Abstract

As novel classes of two-dimensional (2D) materials and heterostructures continue to emerge at an increasing pace, methods are being sought for elucidating their electronic properties rapidly, non-destructively, and sensitively. Terahertz (THz) time-domain spectroscopy is a well-established method for characterizing charge carriers in a contactless fashion, but its sensitivity is limited, making it a challenge to study atomically thin materials, which often have low conductivities. Here, we employ THz parallel-plate waveguides to study monolayer graphene with low carrier densities. We demonstrate that a carrier density of ~2 × 1011 cm−2, which induces less than 1% absorption in conventional THz transmission spectroscopy, exhibits ~30% absorption in our waveguide geometry. The amount of absorption exponentially increases with both the sheet conductivity and the waveguide length. Therefore, the minimum detectable conductivity of this method sensitively increases by simply increasing the length of the waveguide along which the THz wave propagates. In turn, enabling the detection of low-conductivity carriers in a straightforward, macroscopic configuration that is compatible with any standard time-domain THz spectroscopy setup. These results are promising for further studies of charge carriers in a diverse range of emerging 2D materials.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin layer terahertz sensing using two-channel parallel-plate waveguides

Hyeon Sang Bark, Jingshu Zha, Eui Su Lee, and Tae-In Jeon
Opt. Express 22(14) 16738-16744 (2014)

Measurable lower limit of thin film conductivity with parallel plate waveguide terahertz time domain spectroscopy

Manjakavahoaka Razanoelina, Shohei Ohashi, Iwao Kawayama, Hironaru Murakami, Annick F. Dégardin, Alain J. Kreisler, and Masayoshi Tonouchi
Opt. Lett. 42(15) 3056-3059 (2017)

Probing the momentum relaxation time of charge carriers in ultrathin layers with terahertz radiation

Stefan Funk, Guillermo Acuna, Matthias Handloser, and Roland Kersting
Opt. Express 17(20) 17450-17456 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
    [Crossref] [PubMed]
  3. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
    [Crossref] [PubMed]
  4. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  5. S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
    [Crossref] [PubMed]
  6. S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
    [Crossref] [PubMed]
  7. X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U.S.A. 112(15), 4523–4530 (2015).
    [Crossref] [PubMed]
  8. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  9. J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
    [Crossref]
  10. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
    [Crossref] [PubMed]
  11. C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14(12), 6811–6815 (2014).
    [Crossref] [PubMed]
  12. H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
    [Crossref]
  13. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
    [Crossref] [PubMed]
  14. M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
    [Crossref] [PubMed]
  15. M. Razanoelina, R. Kinjo, K. Takayama, I. Kawayama, H. Murakami, D. M. Mittleman, and M. Tonouchi, “Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films,” J. Infrared Millim. Terahertz Waves 36(12), 1182–1194 (2015).
    [Crossref]
  16. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref] [PubMed]
  17. C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
    [Crossref] [PubMed]
  18. Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene annealing: how clean can it be?” Nano Lett. 12(1), 414–419 (2012).
    [Crossref] [PubMed]
  19. M. Naftaly and R. Dudley, “Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers,” Opt. Lett. 34(8), 1213–1215 (2009).
    [Crossref] [PubMed]
  20. D. M. Pozar, Microwave Engineering 3e (John Wiley & Son, 2006).
  21. D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57(10), 1055 (1990).
    [Crossref]
  22. R. Mendis, “Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides,” Opt. Lett. 31(17), 2643–2645 (2006).
    [Crossref] [PubMed]
  23. K. S. Champlin and G. H. Glover, “Influence of waveguide contact on measured complex permittivity of semiconductors,” J. Appl. Phys. 37(6), 2355 (1966).
    [Crossref]
  24. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26(9), A6–A13 (2009).
    [Crossref]
  25. R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
    [Crossref] [PubMed]
  26. N. H. Shon and T. Ando, “Quantum transport in two-dimensional graphite system,” J. Phys. Soc. Jpn. 67(7), 2421–2429 (1998).
    [Crossref]
  27. Y. Zheng and T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65(24), 245420 (2002).
    [Crossref]
  28. T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002).
    [Crossref]
  29. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
    [Crossref]
  30. S. A. Mikhailov, “Non-linear graphene optics for terahertz applications,” Microelectronics J. 40(4-5), 712–715 (2009).
    [Crossref]
  31. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
    [Crossref]
  32. C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
    [Crossref]
  33. J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett. 98(20), 201907 (2011).
    [Crossref]
  34. Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
    [Crossref] [PubMed]
  35. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
    [Crossref] [PubMed]
  36. L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
    [Crossref]
  37. Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” J. Raman Spectrosc. 41(5), 479–483 (2010).
    [Crossref]

2015 (2)

X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U.S.A. 112(15), 4523–4530 (2015).
[Crossref] [PubMed]

M. Razanoelina, R. Kinjo, K. Takayama, I. Kawayama, H. Murakami, D. M. Mittleman, and M. Tonouchi, “Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films,” J. Infrared Millim. Terahertz Waves 36(12), 1182–1194 (2015).
[Crossref]

2014 (4)

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14(12), 6811–6815 (2014).
[Crossref] [PubMed]

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
[Crossref] [PubMed]

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

2013 (2)

S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

2012 (6)

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene annealing: how clean can it be?” Nano Lett. 12(1), 414–419 (2012).
[Crossref] [PubMed]

2011 (5)

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett. 98(20), 201907 (2011).
[Crossref]

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

2010 (3)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” J. Raman Spectrosc. 41(5), 479–483 (2010).
[Crossref]

2009 (3)

2008 (1)

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

2007 (1)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

2006 (3)

N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

R. Mendis, “Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides,” Opt. Lett. 31(17), 2643–2645 (2006).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2002 (2)

Y. Zheng and T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65(24), 245420 (2002).
[Crossref]

T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002).
[Crossref]

1998 (1)

N. H. Shon and T. Ando, “Quantum transport in two-dimensional graphite system,” J. Phys. Soc. Jpn. 67(7), 2421–2429 (1998).
[Crossref]

1990 (1)

D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57(10), 1055 (1990).
[Crossref]

1966 (1)

K. S. Champlin and G. H. Glover, “Influence of waveguide contact on measured complex permittivity of semiconductors,” J. Appl. Phys. 37(6), 2355 (1966).
[Crossref]

Ajayan, P. M.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14(12), 6811–6815 (2014).
[Crossref] [PubMed]

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
[Crossref] [PubMed]

Ando, T.

Y. Zheng and T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65(24), 245420 (2002).
[Crossref]

T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002).
[Crossref]

N. H. Shon and T. Ando, “Quantum transport in two-dimensional graphite system,” J. Phys. Soc. Jpn. 67(7), 2421–2429 (1998).
[Crossref]

Andrews, A. M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Anugrah, Y.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Avouris, P.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref] [PubMed]

Bae, S.

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett. 98(20), 201907 (2011).
[Crossref]

Basov, D. N.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Bechtel, H. A.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Blake, P.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Booshehri, L. G.

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Boudouris, B. W.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Castro Neto, A. H.

N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
[Crossref]

Champlin, K. S.

K. S. Champlin and G. H. Glover, “Influence of waveguide contact on measured complex permittivity of semiconductors,” J. Appl. Phys. 37(6), 2355 (1966).
[Crossref]

Chen, C.-F.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Chhowalla, M.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Chiu, P.-W.

Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene annealing: how clean can it be?” Nano Lett. 12(1), 414–419 (2012).
[Crossref] [PubMed]

Choi, E. J.

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett. 98(20), 201907 (2011).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Crommie, M. F.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Crooker, S. A.

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Dean, C. R.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Detz, H.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Dresselhaus, M. S.

X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U.S.A. 112(15), 4523–4530 (2015).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Dudley, R.

Eda, G.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Engel, M.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref] [PubMed]

Ferrari, A. C.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Furchi, M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Gao, W.

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14(12), 6811–6815 (2014).
[Crossref] [PubMed]

Ge, L.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
[Crossref] [PubMed]

Geim, A. K.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

George, A.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

Girit, C.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Glover, G. H.

K. S. Champlin and G. H. Glover, “Influence of waveguide contact on measured complex permittivity of semiconductors,” J. Appl. Phys. 37(6), 2355 (1966).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Grischkowsky, D.

D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57(10), 1055 (1990).
[Crossref]

Guinea, F.

N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
[Crossref]

Gupta, G.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

Hao, Z.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Hároz, E. H.

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Hartmann, R. R.

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
[Crossref] [PubMed]

Heinz, T. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Henriksen, E. A.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Hill, E. W.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Hone, J.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hong, B. H.

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett. 98(20), 201907 (2011).
[Crossref]

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

Horng, J.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Huang, S.

X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U.S.A. 112(15), 4523–4530 (2015).
[Crossref] [PubMed]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, Z.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Jin, C.

Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene annealing: how clean can it be?” Nano Lett. 12(1), 414–419 (2012).
[Crossref] [PubMed]

Jin, Z.

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Kaneko, R.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Kappera, R.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

Katsnelson, M. I.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Kawayama, I.

M. Razanoelina, R. Kinjo, K. Takayama, I. Kawayama, H. Murakami, D. M. Mittleman, and M. Tonouchi, “Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films,” J. Infrared Millim. Terahertz Waves 36(12), 1182–1194 (2015).
[Crossref]

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Keiding, S.

D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57(10), 1055 (1990).
[Crossref]

Kim, J. Y.

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett. 98(20), 201907 (2011).
[Crossref]

Kim, K. S.

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett. 98(20), 201907 (2011).
[Crossref]

Kim, P.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Kinjo, R.

M. Razanoelina, R. Kinjo, K. Takayama, I. Kawayama, H. Murakami, D. M. Mittleman, and M. Tonouchi, “Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films,” J. Infrared Millim. Terahertz Waves 36(12), 1182–1194 (2015).
[Crossref]

Klang, P.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Koester, S. J.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Kono, J.

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14(12), 6811–6815 (2014).
[Crossref] [PubMed]

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
[Crossref] [PubMed]

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Krupke, R.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref] [PubMed]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Lee, C.

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett. 98(20), 201907 (2011).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Lei, S.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
[Crossref] [PubMed]

Li, H.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Li, L.-J.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Li, M.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Li, Z. Q.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Lilley, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Lin, Y.-C.

Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene annealing: how clean can it be?” Nano Lett. 12(1), 414–419 (2012).
[Crossref] [PubMed]

Ling, X.

X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U.S.A. 112(15), 4523–4530 (2015).
[Crossref] [PubMed]

Liu, Z.

S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
[Crossref] [PubMed]

Loh, K. P.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Löhneysen, H. V.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref] [PubMed]

Lombardo, A.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref] [PubMed]

Lou, J.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
[Crossref] [PubMed]

Louie, S. G.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Lu, C.-C.

Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene annealing: how clean can it be?” Nano Lett. 12(1), 414–419 (2012).
[Crossref] [PubMed]

Luo, Z. Q.

Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” J. Raman Spectrosc. 41(5), 479–483 (2010).
[Crossref]

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Martin, M.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Martin, M. C.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Mendis, R.

Meric, I.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Mielke, C. H.

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Mikhailov, S. A.

S. A. Mikhailov, “Non-linear graphene optics for terahertz applications,” Microelectronics J. 40(4-5), 712–715 (2009).
[Crossref]

Mittleman, D. M.

M. Razanoelina, R. Kinjo, K. Takayama, I. Kawayama, H. Murakami, D. M. Mittleman, and M. Tonouchi, “Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films,” J. Infrared Millim. Terahertz Waves 36(12), 1182–1194 (2015).
[Crossref]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26(9), A6–A13 (2009).
[Crossref]

Mohite, A. D.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

Morozov, S. V.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mueller, T.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Murakami, H.

M. Razanoelina, R. Kinjo, K. Takayama, I. Kawayama, H. Murakami, D. M. Mittleman, and M. Tonouchi, “Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films,” J. Infrared Millim. Terahertz Waves 36(12), 1182–1194 (2015).
[Crossref]

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

Naftaly, M.

Najmaei, S.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
[Crossref] [PubMed]

Nanot, S.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Ni, Z. H.

Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” J. Raman Spectrosc. 41(5), 479–483 (2010).
[Crossref]

Novoselov, K. S.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Park, C.-H.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Peres, N. M. R.

N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
[Crossref]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Portnoi, M. E.

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
[Crossref] [PubMed]

Pospischil, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Qiu, C.

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14(12), 6811–6815 (2014).
[Crossref] [PubMed]

Razanoelina, M.

M. Razanoelina, R. Kinjo, K. Takayama, I. Kawayama, H. Murakami, D. M. Mittleman, and M. Tonouchi, “Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films,” J. Infrared Millim. Terahertz Waves 36(12), 1182–1194 (2015).
[Crossref]

Ren, L.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Rickel, D. G.

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Rustagi, A.

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Salek, K. A.

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

Sano, Y.

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Schedin, F.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Schrenk, W.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Segalman, R. A.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shen, Y. R.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Shen, Z. X.

Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” J. Raman Spectrosc. 41(5), 479–483 (2010).
[Crossref]

Shepard, K. L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Shi, G.

S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
[Crossref] [PubMed]

Shin, H. S.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Shon, N. H.

N. H. Shon and T. Ando, “Quantum transport in two-dimensional graphite system,” J. Phys. Soc. Jpn. 67(7), 2421–2429 (1998).
[Crossref]

Sorgenfrei, S.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Stanton, C. J.

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Steiner, M.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref] [PubMed]

Stormer, H. L.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Strasser, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Suenaga, K.

Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene annealing: how clean can it be?” Nano Lett. 12(1), 414–419 (2012).
[Crossref] [PubMed]

Sun, Z.

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Suzuura, H.

T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002).
[Crossref]

Tabata, M.

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

Takayama, K.

M. Razanoelina, R. Kinjo, K. Takayama, I. Kawayama, H. Murakami, D. M. Mittleman, and M. Tonouchi, “Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films,” J. Infrared Millim. Terahertz Waves 36(12), 1182–1194 (2015).
[Crossref]

Taniguchi, T.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Tonouchi, M.

M. Razanoelina, R. Kinjo, K. Takayama, I. Kawayama, H. Murakami, D. M. Mittleman, and M. Tonouchi, “Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films,” J. Infrared Millim. Terahertz Waves 36(12), 1182–1194 (2015).
[Crossref]

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Tour, J. M.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Unterrainer, K.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Urich, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Vajtai, R.

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14(12), 6811–6815 (2014).
[Crossref] [PubMed]

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
[Crossref] [PubMed]

Wang, F.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Wang, H.

X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U.S.A. 112(15), 4523–4530 (2015).
[Crossref] [PubMed]

Wang, H. M.

Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” J. Raman Spectrosc. 41(5), 479–483 (2010).
[Crossref]

Wang, L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Wang, M.

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

Wang, Y. Y.

Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” J. Raman Spectrosc. 41(5), 479–483 (2010).
[Crossref]

Watanabe, K.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Wu, Y. H.

Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” J. Raman Spectrosc. 41(5), 479–483 (2010).
[Crossref]

Xia, F.

X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U.S.A. 112(15), 4523–4530 (2015).
[Crossref] [PubMed]

Xu, Q.

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14(12), 6811–6815 (2014).
[Crossref] [PubMed]

Yamaguchi, H.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

Yan, Z.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Yao, J.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Yeh, C.-H.

Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene annealing: how clean can it be?” Nano Lett. 12(1), 414–419 (2012).
[Crossref] [PubMed]

You, G.

S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
[Crossref] [PubMed]

Young, A. F.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Yu, T.

Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” J. Raman Spectrosc. 41(5), 479–483 (2010).
[Crossref]

Zettl, A.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Zhang, H.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Zhang, Q.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

Zhang, Y.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zheng, Y.

Y. Zheng and T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65(24), 245420 (2002).
[Crossref]

T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002).
[Crossref]

ACS Nano (1)

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8(2), 1263–1272 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett. 98(20), 201907 (2011).
[Crossref]

D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57(10), 1055 (1990).
[Crossref]

J. Appl. Phys. (1)

K. S. Champlin and G. H. Glover, “Influence of waveguide contact on measured complex permittivity of semiconductors,” J. Appl. Phys. 37(6), 2355 (1966).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

M. Razanoelina, R. Kinjo, K. Takayama, I. Kawayama, H. Murakami, D. M. Mittleman, and M. Tonouchi, “Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films,” J. Infrared Millim. Terahertz Waves 36(12), 1182–1194 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (2)

N. H. Shon and T. Ando, “Quantum transport in two-dimensional graphite system,” J. Phys. Soc. Jpn. 67(7), 2421–2429 (1998).
[Crossref]

T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002).
[Crossref]

J. Raman Spectrosc. (1)

Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” J. Raman Spectrosc. 41(5), 479–483 (2010).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Microelectronics J. (1)

S. A. Mikhailov, “Non-linear graphene optics for terahertz applications,” Microelectronics J. 40(4-5), 712–715 (2009).
[Crossref]

Nano Lett. (5)

Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene annealing: how clean can it be?” Nano Lett. 12(1), 414–419 (2012).
[Crossref] [PubMed]

S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Lett. 13(6), 2777–2781 (2013).
[Crossref] [PubMed]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator,” Nano Lett. 14(12), 6811–6815 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
[Crossref] [PubMed]

Nat. Chem. (1)

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Nature (1)

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (4)

L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, “Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields,” Phys. Rev. B 85(20), 205407 (2012).
[Crossref]

N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
[Crossref]

Y. Zheng and T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65(24), 245420 (2002).
[Crossref]

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Phys. Rev. Lett. (2)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U.S.A. 112(15), 4523–4530 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Sci. Rep. 4, 6046 (2014).
[Crossref] [PubMed]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Other (1)

D. M. Pozar, Microwave Engineering 3e (John Wiley & Son, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Raman Spectra of graphene samples and associated Fermi energies associated. Each Raman spectrum represents one location in the graphene side of the sample. The frequency position of G-mode peaks are also shown. The difference in intensities is due to the difference of the laser pump power used in Raman spectroscopy. The unit of the frequency shift inside the figures is cm−1. (a). Raman spectra of sample A before annealing. (b). Raman spectra of sample A after annealing

Fig. 2
Fig. 2

PPWG THz-TDS setup. The input electric field of the THz beam is polarized parallel (perpendicular) to the waveguide plates to excite TE (TM) mode by mean of wire grid polarizer. Here, the plate separation is determined by the thickness of the two MgO substrates (~1 mm). Then, the cutoff frequency for the fundamental TE mode (TE1) is 0.06 THz while the fundamental TM mode has no cutoff frequency. The PPWG device is mounted on a controlled mechanical stage in order to move it in small steps (~1.5 mm) in the direction perpendicular to the THz wave propagation direction. For averaging purposes, ten time-domain THz waveforms were recorded for each of the reference side (PPWG without graphene) and the sample side (PPWG with graphene).

Fig. 3
Fig. 3

THz spectra of the reference and Sample A (top panel) with an associated SNR spectrum of the system (bottom panel). The inset shows typical time-domain waveforms of detected THz radiation in the TE mode for the reference and sample signals. The spectra of reference (black curve) and sample (red curve) were obtained after averaging over ten spectra. The absence of any obvious interference fringes in the frequency domain ensures single-mode propagation. The small dips are due to remaining water vapor in the system. The small values of SNR at low and high frequencies are due to the detection limit of the low-temperature-grown GaAs photoconductive antenna receiver used.

Fig. 4
Fig. 4

Comparison of normal-incidence transmission THz-TDS and PPWG THz-TDS transmittance in TE mode. (Sample A before and after annealing). The upper quasi-flat curves are averaged transmittance data taken with THz-TDS. The blue solid curve is for non-annealed graphene on MgO and the purple dashed curve is for annealed graphene on MgO. The same sample is analyzed with waveguide in TE mode, leading to a frequency-dependent transmittance represented by blue solid circles for Sample A before annealing and by purple solid circles for after annealing.

Fig. 5
Fig. 5

Drude model fit of the graphene conductivity (Sample A before annealing). The blue diamonds are the mean values of experimental conductivity, and the error bars represent the standard deviation. The red curve is the theoretical Drude fit while the frequency range used for the fitting process was set to be 0.1-1.8 THz.

Tables (1)

Tables Icon

Table 1 Drude fitting parameters extracted for Samples A and B before and after annealing using parallel-plate waveguides (PPWG) and conventional THz-TDS

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T ˜ (ν)= E ˜ MgO/Gr/MgO E ˜ MgO/MgO =| T ˜ | e jΔφ = e -jΔγL
σ s (ν)=j 4π ν 2 μ ε 0 n MgO 2 γ 2 πνμ cot( 4π ν 2 μ ε 0 n MgO 2 γ 2 d 2 ),
σ S = jD (2πν+jΓ)
D= e 2 k B T π 2 ln( 2cosh E F 2 k B T ).

Metrics