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[Crossref]

Chen, M.

Chen, R.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Chen, Y.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 0211081 (2012).
[Crossref] [PubMed]

X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
[Crossref] [PubMed]

Chen, Z.

Chiu, Y. S.

Y. S. Chiu, K. S. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[Crossref]

Choe, S. W.

Chudoba, C.

Cobb, M. J.

Contag, C. H.

Ding, Z.

Duan, C.

X. Zhang, C. Duan, L. Liu, X. Li, and H. Xie, “A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage,” Sens. Actuat. A Phys. 233, 239–245 (2015).
[Crossref] [PubMed]

Favazza, C.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Feng, Z.

B. J. Reid, P. L. Blount, Z. Feng, and D. S. Levine, “Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia,” Am. J. Gastroenterol. 95(11), 3089–3096 (2000).
[Crossref] [PubMed]

Fujimoto, J. G.

Gallagher, K. A.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Gora, M. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Guo, S.

Hatta, W.

W. Hatta, K. Uno, T. Koike, K. Iijima, N. Asano, A. Imatani, and T. Shimosegawa, “A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma,” Gastrointest. Endosc. 76(3), 548–555 (2012).
[Crossref] [PubMed]

Hwang, K.

Iijima, K.

W. Hatta, K. Uno, T. Koike, K. Iijima, N. Asano, A. Imatani, and T. Shimosegawa, “A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma,” Gastrointest. Endosc. 76(3), 548–555 (2012).
[Crossref] [PubMed]

Imatani, A.

W. Hatta, K. Uno, T. Koike, K. Iijima, N. Asano, A. Imatani, and T. Shimosegawa, “A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma,” Gastrointest. Endosc. 76(3), 548–555 (2012).
[Crossref] [PubMed]

Jeong, K.-H.

Jeong, Y.

Johnstone, R. W.

Y. S. Chiu, K. S. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[Crossref]

Jung, W.

Kang, M.

Kava, L. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Khajepour, A.

D. Yan, A. Khajepour, and R. Mansour, “Modeling of two-hot-arm horizontal thermal actuator,” J. Micromech. Microeng. 13(2), 312–322 (2003).
[Crossref]

Kimmey, M. B.

Kino, G. S.

Ko, T.

Kobat, D.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Koike, T.

W. Hatta, K. Uno, T. Koike, K. Iijima, N. Asano, A. Imatani, and T. Shimosegawa, “A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma,” Gastrointest. Endosc. 76(3), 548–555 (2012).
[Crossref] [PubMed]

Levine, D. S.

B. J. Reid, P. L. Blount, Z. Feng, and D. S. Levine, “Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia,” Am. J. Gastroenterol. 95(11), 3089–3096 (2000).
[Crossref] [PubMed]

Li, M.-J.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 0211081 (2012).
[Crossref] [PubMed]

Li, X.

X. Zhang, C. Duan, L. Liu, X. Li, and H. Xie, “A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage,” Sens. Actuat. A Phys. 233, 239–245 (2015).
[Crossref] [PubMed]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 0211081 (2012).
[Crossref] [PubMed]

X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
[Crossref] [PubMed]

X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25(20), 1520–1522 (2000).
[Crossref] [PubMed]

Liang, W.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 0211081 (2012).
[Crossref] [PubMed]

Lim, J.-K.

Liu, J. T. C.

Liu, L.

X. Zhang, C. Duan, L. Liu, X. Li, and H. Xie, “A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage,” Sens. Actuat. A Phys. 233, 239–245 (2015).
[Crossref] [PubMed]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

Liu, X.

Mandella, M. J.

Mansour, R.

D. Yan, A. Khajepour, and R. Mansour, “Modeling of two-hot-arm horizontal thermal actuator,” J. Micromech. Microeng. 13(2), 312–322 (2003).
[Crossref]

Maslov, K.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

McCormick, D. T.

Meinert, T.

Murari, K.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 0211081 (2012).
[Crossref] [PubMed]

Nishioka, N. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Ouzounov, D. G.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Parameswaran, M.

Y. S. Chiu, K. S. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[Crossref]

Park, H.-C.

Pavlova, I.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Pitris, C.

Piyawattanametha, W.

Ra, H.

Reid, B. J.

B. J. Reid, P. L. Blount, Z. Feng, and D. S. Levine, “Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia,” Am. J. Gastroenterol. 95(11), 3089–3096 (2000).
[Crossref] [PubMed]

Rivera, D. R.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Rosenberg, M.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Sauk, J. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Seifert, A.

Seo, Y.-H.

Sepehr, A.

Shimosegawa, T.

W. Hatta, K. Uno, T. Koike, K. Iijima, N. Asano, A. Imatani, and T. Shimosegawa, “A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma,” Gastrointest. Endosc. 76(3), 548–555 (2012).
[Crossref] [PubMed]

Shung, K. K.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Solgaard, O.

Song, C.

Sorg, B. S.

Stagg, J.

R. R. A. Syms, H. Zou, J. Yao, D. Uttamchandani, and J. Stagg, “Scalable electrothermal MEMS actuator for optical fibre alignment,” J. Micromech. Microeng. 14(12), 1633–1639 (2004).
[Crossref]

Sun, J.

Suter, M. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Syms, R. R. A.

R. R. A. Syms, H. Zou, J. Yao, D. Uttamchandani, and J. Stagg, “Scalable electrothermal MEMS actuator for optical fibre alignment,” J. Micromech. Microeng. 14(12), 1633–1639 (2004).
[Crossref]

Tearney, G. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Tien, N. C.

Uno, K.

W. Hatta, K. Uno, T. Koike, K. Iijima, N. Asano, A. Imatani, and T. Shimosegawa, “A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma,” Gastrointest. Endosc. 76(3), 548–555 (2012).
[Crossref] [PubMed]

Uttamchandani, D.

R. R. A. Syms, H. Zou, J. Yao, D. Uttamchandani, and J. Stagg, “Scalable electrothermal MEMS actuator for optical fibre alignment,” J. Micromech. Microeng. 14(12), 1633–1639 (2004).
[Crossref]

Van Dam, J.

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

Wang, C.

Wang, K.

Wang, L. V.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Wang, T. D.

Webb, W. W.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Weber, N.

Wong, B.

Wong, L. K.

Wu, L.

Wu, T.

Xie, H.

X. Zhang, C. Duan, L. Liu, X. Li, and H. Xie, “A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage,” Sens. Actuat. A Phys. 233, 239–245 (2015).
[Crossref] [PubMed]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

Xu, C.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Yan, D.

D. Yan, A. Khajepour, and R. Mansour, “Modeling of two-hot-arm horizontal thermal actuator,” J. Micromech. Microeng. 13(2), 312–322 (2003).
[Crossref]

Yang, J.-M.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Yao, J.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

R. R. A. Syms, H. Zou, J. Yao, D. Uttamchandani, and J. Stagg, “Scalable electrothermal MEMS actuator for optical fibre alignment,” J. Micromech. Microeng. 14(12), 1633–1639 (2004).
[Crossref]

Yoon, S. Z.

Zappe, H.

Zhang, X.

X. Zhang, C. Duan, L. Liu, X. Li, and H. Xie, “A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage,” Sens. Actuat. A Phys. 233, 239–245 (2015).
[Crossref] [PubMed]

Zhang, Y.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 0211081 (2012).
[Crossref] [PubMed]

Zhou, Q.

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Zou, H.

R. R. A. Syms, H. Zou, J. Yao, D. Uttamchandani, and J. Stagg, “Scalable electrothermal MEMS actuator for optical fibre alignment,” J. Micromech. Microeng. 14(12), 1633–1639 (2004).
[Crossref]

Am. J. Gastroenterol. (1)

B. J. Reid, P. L. Blount, Z. Feng, and D. S. Levine, “Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia,” Am. J. Gastroenterol. 95(11), 3089–3096 (2000).
[Crossref] [PubMed]

Clin. Gastroenterol. Hepatol. (1)

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

Gastrointest. Endosc. (1)

W. Hatta, K. Uno, T. Koike, K. Iijima, N. Asano, A. Imatani, and T. Shimosegawa, “A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma,” Gastrointest. Endosc. 76(3), 548–555 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 0211081 (2012).
[Crossref] [PubMed]

J. Micromech. Microeng. (3)

D. Yan, A. Khajepour, and R. Mansour, “Modeling of two-hot-arm horizontal thermal actuator,” J. Micromech. Microeng. 13(2), 312–322 (2003).
[Crossref]

R. R. A. Syms, H. Zou, J. Yao, D. Uttamchandani, and J. Stagg, “Scalable electrothermal MEMS actuator for optical fibre alignment,” J. Micromech. Microeng. 14(12), 1633–1639 (2004).
[Crossref]

Y. S. Chiu, K. S. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[Crossref]

Nat. Med. (2)

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (6)

Proc. Natl. Acad. Sci. U.S.A. (1)

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Sens. Actuat. A Phys. (1)

X. Zhang, C. Duan, L. Liu, X. Li, and H. Xie, “A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage,” Sens. Actuat. A Phys. 233, 239–245 (2015).
[Crossref] [PubMed]

Other (3)

O. M. El Rifai and K. Youcef-Toumi, “Coupling in piezoelectric tube scanners used in scanning probe microscopes,” in American Control Conference, 2001. Proceedings of the 2001(IEEE, 2001), pp. 3251–3255.
[Crossref]

C. Duan, X. Zhang, D. Wang, Z. Zhou, P. Liang, A. Pozzi, and H. Xie, “An endoscopic forward-viewing OCT imaging probe based on a two-axis scanning mems mirror,” in Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on(2014), pp. 1397–1400.
[Crossref]

H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. G. Lovell, “Thermo-magnetic metal flexure actuators,” in Solid-State Sensor and Actuator Workshop, 1992. 5th Technical Digest., IEEE (Hilton Head Island, SC, USA, 1992), pp. 73–75.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Working principle of Lissajous scanned electrothermal MEMS fiber scanner. The MEMS fiber scanner comprises double hot arm and cold arm microstructures with a directly mounted optical fiber. Bi-directional forces are induced by the differences in thermal expansion between double hot arm and cold-arm structures in lateral direction and between microactuator and an optical fiber in vertical direction. The asymmetric structures of microactuator separate resonance frequencies of mounted optical fiber, which allows Lissajous scanning.

Fig. 2
Fig. 2

Electrothermal Lissajous MEMS fiber scanner. (a) Microfabrication procedure. Thin Ti/ Au layers firstly deposited on a 6 inch SOI wafer by using thermal evaporation and the electrode pads were wet-etched. Next, top and bottom silicon layers were defined by using DRIE process. A buried oxide layer was then etched in a buffered oxide etchant (BOE). Finally, both the passivation polymers were completely removed by using oxygen plasma. (b) Top-side and (c) Bottom-side SEM images of a fabricated microactuator (Scale bar: 500 μm). (d) An optical image of the microfabricated 6 in. SOI wafer (Scale bar: 50 mm). (e) An optical image of MEMS fiber scanner (Scale bar: 2 mm).

Fig. 3
Fig. 3

Static and resonant motions of MEMS fiber scanner with a mounted 20 mm long optical fiber. (a) SMF tip displacement depending on an applied voltage (VDC). The displacement of SMF tip increases as applied voltage increases. Both directional displacements are coupled with each other, as shown optical image. (b) Resonance frequency of MEMS fiber scanner. In resonant motion, the scanning fiber has two different modes, i.e., the first mode for vertical motion and the second mode for lateral motion. The cantilever structure of microactuator distinguished the resonance frequencies of the both axis, and the frequency separation increases as the cantilever length increases. (c) Scanning length of the MEMS fiber scanner at resonance. 16 Vpp pulse signal (pulse width: 400 μs) is applied to the microactuator. Vertical and lateral scanning length of the fiber decrease as the cantilever length increases.

Fig. 4
Fig. 4

Lissajous scanning of the MEMS fiber scanner. (a) Frequency response of the scanner. Two resonance peaks are clearly decoupled. (b) An applied voltage pulse train for Lissajous scanning. Two different pulses with resonant frequencies in both directions are mixed, which is a squared root of square of lateral pulse train and vertical pulse train, respectively. Next, overlapped pulse trains are reduced for stable operation. (c) and (d) Optical images of laser scanning patterns in lateral and vertical directions, respectively. (e)-(f) Time elapsed Lissajous scanning patterns (1/50 sec, 1/8 sec) at 16 Vpp pulse train (Scale bar: 300 μm).

Metrics