Abstract

A harmonically self-mode-locked Nd:Sr3Y2(BO3)4 disordered crystal laser with subpicosecond pulse duration is demonstrated. We exploit the damped harmonic oscillator model to numerically verify that the mode spacing of the laser cavity can be modified to be the harmonics of the free spectral range of the Fabry-Perot cavity when the optical length of the laser cavity is close to a commensurate ratio of the optical length of the Fabry-Perot cavity. In experiment, the Fabry-Perot cavity can be formed by the pump facet of the disordered crystal and the front mirror. A 110 GHz single-pulse harmonically mode-locked pulse train with pulse duration of 857 fs is experimentally achieved under optical lengths of 27.19 and 4.08 mm for the laser cavity and Fabry-Perot cavity respectively, corresponding to a fractional number of 20/3. A maximum output power of 162 mW is obtained at an incident pump power of 3.1 W.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power passively mode-locked laser at 1062.4  nm based on Nd:LaGGG disordered crystal

Xiancui Su, Ruwei Zhao, Baitao Zhang, Zhitai Jia, Jia Hou, and Jingliang He
Appl. Opt. 54(8) 2118-2122 (2015)

Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen
Opt. Express 20(16) 18230-18237 (2012)

Coexistence of noise-like pulse and high repetition rate harmonic mode-locking in a dual-wavelength mode-locked Tm-doped fiber laser

Yazhou Wang, Jianfeng Li, Entao Zhang, Kundong Mo, Yanyan Wang, Fei Liu, Xiaojun Zhou, and Yong Liu
Opt. Express 25(15) 17192-17200 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Tomaru and H. Petek, “Femtosecond Cr4+:YAG laser with an L-fold cavity operating at a 1.2-GHz repetition rate,” Opt. Lett. 25(8), 584–586 (2000).
    [Crossref] [PubMed]
  2. C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
    [Crossref] [PubMed]
  3. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [Crossref]
  4. Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20 Gb/s using an amplified feedback DFB Laser,” J. Lightwave Technol. 28(17), 2521–2525 (2010).
    [Crossref]
  5. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14(2), 146–148 (1989).
    [Crossref] [PubMed]
  6. A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24(14), 996–998 (1999).
    [Crossref] [PubMed]
  7. H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenløwe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express 19(26), B343–B349 (2011).
    [Crossref] [PubMed]
  8. J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31(23), 3489–3491 (2006).
    [Crossref] [PubMed]
  9. K. Sato, “Optical pulse generation using Fabry-Perot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1288–1293 (2003).
    [Crossref]
  10. C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
    [Crossref]
  11. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
    [Crossref]
  12. T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd:YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
    [Crossref]
  13. M. N. Kong, J. K. Chee, and J. M. Liu, “Passive mode locking with a nonlinear external coupled cavity at high pulse repetition rates,” Opt. Lett. 16(2), 73–75 (1991).
    [Crossref] [PubMed]
  14. Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10, 1 (2012).
  15. W. Z. Zhuang, M. T. Chang, K. W. Su, K. F. Huang, and Y. F. Chen, “High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser,” Laser Phys. 23(7), 075803 (2013).
    [Crossref]
  16. G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
    [Crossref]
  17. G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser,” Opt. Lett. 34(1), 103–105 (2009).
    [Crossref] [PubMed]
  18. J. Ma, G. Q. Xie, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, and J. Y. Wang, “Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser,” Opt. Lett. 37(8), 1376–1378 (2012).
    [Crossref] [PubMed]
  19. J. Liu, Z. Wang, K. He, L. Wei, Z. Zhang, Z. Wei, H. Yu, H. Zhang, and J. Wang, “Passively mode-locked femtosecond laser with an Nd-doped La3Ga5SiO14 disordered crystal,” Opt. Express 22(22), 26933–26938 (2014).
    [Crossref] [PubMed]
  20. Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
    [Crossref]
  21. H. Luo, D. Y. Tang, G. Q. Xie, W. D. Tan, H. J. Zhang, and H. H. Yu, “Diode-pumped passively mode-locked Nd:CLNGG laser,” Opt. Commun. 282(2), 291–293 (2009).
    [Crossref]
  22. B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
    [Crossref]
  23. Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
    [Crossref] [PubMed]
  24. Z. B. Pan, H. J. Cong, H. H. Yu, H. J. Zhang, J. Y. Wang, and R. I. Boughton, “Growth, morphology and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
    [Crossref]
  25. F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
    [Crossref] [PubMed]
  26. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “Continuous-wave and passively Q-switched laser performance with a disordered Nd:CLNGG crystal,” Opt. Express 17(21), 19015–19020 (2009).
    [Crossref] [PubMed]
  27. Z. Pan, H. Yu, H. Cong, H. Zhang, J. Wang, Q. Wang, Z. Wei, Z. Zhang, and R. I. Boughton, “Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal,” Appl. Opt. 51(30), 7144–7149 (2012).
    [Crossref] [PubMed]

2014 (2)

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd:YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

J. Liu, Z. Wang, K. He, L. Wei, Z. Zhang, Z. Wei, H. Yu, H. Zhang, and J. Wang, “Passively mode-locked femtosecond laser with an Nd-doped La3Ga5SiO14 disordered crystal,” Opt. Express 22(22), 26933–26938 (2014).
[Crossref] [PubMed]

2013 (2)

W. Z. Zhuang, M. T. Chang, K. W. Su, K. F. Huang, and Y. F. Chen, “High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser,” Laser Phys. 23(7), 075803 (2013).
[Crossref]

Z. B. Pan, H. J. Cong, H. H. Yu, H. J. Zhang, J. Y. Wang, and R. I. Boughton, “Growth, morphology and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

2012 (5)

2011 (3)

H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenløwe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express 19(26), B343–B349 (2011).
[Crossref] [PubMed]

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
[Crossref]

2010 (2)

2009 (4)

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser,” Opt. Lett. 34(1), 103–105 (2009).
[Crossref] [PubMed]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “Continuous-wave and passively Q-switched laser performance with a disordered Nd:CLNGG crystal,” Opt. Express 17(21), 19015–19020 (2009).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

H. Luo, D. Y. Tang, G. Q. Xie, W. D. Tan, H. J. Zhang, and H. H. Yu, “Diode-pumped passively mode-locked Nd:CLNGG laser,” Opt. Commun. 282(2), 291–293 (2009).
[Crossref]

2006 (2)

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[Crossref]

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31(23), 3489–3491 (2006).
[Crossref] [PubMed]

2003 (1)

K. Sato, “Optical pulse generation using Fabry-Perot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1288–1293 (2003).
[Crossref]

2001 (1)

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

1991 (2)

1989 (1)

Aubin, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[Crossref]

Bartels, A.

Boughton, R. I.

Z. B. Pan, H. J. Cong, H. H. Yu, H. J. Zhang, J. Y. Wang, and R. I. Boughton, “Growth, morphology and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

Z. Pan, H. Yu, H. Cong, H. Zhang, J. Wang, Q. Wang, Z. Wei, Z. Zhang, and R. I. Boughton, “Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal,” Appl. Opt. 51(30), 7144–7149 (2012).
[Crossref] [PubMed]

Brabec, T.

Chang, M. T.

W. Z. Zhuang, M. T. Chang, K. W. Su, K. F. Huang, and Y. F. Chen, “High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser,” Laser Phys. 23(7), 075803 (2013).
[Crossref]

Chee, J. K.

Chen, W. X.

Chen, Y. F.

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd:YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

W. Z. Zhuang, M. T. Chang, K. W. Su, K. F. Huang, and Y. F. Chen, “High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser,” Laser Phys. 23(7), 075803 (2013).
[Crossref]

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10, 1 (2012).

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
[Crossref] [PubMed]

Clausen, A.

Coen, S.

Cong, H.

Cong, H. J.

Z. B. Pan, H. J. Cong, H. H. Yu, H. J. Zhang, J. Y. Wang, and R. I. Boughton, “Growth, morphology and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

Dekorsy, T.

Dong, C. M.

Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
[Crossref]

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Fu, X. W.

Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
[Crossref]

Galili, M.

Gao, W. L.

Gosset, C.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[Crossref]

Griebner, U.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

Guo, S. Y.

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

He, J. L.

Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
[Crossref]

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
[Crossref]

He, K.

Hu, H.

Huang, G. W.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10, 1 (2012).

Huang, K. F.

W. Z. Zhuang, M. T. Chang, K. W. Su, K. F. Huang, and Y. F. Chen, “High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser,” Laser Phys. 23(7), 075803 (2013).
[Crossref]

Jeppesen, P.

Jia, Z. T.

Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
[Crossref]

Jiang, M.

Klopp, P.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

Kong, M. N.

König, F.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Korolkova, N.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Krausz, F.

Kurz, H.

Lam, P. K.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Landreau, J.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[Crossref]

Lelarge, F.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[Crossref]

Leuchs, G.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Li, Y. B.

Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
[Crossref]

Liang, H. C.

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd:YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10, 1 (2012).

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
[Crossref] [PubMed]

Liu, J.

Liu, J. M.

Lou, C. Y.

Luo, H.

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser,” Opt. Lett. 34(1), 103–105 (2009).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

H. Luo, D. Y. Tang, G. Q. Xie, W. D. Tan, H. J. Zhang, and H. H. Yu, “Diode-pumped passively mode-locked Nd:CLNGG laser,” Opt. Commun. 282(2), 291–293 (2009).
[Crossref]

Luo, J. Q.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
[Crossref]

Ma, J.

Martinez, A.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[Crossref]

Merghem, K.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[Crossref]

Miller, D. A. B.

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Moreau, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[Crossref]

Mulvad, H. C. H.

Oxenløwe, L. K.

Pan, J. Q.

Pan, Z.

Pan, Z. B.

Z. B. Pan, H. J. Cong, H. H. Yu, H. J. Zhang, J. Y. Wang, and R. I. Boughton, “Growth, morphology and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

Patriarche, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[Crossref]

Petek, H.

Peucheret, C.

Qian, L. J.

Ramdane, A.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[Crossref]

Sato, K.

K. Sato, “Optical pulse generation using Fabry-Perot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1288–1293 (2003).
[Crossref]

Schröder, J.

Shi, Z.

Silberhorn, C.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Spielmann, C.

Su, K. W.

W. Z. Zhuang, M. T. Chang, K. W. Su, K. F. Huang, and Y. F. Chen, “High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser,” Laser Phys. 23(7), 075803 (2013).
[Crossref]

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10, 1 (2012).

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
[Crossref] [PubMed]

Sun, D. L.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
[Crossref]

Sun, Y.

Sylvestre, T.

Tan, W. D.

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser,” Opt. Lett. 34(1), 103–105 (2009).
[Crossref] [PubMed]

H. Luo, D. Y. Tang, G. Q. Xie, W. D. Tan, H. J. Zhang, and H. H. Yu, “Diode-pumped passively mode-locked Nd:CLNGG laser,” Opt. Commun. 282(2), 291–293 (2009).
[Crossref]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

Tang, C. Y.

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd:YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

Tang, D. Y.

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

H. Luo, D. Y. Tang, G. Q. Xie, W. D. Tan, H. J. Zhang, and H. H. Yu, “Diode-pumped passively mode-locked Nd:CLNGG laser,” Opt. Commun. 282(2), 291–293 (2009).
[Crossref]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser,” Opt. Lett. 34(1), 103–105 (2009).
[Crossref] [PubMed]

Tao, X. T.

Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
[Crossref]

Tomaru, T.

Tsou, C. H.

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd:YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

Tung, J. C.

Vanholsbeeck, F.

Wang, G. J.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
[Crossref]

Wang, J.

Wang, J. Y.

Wang, L.

Wang, Q.

Wang, W.

Wang, W. J.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
[Crossref]

Wang, Z.

Wei, L.

Wei, Z.

Weiss, O.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Weyers, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

Wu, T. W.

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd:YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

Xie, G. Q.

J. Ma, G. Q. Xie, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, and J. Y. Wang, “Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser,” Opt. Lett. 37(8), 1376–1378 (2012).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser,” Opt. Lett. 34(1), 103–105 (2009).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

H. Luo, D. Y. Tang, G. Q. Xie, W. D. Tan, H. J. Zhang, and H. H. Yu, “Diode-pumped passively mode-locked Nd:CLNGG laser,” Opt. Commun. 282(2), 291–293 (2009).
[Crossref]

Xu, J. L.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
[Crossref]

Yang, Y.

Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
[Crossref]

Yin, S. T.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
[Crossref]

Yu, H.

Yu, H. H.

Z. B. Pan, H. J. Cong, H. H. Yu, H. J. Zhang, J. Y. Wang, and R. I. Boughton, “Growth, morphology and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
[Crossref] [PubMed]

J. Ma, G. Q. Xie, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, and J. Y. Wang, “Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser,” Opt. Lett. 37(8), 1376–1378 (2012).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser,” Opt. Lett. 34(1), 103–105 (2009).
[Crossref] [PubMed]

H. Luo, D. Y. Tang, G. Q. Xie, W. D. Tan, H. J. Zhang, and H. H. Yu, “Diode-pumped passively mode-locked Nd:CLNGG laser,” Opt. Commun. 282(2), 291–293 (2009).
[Crossref]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

Yu, Y.

Yuan, D. S.

Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
[Crossref]

Yuan, P.

Zhang, B. T.

Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
[Crossref]

Zhang, B. Y.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
[Crossref]

Zhang, H.

Zhang, H. J.

Z. B. Pan, H. J. Cong, H. H. Yu, H. J. Zhang, J. Y. Wang, and R. I. Boughton, “Growth, morphology and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

J. Ma, G. Q. Xie, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, and J. Y. Wang, “Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser,” Opt. Lett. 37(8), 1376–1378 (2012).
[Crossref] [PubMed]

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser,” Opt. Lett. 34(1), 103–105 (2009).
[Crossref] [PubMed]

H. Luo, D. Y. Tang, G. Q. Xie, W. D. Tan, H. J. Zhang, and H. H. Yu, “Diode-pumped passively mode-locked Nd:CLNGG laser,” Opt. Commun. 282(2), 291–293 (2009).
[Crossref]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

Zhang, Q. L.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
[Crossref]

Zhang, X.

Zhang, Y. Y.

Zhang, Z.

Zhao, L. J.

Zhao, X. F.

Zhi, Y. C.

Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
[Crossref]

Zhuang, W. Z.

W. Z. Zhuang, M. T. Chang, K. W. Su, K. F. Huang, and Y. F. Chen, “High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser,” Laser Phys. 23(7), 075803 (2013).
[Crossref]

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10, 1 (2012).

Zorn, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

Appl. Phys. Lett. (2)

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[Crossref]

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Sato, “Optical pulse generation using Fabry-Perot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1288–1293 (2003).
[Crossref]

J. Appl. Phys. (1)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

J. Cryst. Growth (1)

Z. B. Pan, H. J. Cong, H. H. Yu, H. J. Zhang, J. Y. Wang, and R. I. Boughton, “Growth, morphology and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. (2)

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd:YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

W. Z. Zhuang, M. T. Chang, K. W. Su, K. F. Huang, and Y. F. Chen, “High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser,” Laser Phys. 23(7), 075803 (2013).
[Crossref]

Laser Phys. Lett. (3)

Y. B. Li, Z. T. Jia, Y. Yang, X. W. Fu, D. S. Yuan, Y. C. Zhi, C. M. Dong, B. T. Zhang, J. L. He, and X. T. Tao, “Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM,” Laser Phys. Lett. 9(8), 557–560 (2012).
[Crossref]

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Diode-pumped passively mode-locked Nd:GYSGG laser,” Laser Phys. Lett. 8(11), 787–790 (2011).
[Crossref]

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10, 1 (2012).

Opt. Commun. (1)

H. Luo, D. Y. Tang, G. Q. Xie, W. D. Tan, H. J. Zhang, and H. H. Yu, “Diode-pumped passively mode-locked Nd:CLNGG laser,” Opt. Commun. 282(2), 291–293 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (9)

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31(23), 3489–3491 (2006).
[Crossref] [PubMed]

T. Tomaru and H. Petek, “Femtosecond Cr4+:YAG laser with an L-fold cavity operating at a 1.2-GHz repetition rate,” Opt. Lett. 25(8), 584–586 (2000).
[Crossref] [PubMed]

D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14(2), 146–148 (1989).
[Crossref] [PubMed]

A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24(14), 996–998 (1999).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser,” Opt. Lett. 34(1), 103–105 (2009).
[Crossref] [PubMed]

J. Ma, G. Q. Xie, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, and J. Y. Wang, “Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser,” Opt. Lett. 37(8), 1376–1378 (2012).
[Crossref] [PubMed]

M. N. Kong, J. K. Chee, and J. M. Liu, “Passive mode locking with a nonlinear external coupled cavity at high pulse repetition rates,” Opt. Lett. 16(2), 73–75 (1991).
[Crossref] [PubMed]

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
[Crossref] [PubMed]

F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a)-(c) Numerical results for the frequency spectrum with three different fraction numbers q/p of 10/1, 10/1.015, and 10/1.075, respectively. (d)-(f) Temporal structures corresponding to the Fourier transformation of the frequency spectrum shown in (a)-(c), respectively.
Fig. 2
Fig. 2 (a) Experimental setup for a harmonically self-mode-locked Nd:Sr3Y2(BO3)4 disordered crystal laser. (b) Fluorescence spectrum of the Nd:Sr3Y2(BO3)4 disordered crystal at room temperature.
Fig. 3
Fig. 3 Experimental results for the output power versus the incident pump power.
Fig. 4
Fig. 4 Experimental traces of the first-order autocorrelations for the operation of three cases of harmonic mode locking: (a) the trace for the multiple-pulse mode locking with repetition rate of 70 GHz; (b) the trace for the single-pulse mode locking with repetition rate of 70 GHz; (c) the trace for the single-pulse mode locking with repetition rate of 55 GHz; (d) the trace for the single-pulse mode locking with repetition rate of 110 GHz.
Fig. 5
Fig. 5 (a)-(c) Optical spectra for single-pulse harmonic mode locking with ratio Lcav/d of 10/1, 8/1 and 20/3, respectively.
Fig. 6
Fig. 6 (a)-(c) The second-order autocorrelation traces and sech2 fitting curves for single-pulse mode-locked pulses with ratio Lcav/d of 10/1, 8/1, and 20/3, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κ P i > 1 ln(m) T r T c
I(f)= m=M M (f f 0 ) 2 γ c [ (f f 0 ) 2 (mΔ f c ) 2 ] 2 + [ (f f 0 ) γ c ] 2 e m 2 (Γ/Δ f c ) 2
I(f)= m=M M (f f 0 ) 2 γ c [ (f f 0 ) 2 (mΔ f c ) 2 ] 2 + [ (f f 0 ) γ c ] 2 e m 2 (Γ/Δ f c ) 2 × n=N N (f f 0 ) 2 γ FP [ (f f 0 ) 2 (nΔ f FP ) 2 ] 2 + [ (f f 0 ) γ FP ] 2

Metrics