C. Lee and J. Baek, “A new method to measure directional modulation transfer function using sphere phantoms in a cone beam computed tomography system,” IEEE Trans. Med. Img. 34, 902–910 (2015).
[Crossref]
E. Samei and S. Richard, “Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology,” Med. Phys. 42, 314–323 (2015).
[Crossref]
[PubMed]
C. Lee, M. Han, and J. Baek, “SU-E-I-10: Investigation on detectability of a small target for different slice direction of a volumetric cone beam CT image,” Med. Phys. 42, 3243(2015).
[Crossref]
B. Chen, O. Christianson, J. M. Wilson, and E. Samei, “Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods,” Med. Phys. 41, 071909 (2014).
[Crossref]
[PubMed]
L. Yu, S. Leng, L. Chen, J. M. Kofler, R. E. Carter, and C. H. McCollough, “Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms,” Med. Phys. 40, 041908 (2013).
[Crossref]
[PubMed]
R. Spin-Neto, E. Gotfredsen, and A. Wenzel, “Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review,” J. Dig. Imag. 26, 813–820 (2013).
[Crossref]
J. Baek, A. R. Pineda, and N. J. Pelc, “To bin or not to bin? the effect of CT system limiting resolution on noise and detectability,” Phys. Med. Biol. 58, 1433 (2013).
[Crossref]
[PubMed]
X. He and S. Park, “Model observers in medical imaging research,” Theranostics 3, 774–786 (2013).
[Crossref]
[PubMed]
S. Young, P. R. Bakic, K. J. Myers, R. J. Jennings, and S. Park, “A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data,” Med. Phys. 40, 051914 (2013).
[Crossref]
[PubMed]
A. R. Pineda, D. J. Tward, A. Gonzalez, and J. H. Siewerdsen, “Beyond noise power in 3D computed tomography: the local NPS and off-diagonal elements of the Fourier domain covariance matrix,” Med. Phys. 39, 3240–3252 (2012).
[Crossref]
[PubMed]
J. Baek and N. J. Pelc, “Local and global 3D noise power spectrum in cone-beam CT system with FDK reconstruction,” Med. Phys. 38, 2122–2131 (2011).
[Crossref]
[PubMed]
S. Richard, X. Li, G. Yadava, and E. Samei, “Predictive models for observer performance in ct: applications in protocol optimization,” Proc. SPIE 7961, 79610H (2011).
[Crossref]
J. Baek and N. J. Pelc, “Effect of detector lag on CT noise power spectra,” Med. Phys. 38, 2995–3005 (2011).
[Crossref]
[PubMed]
J. M. Witten, S. Park, and K. J. Myers, “Partial least squares: a method to estimate efficient channels for the ideal observers,” IEEE Trans. Med. Img. 29, 1050–1058 (2010).
[Crossref]
S. Park, H. Liu, A. Badano, and K. J. Myers, “A statistical, task-based evaluation method for three-dimensional x-ray breast imaging systems using variable-background phantoms,” Med. Phys. 37, 6253–6270 (2010).
[Crossref]
G. J. Gang, D. J. Tward, J. Lee, and J. H. Siewerdsen, “Anatomical background and generalized detectability in tomosynthesis and cone-beam CT,” Med. Phys. 37, 1948–1965 (2010).
[Crossref]
[PubMed]
J. Baek and N. J. Pelc, “The noise power spectrum in CT with direct fan beam reconstruction,” Med. Phys. 37, 2074–2081 (2010).
[Crossref]
[PubMed]
D. J. Tward and J. H. Siewerdsen, “Noise aliasing and the 3D NEQ of flat-panel cone-beam CT: effect of 2D/3D apertures and sampling,” Med. Phys. 36, 3830–3843 (2009).
[Crossref]
[PubMed]
A. Wunderlich and F. Noo, “Estimation of channelized Hotelling observer performance with known class means or known difference of class means,” IEEE Trans. Med. Img. 28, 1198–1207 (2009).
[Crossref]
J. D. Silverman, N. S. Paul, and J. H. Siewerdsen, “Investigation of lung nodule detectability in low-dose 320-slice computed tomography,” Med. Phys. 36, 1700–1710 (2009).
[Crossref]
[PubMed]
C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. Saunders, E. Samei, and F. O. Bochud, “Mass detection on mammograms: influence of signal shape uncertainty on human and model observers,” J. Opt. Soc. Am. A 26, 425–436 (2009).
[Crossref]
S. Park, A. Badano, B. D. Gallas, and K. J. Myers, “Incorporating human contrast sensitivity in model observers for detection tasks,” IEEE Trans. Med. Img. 28, 339–347 (2009).
[Crossref]
A. Linda, C. Zuiani, V. Londero, and M. Bazzocchi, “Outcome of initially only magnetic resonance mammography-detected findings with and without correlate at second-look sonography: distribution according to patient history of breast cancer and lesion size,” The Breast 17, 53–59 (2008).
[Crossref]
W. C. Scarfe and A. G. Farman, “What is cone-beam CT and how does it work?” Dent. Clin. N. Am. 52, 707–730 (2008).
[Crossref]
[PubMed]
A. L. C. Kwan, J. M. Boone, K. Yang, and S. Y. Huang, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34, 275–281 (2007).
[Crossref]
[PubMed]
D. J. Tward, J. H. Siewerdsen, M. J. Daly, S. Richard, D. J. Moseley, D. A. Jaffray, and N. S. Paul, “Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics,” Med. Phys. 34, 4459–4471 (2007).
[Crossref]
[PubMed]
M. K. Gould, J. Fletcher, M. D. Iannettoni, W. R. Lynch, D. E. Midthun, D. P. Naidich, and D. E. Ost, “Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines,” Chest J. 132, 108S–130S (2007).
[Crossref]
S. Park, B. D. Gallas, A. Badano, N. A. Petrick, and K. J. Myers, “Efficiency of the human observer for detecting a Gaussian signal at a known location in non-Gaussian distributed lumpy backgrounds,” J. Opt. Soc. Am. A 24, 911–921 (2007).
[Crossref]
S. Park, H. H. Barrett, E. Clarkson, M. A. Kupinski, and K. J. Myers, “Channelized-ideal observer using Laguerre-Gauss channels in detection tasks involving non-Gaussian distributed lumpy backgrounds and a Gaussian signal,” J. Opt. Soc. Am. A 24, B136–B150 (2007).
[Crossref]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
B. D. Gallas, G. A. Pennello, and K. J. Myers, “Multireader multicase variance analysis for binary data,” J. Opt. Soc. Am. A 24, B70–B80 (2007).
[Crossref]
S. Kulkarni, P. Khurd, I. Hsiao, L. Zhou, and G. Gindi, “A channelized Hotelling observer study of lesion detection in SPECT MAP reconstruction using anatomical priors,” Phys. Med. Biol. 52, 3601–3617 (2007).
[Crossref]
[PubMed]
Y. Zhang, B. T. Pham, and M. P. Eckstein, “Evaluation of internal noise methods for Hotelling observer models,” Med. Phys. 34, 3312–3322 (2007).
[Crossref]
[PubMed]
C. K. Abbey and M. P. Eckstein, “Classification images for simple detection and discrimination tasks in correlated noise,” J. Opt. Soc. Am. A 24, B110–B124 (2007).
[Crossref]
L. Liberman, G. Mason, E. A. Morris, and D. D. Dershaw, “Does size matter? Positive predictive value of MRI-detected breast lesions as a function of lesion size,” Am. J. Roentgenol. 186, 426–430 (2006).
[Crossref]
J. Hsieh and X. Tang, “Tilted cone-beam reconstruction with row-wise fan-to-parallel rebinning,” Phys. Med. Biol. 51, 5259–5276 (2006).
[Crossref]
[PubMed]
X. Gong, S. J. Glick, B. Liu, A. A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33, 1041–1052 (2006).
[Crossref]
[PubMed]
Y. Zhang, B. T. Pham, and M. P. Eckstein, “The effect of nonlinear human visual system components on performance of a channelized Hotelling observer in structured backgrounds,” IEEE Trans. Med. Img. 25, 1348–1362 (2006).
[Crossref]
A. Badano and B. D. Gallas, “Detectability decreases with off-normal viewing in medical liquid crystal displays,” Acad. Radiol. 13, 210–218 (2006).
[Crossref]
[PubMed]
R. F. Brem, J. W. Hoffmeister, G. Zisman, M. P. DeSimio, and S. K. Rogers, “A computer-aided detection system for the evaluation of breast cancer by mammographic appearance and lesion size,” Am. J. Roentgenol. 184, 893–896 (2005).
[Crossref]
H. C. Gifford, M. A. King, P. H. Pretorius, and R. G. Wells, “A comparison of human and model observers in multislice lroc studies,” IEEE Trans. Med. Img. 24, 160–169 (2005).
[Crossref]
Z. Chen and R. Ning, “Three-dimensional point spread function measurement of cone-beam computed tomography system by iterative edge-blurring algorithm,” Phys. Med. Biol. 49, 1865–1880 (2004).
[Crossref]
[PubMed]
J. Oldan, S. Kulkarni, Y. Xing, P. Khurd, and G. Gindi, “Channelized hotelling and human observer study of optimal smoothing in SPECT MAP reconstruction,” IEEE Trans. Nucl. Sci. 51, 733–741 (2004).
[Crossref]
M. P. Eckstein, J. L. Bartroff, C. K. Abbey, J. S. Whiting, and F. O. Bochud, “Automated computer evaluation and optimization of image compression of x-ray coronary angiograms for signal known exactly detection tasks,” Opt. Express. 11, 460–475 (2003).
[Crossref]
[PubMed]
S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. Sloan, A. M. Sykes, G. L. Aughenbaugh, and M. A. Clemens, “Lung cancer screening with CT: Mayo clinic experience 1,” Radiology 226, 756–761 (2003).
[Crossref]
[PubMed]
B. D. Gallas and H. H. Barrett, “Validating the use of channels to estimate the ideal linear observer,” J. Opt. Soc. Am. A 20, 1725–1738 (2003).
[Crossref]
C. K. Abbey and M. P. Eckstein, “Optimal shifted estimates of human-observer templates in two-alternative forced-choice experiments,” IEEE Trans. Med. Img. 21, 429–440 (2002).
[Crossref]
D. Wormanns, S. Diederich, M. G. Lentschig, F. Winter, and W. Heindel, “Spiral CT of pulmonary nodules: interobserver variation in assessment of lesion size,” Eur. Radiol. 10, 710–713 (2000).
[Crossref]
[PubMed]
M. Gies, W. A. Kalender, H. Wolf, C. Suess, and M. T. Madsen, “Dose reduction in CT by anatomically adapted tube current modulation. I. simulation studies,” Med. Phys. 26, 2235–2247 (1999).
[Crossref]
[PubMed]
L. Wang, H. M. Lai, A. J. Thompson, and D. H. Miller, “Survey of the distribution of lesion size in multiple sclerosis: implication for the measurement of total lesion load,” J. Neurol. Neurosur. Ps. 63, 452–455 (1997).
[Crossref]
L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1, 612–619 (1984).
[Crossref]
R. T. Droege and R. L. Morin, “A practical method to measure the MTF of CT scanners,” Med. Phys. 9, 758–760 (1982).
[Crossref]
[PubMed]
C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. Saunders, E. Samei, and F. O. Bochud, “Mass detection on mammograms: influence of signal shape uncertainty on human and model observers,” J. Opt. Soc. Am. A 26, 425–436 (2009).
[Crossref]
C. K. Abbey and M. P. Eckstein, “Classification images for simple detection and discrimination tasks in correlated noise,” J. Opt. Soc. Am. A 24, B110–B124 (2007).
[Crossref]
M. P. Eckstein, J. L. Bartroff, C. K. Abbey, J. S. Whiting, and F. O. Bochud, “Automated computer evaluation and optimization of image compression of x-ray coronary angiograms for signal known exactly detection tasks,” Opt. Express. 11, 460–475 (2003).
[Crossref]
[PubMed]
C. K. Abbey and M. P. Eckstein, “Optimal shifted estimates of human-observer templates in two-alternative forced-choice experiments,” IEEE Trans. Med. Img. 21, 429–440 (2002).
[Crossref]
C. K. Abbey and H. H. Barrett, “Human-and model-observer performance in ramp-spectrum noise: effects of regularization and object variability,” J. Opt. Soc. Am. A 18, 473–488 (2001).
[Crossref]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. Sloan, A. M. Sykes, G. L. Aughenbaugh, and M. A. Clemens, “Lung cancer screening with CT: Mayo clinic experience 1,” Radiology 226, 756–761 (2003).
[Crossref]
[PubMed]
S. Park, H. Liu, A. Badano, and K. J. Myers, “A statistical, task-based evaluation method for three-dimensional x-ray breast imaging systems using variable-background phantoms,” Med. Phys. 37, 6253–6270 (2010).
[Crossref]
S. Park, A. Badano, B. D. Gallas, and K. J. Myers, “Incorporating human contrast sensitivity in model observers for detection tasks,” IEEE Trans. Med. Img. 28, 339–347 (2009).
[Crossref]
S. Park, B. D. Gallas, A. Badano, N. A. Petrick, and K. J. Myers, “Efficiency of the human observer for detecting a Gaussian signal at a known location in non-Gaussian distributed lumpy backgrounds,” J. Opt. Soc. Am. A 24, 911–921 (2007).
[Crossref]
A. Badano and B. D. Gallas, “Detectability decreases with off-normal viewing in medical liquid crystal displays,” Acad. Radiol. 13, 210–218 (2006).
[Crossref]
[PubMed]
C. Lee and J. Baek, “A new method to measure directional modulation transfer function using sphere phantoms in a cone beam computed tomography system,” IEEE Trans. Med. Img. 34, 902–910 (2015).
[Crossref]
C. Lee, M. Han, and J. Baek, “SU-E-I-10: Investigation on detectability of a small target for different slice direction of a volumetric cone beam CT image,” Med. Phys. 42, 3243(2015).
[Crossref]
J. Baek, A. R. Pineda, and N. J. Pelc, “To bin or not to bin? the effect of CT system limiting resolution on noise and detectability,” Phys. Med. Biol. 58, 1433 (2013).
[Crossref]
[PubMed]
J. Baek and N. J. Pelc, “Effect of detector lag on CT noise power spectra,” Med. Phys. 38, 2995–3005 (2011).
[Crossref]
[PubMed]
J. Baek and N. J. Pelc, “Local and global 3D noise power spectrum in cone-beam CT system with FDK reconstruction,” Med. Phys. 38, 2122–2131 (2011).
[Crossref]
[PubMed]
J. Baek and N. J. Pelc, “The noise power spectrum in CT with direct fan beam reconstruction,” Med. Phys. 37, 2074–2081 (2010).
[Crossref]
[PubMed]
S. Young, P. R. Bakic, K. J. Myers, R. J. Jennings, and S. Park, “A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data,” Med. Phys. 40, 051914 (2013).
[Crossref]
[PubMed]
S. Park, H. H. Barrett, E. Clarkson, M. A. Kupinski, and K. J. Myers, “Channelized-ideal observer using Laguerre-Gauss channels in detection tasks involving non-Gaussian distributed lumpy backgrounds and a Gaussian signal,” J. Opt. Soc. Am. A 24, B136–B150 (2007).
[Crossref]
B. D. Gallas and H. H. Barrett, “Validating the use of channels to estimate the ideal linear observer,” J. Opt. Soc. Am. A 20, 1725–1738 (2003).
[Crossref]
C. K. Abbey and H. H. Barrett, “Human-and model-observer performance in ramp-spectrum noise: effects of regularization and object variability,” J. Opt. Soc. Am. A 18, 473–488 (2001).
[Crossref]
H. H. Barrett, “Objective assessment of image quality: effects of quantum noise and object variability,”J. Opt. Soc. Am. A 7, 1266–1278 (1990).
[Crossref]
[PubMed]
K. J. Myers and H. H. Barrett, “Addition of a channel mechanism to the ideal-observer model,”J. Opt. Soc. Am. A 4, 2447–2457 (1987).
[Crossref]
[PubMed]
M. P. Eckstein, J. L. Bartroff, C. K. Abbey, J. S. Whiting, and F. O. Bochud, “Automated computer evaluation and optimization of image compression of x-ray coronary angiograms for signal known exactly detection tasks,” Opt. Express. 11, 460–475 (2003).
[Crossref]
[PubMed]
A. Linda, C. Zuiani, V. Londero, and M. Bazzocchi, “Outcome of initially only magnetic resonance mammography-detected findings with and without correlate at second-look sonography: distribution according to patient history of breast cancer and lesion size,” The Breast 17, 53–59 (2008).
[Crossref]
C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. Saunders, E. Samei, and F. O. Bochud, “Mass detection on mammograms: influence of signal shape uncertainty on human and model observers,” J. Opt. Soc. Am. A 26, 425–436 (2009).
[Crossref]
M. P. Eckstein, J. L. Bartroff, C. K. Abbey, J. S. Whiting, and F. O. Bochud, “Automated computer evaluation and optimization of image compression of x-ray coronary angiograms for signal known exactly detection tasks,” Opt. Express. 11, 460–475 (2003).
[Crossref]
[PubMed]
A. L. C. Kwan, J. M. Boone, K. Yang, and S. Y. Huang, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34, 275–281 (2007).
[Crossref]
[PubMed]
R. F. Brem, J. W. Hoffmeister, G. Zisman, M. P. DeSimio, and S. K. Rogers, “A computer-aided detection system for the evaluation of breast cancer by mammographic appearance and lesion size,” Am. J. Roentgenol. 184, 893–896 (2005).
[Crossref]
L. Yu, S. Leng, L. Chen, J. M. Kofler, R. E. Carter, and C. H. McCollough, “Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms,” Med. Phys. 40, 041908 (2013).
[Crossref]
[PubMed]
C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. Saunders, E. Samei, and F. O. Bochud, “Mass detection on mammograms: influence of signal shape uncertainty on human and model observers,” J. Opt. Soc. Am. A 26, 425–436 (2009).
[Crossref]
B. Chen, O. Christianson, J. M. Wilson, and E. Samei, “Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods,” Med. Phys. 41, 071909 (2014).
[Crossref]
[PubMed]
L. Yu, S. Leng, L. Chen, J. M. Kofler, R. E. Carter, and C. H. McCollough, “Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms,” Med. Phys. 40, 041908 (2013).
[Crossref]
[PubMed]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
Z. Chen and R. Ning, “Three-dimensional point spread function measurement of cone-beam computed tomography system by iterative edge-blurring algorithm,” Phys. Med. Biol. 49, 1865–1880 (2004).
[Crossref]
[PubMed]
B. Chen, O. Christianson, J. M. Wilson, and E. Samei, “Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods,” Med. Phys. 41, 071909 (2014).
[Crossref]
[PubMed]
S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. Sloan, A. M. Sykes, G. L. Aughenbaugh, and M. A. Clemens, “Lung cancer screening with CT: Mayo clinic experience 1,” Radiology 226, 756–761 (2003).
[Crossref]
[PubMed]
D. J. Tward, J. H. Siewerdsen, M. J. Daly, S. Richard, D. J. Moseley, D. A. Jaffray, and N. S. Paul, “Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics,” Med. Phys. 34, 4459–4471 (2007).
[Crossref]
[PubMed]
L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1, 612–619 (1984).
[Crossref]
L. Liberman, G. Mason, E. A. Morris, and D. D. Dershaw, “Does size matter? Positive predictive value of MRI-detected breast lesions as a function of lesion size,” Am. J. Roentgenol. 186, 426–430 (2006).
[Crossref]
R. F. Brem, J. W. Hoffmeister, G. Zisman, M. P. DeSimio, and S. K. Rogers, “A computer-aided detection system for the evaluation of breast cancer by mammographic appearance and lesion size,” Am. J. Roentgenol. 184, 893–896 (2005).
[Crossref]
D. Wormanns, S. Diederich, M. G. Lentschig, F. Winter, and W. Heindel, “Spiral CT of pulmonary nodules: interobserver variation in assessment of lesion size,” Eur. Radiol. 10, 710–713 (2000).
[Crossref]
[PubMed]
R. T. Droege and R. L. Morin, “A practical method to measure the MTF of CT scanners,” Med. Phys. 9, 758–760 (1982).
[Crossref]
[PubMed]
C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. Saunders, E. Samei, and F. O. Bochud, “Mass detection on mammograms: influence of signal shape uncertainty on human and model observers,” J. Opt. Soc. Am. A 26, 425–436 (2009).
[Crossref]
C. K. Abbey and M. P. Eckstein, “Classification images for simple detection and discrimination tasks in correlated noise,” J. Opt. Soc. Am. A 24, B110–B124 (2007).
[Crossref]
Y. Zhang, B. T. Pham, and M. P. Eckstein, “Evaluation of internal noise methods for Hotelling observer models,” Med. Phys. 34, 3312–3322 (2007).
[Crossref]
[PubMed]
Y. Zhang, B. T. Pham, and M. P. Eckstein, “The effect of nonlinear human visual system components on performance of a channelized Hotelling observer in structured backgrounds,” IEEE Trans. Med. Img. 25, 1348–1362 (2006).
[Crossref]
M. P. Eckstein, J. L. Bartroff, C. K. Abbey, J. S. Whiting, and F. O. Bochud, “Automated computer evaluation and optimization of image compression of x-ray coronary angiograms for signal known exactly detection tasks,” Opt. Express. 11, 460–475 (2003).
[Crossref]
[PubMed]
C. K. Abbey and M. P. Eckstein, “Optimal shifted estimates of human-observer templates in two-alternative forced-choice experiments,” IEEE Trans. Med. Img. 21, 429–440 (2002).
[Crossref]
D. J. Tward, J. H. Siewerdsen, R. A. Fahrig, and A. R. Pineda, “Cascaded systems analysis of the 3D NEQ for cone-beam CT and tomosynthesis,” Proc. SPIE6913, 69131S (2008).
[Crossref]
W. C. Scarfe and A. G. Farman, “What is cone-beam CT and how does it work?” Dent. Clin. N. Am. 52, 707–730 (2008).
[Crossref]
[PubMed]
L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1, 612–619 (1984).
[Crossref]
M. K. Gould, J. Fletcher, M. D. Iannettoni, W. R. Lynch, D. E. Midthun, D. P. Naidich, and D. E. Ost, “Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines,” Chest J. 132, 108S–130S (2007).
[Crossref]
S. Park, A. Badano, B. D. Gallas, and K. J. Myers, “Incorporating human contrast sensitivity in model observers for detection tasks,” IEEE Trans. Med. Img. 28, 339–347 (2009).
[Crossref]
S. Park, B. D. Gallas, A. Badano, N. A. Petrick, and K. J. Myers, “Efficiency of the human observer for detecting a Gaussian signal at a known location in non-Gaussian distributed lumpy backgrounds,” J. Opt. Soc. Am. A 24, 911–921 (2007).
[Crossref]
B. D. Gallas, G. A. Pennello, and K. J. Myers, “Multireader multicase variance analysis for binary data,” J. Opt. Soc. Am. A 24, B70–B80 (2007).
[Crossref]
A. Badano and B. D. Gallas, “Detectability decreases with off-normal viewing in medical liquid crystal displays,” Acad. Radiol. 13, 210–218 (2006).
[Crossref]
[PubMed]
B. D. Gallas and H. H. Barrett, “Validating the use of channels to estimate the ideal linear observer,” J. Opt. Soc. Am. A 20, 1725–1738 (2003).
[Crossref]
G. J. Gang, D. J. Tward, J. Lee, and J. H. Siewerdsen, “Anatomical background and generalized detectability in tomosynthesis and cone-beam CT,” Med. Phys. 37, 1948–1965 (2010).
[Crossref]
[PubMed]
M. Gies, W. A. Kalender, H. Wolf, C. Suess, and M. T. Madsen, “Dose reduction in CT by anatomically adapted tube current modulation. I. simulation studies,” Med. Phys. 26, 2235–2247 (1999).
[Crossref]
[PubMed]
H. C. Gifford, M. A. King, P. H. Pretorius, and R. G. Wells, “A comparison of human and model observers in multislice lroc studies,” IEEE Trans. Med. Img. 24, 160–169 (2005).
[Crossref]
S. Kulkarni, P. Khurd, I. Hsiao, L. Zhou, and G. Gindi, “A channelized Hotelling observer study of lesion detection in SPECT MAP reconstruction using anatomical priors,” Phys. Med. Biol. 52, 3601–3617 (2007).
[Crossref]
[PubMed]
J. Oldan, S. Kulkarni, Y. Xing, P. Khurd, and G. Gindi, “Channelized hotelling and human observer study of optimal smoothing in SPECT MAP reconstruction,” IEEE Trans. Nucl. Sci. 51, 733–741 (2004).
[Crossref]
X. Gong, S. J. Glick, B. Liu, A. A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33, 1041–1052 (2006).
[Crossref]
[PubMed]
X. Gong, S. J. Glick, B. Liu, A. A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33, 1041–1052 (2006).
[Crossref]
[PubMed]
A. R. Pineda, D. J. Tward, A. Gonzalez, and J. H. Siewerdsen, “Beyond noise power in 3D computed tomography: the local NPS and off-diagonal elements of the Fourier domain covariance matrix,” Med. Phys. 39, 3240–3252 (2012).
[Crossref]
[PubMed]
R. Spin-Neto, E. Gotfredsen, and A. Wenzel, “Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review,” J. Dig. Imag. 26, 813–820 (2013).
[Crossref]
M. K. Gould, J. Fletcher, M. D. Iannettoni, W. R. Lynch, D. E. Midthun, D. P. Naidich, and D. E. Ost, “Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines,” Chest J. 132, 108S–130S (2007).
[Crossref]
C. Lee, M. Han, and J. Baek, “SU-E-I-10: Investigation on detectability of a small target for different slice direction of a volumetric cone beam CT image,” Med. Phys. 42, 3243(2015).
[Crossref]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. Sloan, A. M. Sykes, G. L. Aughenbaugh, and M. A. Clemens, “Lung cancer screening with CT: Mayo clinic experience 1,” Radiology 226, 756–761 (2003).
[Crossref]
[PubMed]
X. He and S. Park, “Model observers in medical imaging research,” Theranostics 3, 774–786 (2013).
[Crossref]
[PubMed]
D. Wormanns, S. Diederich, M. G. Lentschig, F. Winter, and W. Heindel, “Spiral CT of pulmonary nodules: interobserver variation in assessment of lesion size,” Eur. Radiol. 10, 710–713 (2000).
[Crossref]
[PubMed]
R. F. Brem, J. W. Hoffmeister, G. Zisman, M. P. DeSimio, and S. K. Rogers, “A computer-aided detection system for the evaluation of breast cancer by mammographic appearance and lesion size,” Am. J. Roentgenol. 184, 893–896 (2005).
[Crossref]
S. Kulkarni, P. Khurd, I. Hsiao, L. Zhou, and G. Gindi, “A channelized Hotelling observer study of lesion detection in SPECT MAP reconstruction using anatomical priors,” Phys. Med. Biol. 52, 3601–3617 (2007).
[Crossref]
[PubMed]
J. Hsieh and X. Tang, “Tilted cone-beam reconstruction with row-wise fan-to-parallel rebinning,” Phys. Med. Biol. 51, 5259–5276 (2006).
[Crossref]
[PubMed]
J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE, 2009).
A. L. C. Kwan, J. M. Boone, K. Yang, and S. Y. Huang, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34, 275–281 (2007).
[Crossref]
[PubMed]
M. K. Gould, J. Fletcher, M. D. Iannettoni, W. R. Lynch, D. E. Midthun, D. P. Naidich, and D. E. Ost, “Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines,” Chest J. 132, 108S–130S (2007).
[Crossref]
D. J. Tward, J. H. Siewerdsen, M. J. Daly, S. Richard, D. J. Moseley, D. A. Jaffray, and N. S. Paul, “Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics,” Med. Phys. 34, 4459–4471 (2007).
[Crossref]
[PubMed]
J. H. Siewerdsen and D. A. Jaffray, “Three-dimensional NEQ transfer characteristics of volume CT using direct-and indirect-detection flat-panel imagers,” Proc. SPIE5030, 92–102 (2003).
[Crossref]
S. Young, P. R. Bakic, K. J. Myers, R. J. Jennings, and S. Park, “A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data,” Med. Phys. 40, 051914 (2013).
[Crossref]
[PubMed]
S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. Sloan, A. M. Sykes, G. L. Aughenbaugh, and M. A. Clemens, “Lung cancer screening with CT: Mayo clinic experience 1,” Radiology 226, 756–761 (2003).
[Crossref]
[PubMed]
M. Gies, W. A. Kalender, H. Wolf, C. Suess, and M. T. Madsen, “Dose reduction in CT by anatomically adapted tube current modulation. I. simulation studies,” Med. Phys. 26, 2235–2247 (1999).
[Crossref]
[PubMed]
S. Kulkarni, P. Khurd, I. Hsiao, L. Zhou, and G. Gindi, “A channelized Hotelling observer study of lesion detection in SPECT MAP reconstruction using anatomical priors,” Phys. Med. Biol. 52, 3601–3617 (2007).
[Crossref]
[PubMed]
J. Oldan, S. Kulkarni, Y. Xing, P. Khurd, and G. Gindi, “Channelized hotelling and human observer study of optimal smoothing in SPECT MAP reconstruction,” IEEE Trans. Nucl. Sci. 51, 733–741 (2004).
[Crossref]
H. C. Gifford, M. A. King, P. H. Pretorius, and R. G. Wells, “A comparison of human and model observers in multislice lroc studies,” IEEE Trans. Med. Img. 24, 160–169 (2005).
[Crossref]
C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. Saunders, E. Samei, and F. O. Bochud, “Mass detection on mammograms: influence of signal shape uncertainty on human and model observers,” J. Opt. Soc. Am. A 26, 425–436 (2009).
[Crossref]
L. Yu, S. Leng, L. Chen, J. M. Kofler, R. E. Carter, and C. H. McCollough, “Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms,” Med. Phys. 40, 041908 (2013).
[Crossref]
[PubMed]
L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1, 612–619 (1984).
[Crossref]
S. Kulkarni, P. Khurd, I. Hsiao, L. Zhou, and G. Gindi, “A channelized Hotelling observer study of lesion detection in SPECT MAP reconstruction using anatomical priors,” Phys. Med. Biol. 52, 3601–3617 (2007).
[Crossref]
[PubMed]
J. Oldan, S. Kulkarni, Y. Xing, P. Khurd, and G. Gindi, “Channelized hotelling and human observer study of optimal smoothing in SPECT MAP reconstruction,” IEEE Trans. Nucl. Sci. 51, 733–741 (2004).
[Crossref]
A. L. C. Kwan, J. M. Boone, K. Yang, and S. Y. Huang, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34, 275–281 (2007).
[Crossref]
[PubMed]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
L. Wang, H. M. Lai, A. J. Thompson, and D. H. Miller, “Survey of the distribution of lesion size in multiple sclerosis: implication for the measurement of total lesion load,” J. Neurol. Neurosur. Ps. 63, 452–455 (1997).
[Crossref]
C. Lee and J. Baek, “A new method to measure directional modulation transfer function using sphere phantoms in a cone beam computed tomography system,” IEEE Trans. Med. Img. 34, 902–910 (2015).
[Crossref]
C. Lee, M. Han, and J. Baek, “SU-E-I-10: Investigation on detectability of a small target for different slice direction of a volumetric cone beam CT image,” Med. Phys. 42, 3243(2015).
[Crossref]
G. J. Gang, D. J. Tward, J. Lee, and J. H. Siewerdsen, “Anatomical background and generalized detectability in tomosynthesis and cone-beam CT,” Med. Phys. 37, 1948–1965 (2010).
[Crossref]
[PubMed]
L. Yu, S. Leng, L. Chen, J. M. Kofler, R. E. Carter, and C. H. McCollough, “Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms,” Med. Phys. 40, 041908 (2013).
[Crossref]
[PubMed]
D. Wormanns, S. Diederich, M. G. Lentschig, F. Winter, and W. Heindel, “Spiral CT of pulmonary nodules: interobserver variation in assessment of lesion size,” Eur. Radiol. 10, 710–713 (2000).
[Crossref]
[PubMed]
S. Richard, X. Li, G. Yadava, and E. Samei, “Predictive models for observer performance in ct: applications in protocol optimization,” Proc. SPIE 7961, 79610H (2011).
[Crossref]
L. Liberman, G. Mason, E. A. Morris, and D. D. Dershaw, “Does size matter? Positive predictive value of MRI-detected breast lesions as a function of lesion size,” Am. J. Roentgenol. 186, 426–430 (2006).
[Crossref]
A. Linda, C. Zuiani, V. Londero, and M. Bazzocchi, “Outcome of initially only magnetic resonance mammography-detected findings with and without correlate at second-look sonography: distribution according to patient history of breast cancer and lesion size,” The Breast 17, 53–59 (2008).
[Crossref]
X. Gong, S. J. Glick, B. Liu, A. A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33, 1041–1052 (2006).
[Crossref]
[PubMed]
S. Park, H. Liu, A. Badano, and K. J. Myers, “A statistical, task-based evaluation method for three-dimensional x-ray breast imaging systems using variable-background phantoms,” Med. Phys. 37, 6253–6270 (2010).
[Crossref]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
A. Linda, C. Zuiani, V. Londero, and M. Bazzocchi, “Outcome of initially only magnetic resonance mammography-detected findings with and without correlate at second-look sonography: distribution according to patient history of breast cancer and lesion size,” The Breast 17, 53–59 (2008).
[Crossref]
M. K. Gould, J. Fletcher, M. D. Iannettoni, W. R. Lynch, D. E. Midthun, D. P. Naidich, and D. E. Ost, “Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines,” Chest J. 132, 108S–130S (2007).
[Crossref]
M. Gies, W. A. Kalender, H. Wolf, C. Suess, and M. T. Madsen, “Dose reduction in CT by anatomically adapted tube current modulation. I. simulation studies,” Med. Phys. 26, 2235–2247 (1999).
[Crossref]
[PubMed]
L. Liberman, G. Mason, E. A. Morris, and D. D. Dershaw, “Does size matter? Positive predictive value of MRI-detected breast lesions as a function of lesion size,” Am. J. Roentgenol. 186, 426–430 (2006).
[Crossref]
L. Yu, S. Leng, L. Chen, J. M. Kofler, R. E. Carter, and C. H. McCollough, “Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms,” Med. Phys. 40, 041908 (2013).
[Crossref]
[PubMed]
M. K. Gould, J. Fletcher, M. D. Iannettoni, W. R. Lynch, D. E. Midthun, D. P. Naidich, and D. E. Ost, “Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines,” Chest J. 132, 108S–130S (2007).
[Crossref]
S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. Sloan, A. M. Sykes, G. L. Aughenbaugh, and M. A. Clemens, “Lung cancer screening with CT: Mayo clinic experience 1,” Radiology 226, 756–761 (2003).
[Crossref]
[PubMed]
L. Wang, H. M. Lai, A. J. Thompson, and D. H. Miller, “Survey of the distribution of lesion size in multiple sclerosis: implication for the measurement of total lesion load,” J. Neurol. Neurosur. Ps. 63, 452–455 (1997).
[Crossref]
R. T. Droege and R. L. Morin, “A practical method to measure the MTF of CT scanners,” Med. Phys. 9, 758–760 (1982).
[Crossref]
[PubMed]
L. Liberman, G. Mason, E. A. Morris, and D. D. Dershaw, “Does size matter? Positive predictive value of MRI-detected breast lesions as a function of lesion size,” Am. J. Roentgenol. 186, 426–430 (2006).
[Crossref]
D. J. Tward, J. H. Siewerdsen, M. J. Daly, S. Richard, D. J. Moseley, D. A. Jaffray, and N. S. Paul, “Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics,” Med. Phys. 34, 4459–4471 (2007).
[Crossref]
[PubMed]
S. Young, P. R. Bakic, K. J. Myers, R. J. Jennings, and S. Park, “A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data,” Med. Phys. 40, 051914 (2013).
[Crossref]
[PubMed]
J. M. Witten, S. Park, and K. J. Myers, “Partial least squares: a method to estimate efficient channels for the ideal observers,” IEEE Trans. Med. Img. 29, 1050–1058 (2010).
[Crossref]
S. Park, H. Liu, A. Badano, and K. J. Myers, “A statistical, task-based evaluation method for three-dimensional x-ray breast imaging systems using variable-background phantoms,” Med. Phys. 37, 6253–6270 (2010).
[Crossref]
S. Park, A. Badano, B. D. Gallas, and K. J. Myers, “Incorporating human contrast sensitivity in model observers for detection tasks,” IEEE Trans. Med. Img. 28, 339–347 (2009).
[Crossref]
S. Park, H. H. Barrett, E. Clarkson, M. A. Kupinski, and K. J. Myers, “Channelized-ideal observer using Laguerre-Gauss channels in detection tasks involving non-Gaussian distributed lumpy backgrounds and a Gaussian signal,” J. Opt. Soc. Am. A 24, B136–B150 (2007).
[Crossref]
S. Park, B. D. Gallas, A. Badano, N. A. Petrick, and K. J. Myers, “Efficiency of the human observer for detecting a Gaussian signal at a known location in non-Gaussian distributed lumpy backgrounds,” J. Opt. Soc. Am. A 24, 911–921 (2007).
[Crossref]
B. D. Gallas, G. A. Pennello, and K. J. Myers, “Multireader multicase variance analysis for binary data,” J. Opt. Soc. Am. A 24, B70–B80 (2007).
[Crossref]
K. J. Myers and H. H. Barrett, “Addition of a channel mechanism to the ideal-observer model,”J. Opt. Soc. Am. A 4, 2447–2457 (1987).
[Crossref]
[PubMed]
M. K. Gould, J. Fletcher, M. D. Iannettoni, W. R. Lynch, D. E. Midthun, D. P. Naidich, and D. E. Ost, “Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines,” Chest J. 132, 108S–130S (2007).
[Crossref]
Z. Chen and R. Ning, “Three-dimensional point spread function measurement of cone-beam computed tomography system by iterative edge-blurring algorithm,” Phys. Med. Biol. 49, 1865–1880 (2004).
[Crossref]
[PubMed]
A. Wunderlich and F. Noo, “Estimation of channelized Hotelling observer performance with known class means or known difference of class means,” IEEE Trans. Med. Img. 28, 1198–1207 (2009).
[Crossref]
J. Oldan, S. Kulkarni, Y. Xing, P. Khurd, and G. Gindi, “Channelized hotelling and human observer study of optimal smoothing in SPECT MAP reconstruction,” IEEE Trans. Nucl. Sci. 51, 733–741 (2004).
[Crossref]
M. K. Gould, J. Fletcher, M. D. Iannettoni, W. R. Lynch, D. E. Midthun, D. P. Naidich, and D. E. Ost, “Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines,” Chest J. 132, 108S–130S (2007).
[Crossref]
S. Young, P. R. Bakic, K. J. Myers, R. J. Jennings, and S. Park, “A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data,” Med. Phys. 40, 051914 (2013).
[Crossref]
[PubMed]
X. He and S. Park, “Model observers in medical imaging research,” Theranostics 3, 774–786 (2013).
[Crossref]
[PubMed]
S. Park, H. Liu, A. Badano, and K. J. Myers, “A statistical, task-based evaluation method for three-dimensional x-ray breast imaging systems using variable-background phantoms,” Med. Phys. 37, 6253–6270 (2010).
[Crossref]
J. M. Witten, S. Park, and K. J. Myers, “Partial least squares: a method to estimate efficient channels for the ideal observers,” IEEE Trans. Med. Img. 29, 1050–1058 (2010).
[Crossref]
S. Park, A. Badano, B. D. Gallas, and K. J. Myers, “Incorporating human contrast sensitivity in model observers for detection tasks,” IEEE Trans. Med. Img. 28, 339–347 (2009).
[Crossref]
S. Park, B. D. Gallas, A. Badano, N. A. Petrick, and K. J. Myers, “Efficiency of the human observer for detecting a Gaussian signal at a known location in non-Gaussian distributed lumpy backgrounds,” J. Opt. Soc. Am. A 24, 911–921 (2007).
[Crossref]
S. Park, H. H. Barrett, E. Clarkson, M. A. Kupinski, and K. J. Myers, “Channelized-ideal observer using Laguerre-Gauss channels in detection tasks involving non-Gaussian distributed lumpy backgrounds and a Gaussian signal,” J. Opt. Soc. Am. A 24, B136–B150 (2007).
[Crossref]
J. D. Silverman, N. S. Paul, and J. H. Siewerdsen, “Investigation of lung nodule detectability in low-dose 320-slice computed tomography,” Med. Phys. 36, 1700–1710 (2009).
[Crossref]
[PubMed]
D. J. Tward, J. H. Siewerdsen, M. J. Daly, S. Richard, D. J. Moseley, D. A. Jaffray, and N. S. Paul, “Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics,” Med. Phys. 34, 4459–4471 (2007).
[Crossref]
[PubMed]
J. Baek, A. R. Pineda, and N. J. Pelc, “To bin or not to bin? the effect of CT system limiting resolution on noise and detectability,” Phys. Med. Biol. 58, 1433 (2013).
[Crossref]
[PubMed]
J. Baek and N. J. Pelc, “Effect of detector lag on CT noise power spectra,” Med. Phys. 38, 2995–3005 (2011).
[Crossref]
[PubMed]
J. Baek and N. J. Pelc, “Local and global 3D noise power spectrum in cone-beam CT system with FDK reconstruction,” Med. Phys. 38, 2122–2131 (2011).
[Crossref]
[PubMed]
J. Baek and N. J. Pelc, “The noise power spectrum in CT with direct fan beam reconstruction,” Med. Phys. 37, 2074–2081 (2010).
[Crossref]
[PubMed]
Y. Zhang, B. T. Pham, and M. P. Eckstein, “Evaluation of internal noise methods for Hotelling observer models,” Med. Phys. 34, 3312–3322 (2007).
[Crossref]
[PubMed]
Y. Zhang, B. T. Pham, and M. P. Eckstein, “The effect of nonlinear human visual system components on performance of a channelized Hotelling observer in structured backgrounds,” IEEE Trans. Med. Img. 25, 1348–1362 (2006).
[Crossref]
J. Baek, A. R. Pineda, and N. J. Pelc, “To bin or not to bin? the effect of CT system limiting resolution on noise and detectability,” Phys. Med. Biol. 58, 1433 (2013).
[Crossref]
[PubMed]
A. R. Pineda, D. J. Tward, A. Gonzalez, and J. H. Siewerdsen, “Beyond noise power in 3D computed tomography: the local NPS and off-diagonal elements of the Fourier domain covariance matrix,” Med. Phys. 39, 3240–3252 (2012).
[Crossref]
[PubMed]
D. J. Tward, J. H. Siewerdsen, R. A. Fahrig, and A. R. Pineda, “Cascaded systems analysis of the 3D NEQ for cone-beam CT and tomosynthesis,” Proc. SPIE6913, 69131S (2008).
[Crossref]
H. C. Gifford, M. A. King, P. H. Pretorius, and R. G. Wells, “A comparison of human and model observers in multislice lroc studies,” IEEE Trans. Med. Img. 24, 160–169 (2005).
[Crossref]
J. Qi, “Investigation of lesion detection in MAP reconstruction with non-Gaussian priors,” in Proc. IEEE Nucl. Sci. Symp. (IEEE, 2005), pp. 1704–1708.
E. Samei and S. Richard, “Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology,” Med. Phys. 42, 314–323 (2015).
[Crossref]
[PubMed]
S. Richard, X. Li, G. Yadava, and E. Samei, “Predictive models for observer performance in ct: applications in protocol optimization,” Proc. SPIE 7961, 79610H (2011).
[Crossref]
D. J. Tward, J. H. Siewerdsen, M. J. Daly, S. Richard, D. J. Moseley, D. A. Jaffray, and N. S. Paul, “Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics,” Med. Phys. 34, 4459–4471 (2007).
[Crossref]
[PubMed]
R. F. Brem, J. W. Hoffmeister, G. Zisman, M. P. DeSimio, and S. K. Rogers, “A computer-aided detection system for the evaluation of breast cancer by mammographic appearance and lesion size,” Am. J. Roentgenol. 184, 893–896 (2005).
[Crossref]
E. Samei and S. Richard, “Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology,” Med. Phys. 42, 314–323 (2015).
[Crossref]
[PubMed]
B. Chen, O. Christianson, J. M. Wilson, and E. Samei, “Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods,” Med. Phys. 41, 071909 (2014).
[Crossref]
[PubMed]
S. Richard, X. Li, G. Yadava, and E. Samei, “Predictive models for observer performance in ct: applications in protocol optimization,” Proc. SPIE 7961, 79610H (2011).
[Crossref]
C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. Saunders, E. Samei, and F. O. Bochud, “Mass detection on mammograms: influence of signal shape uncertainty on human and model observers,” J. Opt. Soc. Am. A 26, 425–436 (2009).
[Crossref]
C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. Saunders, E. Samei, and F. O. Bochud, “Mass detection on mammograms: influence of signal shape uncertainty on human and model observers,” J. Opt. Soc. Am. A 26, 425–436 (2009).
[Crossref]
W. C. Scarfe and A. G. Farman, “What is cone-beam CT and how does it work?” Dent. Clin. N. Am. 52, 707–730 (2008).
[Crossref]
[PubMed]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
A. R. Pineda, D. J. Tward, A. Gonzalez, and J. H. Siewerdsen, “Beyond noise power in 3D computed tomography: the local NPS and off-diagonal elements of the Fourier domain covariance matrix,” Med. Phys. 39, 3240–3252 (2012).
[Crossref]
[PubMed]
G. J. Gang, D. J. Tward, J. Lee, and J. H. Siewerdsen, “Anatomical background and generalized detectability in tomosynthesis and cone-beam CT,” Med. Phys. 37, 1948–1965 (2010).
[Crossref]
[PubMed]
D. J. Tward and J. H. Siewerdsen, “Noise aliasing and the 3D NEQ of flat-panel cone-beam CT: effect of 2D/3D apertures and sampling,” Med. Phys. 36, 3830–3843 (2009).
[Crossref]
[PubMed]
J. D. Silverman, N. S. Paul, and J. H. Siewerdsen, “Investigation of lung nodule detectability in low-dose 320-slice computed tomography,” Med. Phys. 36, 1700–1710 (2009).
[Crossref]
[PubMed]
D. J. Tward, J. H. Siewerdsen, M. J. Daly, S. Richard, D. J. Moseley, D. A. Jaffray, and N. S. Paul, “Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics,” Med. Phys. 34, 4459–4471 (2007).
[Crossref]
[PubMed]
J. H. Siewerdsen and D. A. Jaffray, “Three-dimensional NEQ transfer characteristics of volume CT using direct-and indirect-detection flat-panel imagers,” Proc. SPIE5030, 92–102 (2003).
[Crossref]
D. J. Tward, J. H. Siewerdsen, R. A. Fahrig, and A. R. Pineda, “Cascaded systems analysis of the 3D NEQ for cone-beam CT and tomosynthesis,” Proc. SPIE6913, 69131S (2008).
[Crossref]
J. D. Silverman, N. S. Paul, and J. H. Siewerdsen, “Investigation of lung nodule detectability in low-dose 320-slice computed tomography,” Med. Phys. 36, 1700–1710 (2009).
[Crossref]
[PubMed]
S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. Sloan, A. M. Sykes, G. L. Aughenbaugh, and M. A. Clemens, “Lung cancer screening with CT: Mayo clinic experience 1,” Radiology 226, 756–761 (2003).
[Crossref]
[PubMed]
R. Spin-Neto, E. Gotfredsen, and A. Wenzel, “Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review,” J. Dig. Imag. 26, 813–820 (2013).
[Crossref]
M. Gies, W. A. Kalender, H. Wolf, C. Suess, and M. T. Madsen, “Dose reduction in CT by anatomically adapted tube current modulation. I. simulation studies,” Med. Phys. 26, 2235–2247 (1999).
[Crossref]
[PubMed]
S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. Sloan, A. M. Sykes, G. L. Aughenbaugh, and M. A. Clemens, “Lung cancer screening with CT: Mayo clinic experience 1,” Radiology 226, 756–761 (2003).
[Crossref]
[PubMed]
S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. Sloan, A. M. Sykes, G. L. Aughenbaugh, and M. A. Clemens, “Lung cancer screening with CT: Mayo clinic experience 1,” Radiology 226, 756–761 (2003).
[Crossref]
[PubMed]
J. Hsieh and X. Tang, “Tilted cone-beam reconstruction with row-wise fan-to-parallel rebinning,” Phys. Med. Biol. 51, 5259–5276 (2006).
[Crossref]
[PubMed]
X. Gong, S. J. Glick, B. Liu, A. A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33, 1041–1052 (2006).
[Crossref]
[PubMed]
L. Wang, H. M. Lai, A. J. Thompson, and D. H. Miller, “Survey of the distribution of lesion size in multiple sclerosis: implication for the measurement of total lesion load,” J. Neurol. Neurosur. Ps. 63, 452–455 (1997).
[Crossref]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
A. R. Pineda, D. J. Tward, A. Gonzalez, and J. H. Siewerdsen, “Beyond noise power in 3D computed tomography: the local NPS and off-diagonal elements of the Fourier domain covariance matrix,” Med. Phys. 39, 3240–3252 (2012).
[Crossref]
[PubMed]
G. J. Gang, D. J. Tward, J. Lee, and J. H. Siewerdsen, “Anatomical background and generalized detectability in tomosynthesis and cone-beam CT,” Med. Phys. 37, 1948–1965 (2010).
[Crossref]
[PubMed]
D. J. Tward and J. H. Siewerdsen, “Noise aliasing and the 3D NEQ of flat-panel cone-beam CT: effect of 2D/3D apertures and sampling,” Med. Phys. 36, 3830–3843 (2009).
[Crossref]
[PubMed]
D. J. Tward, J. H. Siewerdsen, M. J. Daly, S. Richard, D. J. Moseley, D. A. Jaffray, and N. S. Paul, “Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics,” Med. Phys. 34, 4459–4471 (2007).
[Crossref]
[PubMed]
D. J. Tward, J. H. Siewerdsen, R. A. Fahrig, and A. R. Pineda, “Cascaded systems analysis of the 3D NEQ for cone-beam CT and tomosynthesis,” Proc. SPIE6913, 69131S (2008).
[Crossref]
X. Gong, S. J. Glick, B. Liu, A. A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33, 1041–1052 (2006).
[Crossref]
[PubMed]
C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. Saunders, E. Samei, and F. O. Bochud, “Mass detection on mammograms: influence of signal shape uncertainty on human and model observers,” J. Opt. Soc. Am. A 26, 425–436 (2009).
[Crossref]
L. Wang, H. M. Lai, A. J. Thompson, and D. H. Miller, “Survey of the distribution of lesion size in multiple sclerosis: implication for the measurement of total lesion load,” J. Neurol. Neurosur. Ps. 63, 452–455 (1997).
[Crossref]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
H. C. Gifford, M. A. King, P. H. Pretorius, and R. G. Wells, “A comparison of human and model observers in multislice lroc studies,” IEEE Trans. Med. Img. 24, 160–169 (2005).
[Crossref]
R. Spin-Neto, E. Gotfredsen, and A. Wenzel, “Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review,” J. Dig. Imag. 26, 813–820 (2013).
[Crossref]
M. P. Eckstein, J. L. Bartroff, C. K. Abbey, J. S. Whiting, and F. O. Bochud, “Automated computer evaluation and optimization of image compression of x-ray coronary angiograms for signal known exactly detection tasks,” Opt. Express. 11, 460–475 (2003).
[Crossref]
[PubMed]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
B. Chen, O. Christianson, J. M. Wilson, and E. Samei, “Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods,” Med. Phys. 41, 071909 (2014).
[Crossref]
[PubMed]
D. Wormanns, S. Diederich, M. G. Lentschig, F. Winter, and W. Heindel, “Spiral CT of pulmonary nodules: interobserver variation in assessment of lesion size,” Eur. Radiol. 10, 710–713 (2000).
[Crossref]
[PubMed]
J. M. Witten, S. Park, and K. J. Myers, “Partial least squares: a method to estimate efficient channels for the ideal observers,” IEEE Trans. Med. Img. 29, 1050–1058 (2010).
[Crossref]
M. Gies, W. A. Kalender, H. Wolf, C. Suess, and M. T. Madsen, “Dose reduction in CT by anatomically adapted tube current modulation. I. simulation studies,” Med. Phys. 26, 2235–2247 (1999).
[Crossref]
[PubMed]
D. Wormanns, S. Diederich, M. G. Lentschig, F. Winter, and W. Heindel, “Spiral CT of pulmonary nodules: interobserver variation in assessment of lesion size,” Eur. Radiol. 10, 710–713 (2000).
[Crossref]
[PubMed]
A. Wunderlich and F. Noo, “Estimation of channelized Hotelling observer performance with known class means or known difference of class means,” IEEE Trans. Med. Img. 28, 1198–1207 (2009).
[Crossref]
J. Oldan, S. Kulkarni, Y. Xing, P. Khurd, and G. Gindi, “Channelized hotelling and human observer study of optimal smoothing in SPECT MAP reconstruction,” IEEE Trans. Nucl. Sci. 51, 733–741 (2004).
[Crossref]
S. Richard, X. Li, G. Yadava, and E. Samei, “Predictive models for observer performance in ct: applications in protocol optimization,” Proc. SPIE 7961, 79610H (2011).
[Crossref]
A. L. C. Kwan, J. M. Boone, K. Yang, and S. Y. Huang, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34, 275–281 (2007).
[Crossref]
[PubMed]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
S. Young, P. R. Bakic, K. J. Myers, R. J. Jennings, and S. Park, “A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data,” Med. Phys. 40, 051914 (2013).
[Crossref]
[PubMed]
L. Yu, S. Leng, L. Chen, J. M. Kofler, R. E. Carter, and C. H. McCollough, “Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms,” Med. Phys. 40, 041908 (2013).
[Crossref]
[PubMed]
Y. Zhang, B. T. Pham, and M. P. Eckstein, “Evaluation of internal noise methods for Hotelling observer models,” Med. Phys. 34, 3312–3322 (2007).
[Crossref]
[PubMed]
Y. Zhang, B. T. Pham, and M. P. Eckstein, “The effect of nonlinear human visual system components on performance of a channelized Hotelling observer in structured backgrounds,” IEEE Trans. Med. Img. 25, 1348–1362 (2006).
[Crossref]
S. Kulkarni, P. Khurd, I. Hsiao, L. Zhou, and G. Gindi, “A channelized Hotelling observer study of lesion detection in SPECT MAP reconstruction using anatomical priors,” Phys. Med. Biol. 52, 3601–3617 (2007).
[Crossref]
[PubMed]
R. F. Brem, J. W. Hoffmeister, G. Zisman, M. P. DeSimio, and S. K. Rogers, “A computer-aided detection system for the evaluation of breast cancer by mammographic appearance and lesion size,” Am. J. Roentgenol. 184, 893–896 (2005).
[Crossref]
A. Linda, C. Zuiani, V. Londero, and M. Bazzocchi, “Outcome of initially only magnetic resonance mammography-detected findings with and without correlate at second-look sonography: distribution according to patient history of breast cancer and lesion size,” The Breast 17, 53–59 (2008).
[Crossref]
A. Badano and B. D. Gallas, “Detectability decreases with off-normal viewing in medical liquid crystal displays,” Acad. Radiol. 13, 210–218 (2006).
[Crossref]
[PubMed]
R. F. Brem, J. W. Hoffmeister, G. Zisman, M. P. DeSimio, and S. K. Rogers, “A computer-aided detection system for the evaluation of breast cancer by mammographic appearance and lesion size,” Am. J. Roentgenol. 184, 893–896 (2005).
[Crossref]
L. Liberman, G. Mason, E. A. Morris, and D. D. Dershaw, “Does size matter? Positive predictive value of MRI-detected breast lesions as a function of lesion size,” Am. J. Roentgenol. 186, 426–430 (2006).
[Crossref]
M. K. Gould, J. Fletcher, M. D. Iannettoni, W. R. Lynch, D. E. Midthun, D. P. Naidich, and D. E. Ost, “Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines,” Chest J. 132, 108S–130S (2007).
[Crossref]
W. C. Scarfe and A. G. Farman, “What is cone-beam CT and how does it work?” Dent. Clin. N. Am. 52, 707–730 (2008).
[Crossref]
[PubMed]
D. Wormanns, S. Diederich, M. G. Lentschig, F. Winter, and W. Heindel, “Spiral CT of pulmonary nodules: interobserver variation in assessment of lesion size,” Eur. Radiol. 10, 710–713 (2000).
[Crossref]
[PubMed]
C. K. Abbey and M. P. Eckstein, “Optimal shifted estimates of human-observer templates in two-alternative forced-choice experiments,” IEEE Trans. Med. Img. 21, 429–440 (2002).
[Crossref]
S. Park, A. Badano, B. D. Gallas, and K. J. Myers, “Incorporating human contrast sensitivity in model observers for detection tasks,” IEEE Trans. Med. Img. 28, 339–347 (2009).
[Crossref]
Y. Zhang, B. T. Pham, and M. P. Eckstein, “The effect of nonlinear human visual system components on performance of a channelized Hotelling observer in structured backgrounds,” IEEE Trans. Med. Img. 25, 1348–1362 (2006).
[Crossref]
C. Lee and J. Baek, “A new method to measure directional modulation transfer function using sphere phantoms in a cone beam computed tomography system,” IEEE Trans. Med. Img. 34, 902–910 (2015).
[Crossref]
A. Wunderlich and F. Noo, “Estimation of channelized Hotelling observer performance with known class means or known difference of class means,” IEEE Trans. Med. Img. 28, 1198–1207 (2009).
[Crossref]
J. M. Witten, S. Park, and K. J. Myers, “Partial least squares: a method to estimate efficient channels for the ideal observers,” IEEE Trans. Med. Img. 29, 1050–1058 (2010).
[Crossref]
H. C. Gifford, M. A. King, P. H. Pretorius, and R. G. Wells, “A comparison of human and model observers in multislice lroc studies,” IEEE Trans. Med. Img. 24, 160–169 (2005).
[Crossref]
J. Oldan, S. Kulkarni, Y. Xing, P. Khurd, and G. Gindi, “Channelized hotelling and human observer study of optimal smoothing in SPECT MAP reconstruction,” IEEE Trans. Nucl. Sci. 51, 733–741 (2004).
[Crossref]
R. Spin-Neto, E. Gotfredsen, and A. Wenzel, “Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review,” J. Dig. Imag. 26, 813–820 (2013).
[Crossref]
L. Wang, H. M. Lai, A. J. Thompson, and D. H. Miller, “Survey of the distribution of lesion size in multiple sclerosis: implication for the measurement of total lesion load,” J. Neurol. Neurosur. Ps. 63, 452–455 (1997).
[Crossref]
L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1, 612–619 (1984).
[Crossref]
C. K. Abbey and M. P. Eckstein, “Classification images for simple detection and discrimination tasks in correlated noise,” J. Opt. Soc. Am. A 24, B110–B124 (2007).
[Crossref]
B. D. Gallas, G. A. Pennello, and K. J. Myers, “Multireader multicase variance analysis for binary data,” J. Opt. Soc. Am. A 24, B70–B80 (2007).
[Crossref]
C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. Saunders, E. Samei, and F. O. Bochud, “Mass detection on mammograms: influence of signal shape uncertainty on human and model observers,” J. Opt. Soc. Am. A 26, 425–436 (2009).
[Crossref]
B. D. Gallas and H. H. Barrett, “Validating the use of channels to estimate the ideal linear observer,” J. Opt. Soc. Am. A 20, 1725–1738 (2003).
[Crossref]
S. Park, H. H. Barrett, E. Clarkson, M. A. Kupinski, and K. J. Myers, “Channelized-ideal observer using Laguerre-Gauss channels in detection tasks involving non-Gaussian distributed lumpy backgrounds and a Gaussian signal,” J. Opt. Soc. Am. A 24, B136–B150 (2007).
[Crossref]
S. Park, B. D. Gallas, A. Badano, N. A. Petrick, and K. J. Myers, “Efficiency of the human observer for detecting a Gaussian signal at a known location in non-Gaussian distributed lumpy backgrounds,” J. Opt. Soc. Am. A 24, 911–921 (2007).
[Crossref]
H. H. Barrett, “Objective assessment of image quality: effects of quantum noise and object variability,”J. Opt. Soc. Am. A 7, 1266–1278 (1990).
[Crossref]
[PubMed]
C. K. Abbey and H. H. Barrett, “Human-and model-observer performance in ramp-spectrum noise: effects of regularization and object variability,” J. Opt. Soc. Am. A 18, 473–488 (2001).
[Crossref]
K. J. Myers and H. H. Barrett, “Addition of a channel mechanism to the ideal-observer model,”J. Opt. Soc. Am. A 4, 2447–2457 (1987).
[Crossref]
[PubMed]
A. L. C. Kwan, J. M. Boone, K. Yang, and S. Y. Huang, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34, 275–281 (2007).
[Crossref]
[PubMed]
D. J. Tward and J. H. Siewerdsen, “Noise aliasing and the 3D NEQ of flat-panel cone-beam CT: effect of 2D/3D apertures and sampling,” Med. Phys. 36, 3830–3843 (2009).
[Crossref]
[PubMed]
J. Baek and N. J. Pelc, “Local and global 3D noise power spectrum in cone-beam CT system with FDK reconstruction,” Med. Phys. 38, 2122–2131 (2011).
[Crossref]
[PubMed]
A. R. Pineda, D. J. Tward, A. Gonzalez, and J. H. Siewerdsen, “Beyond noise power in 3D computed tomography: the local NPS and off-diagonal elements of the Fourier domain covariance matrix,” Med. Phys. 39, 3240–3252 (2012).
[Crossref]
[PubMed]
B. Chen, O. Christianson, J. M. Wilson, and E. Samei, “Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods,” Med. Phys. 41, 071909 (2014).
[Crossref]
[PubMed]
R. T. Droege and R. L. Morin, “A practical method to measure the MTF of CT scanners,” Med. Phys. 9, 758–760 (1982).
[Crossref]
[PubMed]
J. Baek and N. J. Pelc, “The noise power spectrum in CT with direct fan beam reconstruction,” Med. Phys. 37, 2074–2081 (2010).
[Crossref]
[PubMed]
L. Yu, S. Leng, L. Chen, J. M. Kofler, R. E. Carter, and C. H. McCollough, “Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms,” Med. Phys. 40, 041908 (2013).
[Crossref]
[PubMed]
E. Samei and S. Richard, “Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology,” Med. Phys. 42, 314–323 (2015).
[Crossref]
[PubMed]
X. Gong, S. J. Glick, B. Liu, A. A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33, 1041–1052 (2006).
[Crossref]
[PubMed]
C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 2995–3004 (2007).
[Crossref]
[PubMed]
J. D. Silverman, N. S. Paul, and J. H. Siewerdsen, “Investigation of lung nodule detectability in low-dose 320-slice computed tomography,” Med. Phys. 36, 1700–1710 (2009).
[Crossref]
[PubMed]
D. J. Tward, J. H. Siewerdsen, M. J. Daly, S. Richard, D. J. Moseley, D. A. Jaffray, and N. S. Paul, “Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics,” Med. Phys. 34, 4459–4471 (2007).
[Crossref]
[PubMed]
M. Gies, W. A. Kalender, H. Wolf, C. Suess, and M. T. Madsen, “Dose reduction in CT by anatomically adapted tube current modulation. I. simulation studies,” Med. Phys. 26, 2235–2247 (1999).
[Crossref]
[PubMed]
Y. Zhang, B. T. Pham, and M. P. Eckstein, “Evaluation of internal noise methods for Hotelling observer models,” Med. Phys. 34, 3312–3322 (2007).
[Crossref]
[PubMed]
S. Young, P. R. Bakic, K. J. Myers, R. J. Jennings, and S. Park, “A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data,” Med. Phys. 40, 051914 (2013).
[Crossref]
[PubMed]
J. Baek and N. J. Pelc, “Effect of detector lag on CT noise power spectra,” Med. Phys. 38, 2995–3005 (2011).
[Crossref]
[PubMed]
S. Park, H. Liu, A. Badano, and K. J. Myers, “A statistical, task-based evaluation method for three-dimensional x-ray breast imaging systems using variable-background phantoms,” Med. Phys. 37, 6253–6270 (2010).
[Crossref]
G. J. Gang, D. J. Tward, J. Lee, and J. H. Siewerdsen, “Anatomical background and generalized detectability in tomosynthesis and cone-beam CT,” Med. Phys. 37, 1948–1965 (2010).
[Crossref]
[PubMed]
C. Lee, M. Han, and J. Baek, “SU-E-I-10: Investigation on detectability of a small target for different slice direction of a volumetric cone beam CT image,” Med. Phys. 42, 3243(2015).
[Crossref]
M. P. Eckstein, J. L. Bartroff, C. K. Abbey, J. S. Whiting, and F. O. Bochud, “Automated computer evaluation and optimization of image compression of x-ray coronary angiograms for signal known exactly detection tasks,” Opt. Express. 11, 460–475 (2003).
[Crossref]
[PubMed]
Z. Chen and R. Ning, “Three-dimensional point spread function measurement of cone-beam computed tomography system by iterative edge-blurring algorithm,” Phys. Med. Biol. 49, 1865–1880 (2004).
[Crossref]
[PubMed]
J. Hsieh and X. Tang, “Tilted cone-beam reconstruction with row-wise fan-to-parallel rebinning,” Phys. Med. Biol. 51, 5259–5276 (2006).
[Crossref]
[PubMed]
J. Baek, A. R. Pineda, and N. J. Pelc, “To bin or not to bin? the effect of CT system limiting resolution on noise and detectability,” Phys. Med. Biol. 58, 1433 (2013).
[Crossref]
[PubMed]
S. Kulkarni, P. Khurd, I. Hsiao, L. Zhou, and G. Gindi, “A channelized Hotelling observer study of lesion detection in SPECT MAP reconstruction using anatomical priors,” Phys. Med. Biol. 52, 3601–3617 (2007).
[Crossref]
[PubMed]
S. Richard, X. Li, G. Yadava, and E. Samei, “Predictive models for observer performance in ct: applications in protocol optimization,” Proc. SPIE 7961, 79610H (2011).
[Crossref]
S. J. Swensen, J. R. Jett, T. E. Hartman, D. E. Midthun, J. A. Sloan, A. M. Sykes, G. L. Aughenbaugh, and M. A. Clemens, “Lung cancer screening with CT: Mayo clinic experience 1,” Radiology 226, 756–761 (2003).
[Crossref]
[PubMed]
A. Linda, C. Zuiani, V. Londero, and M. Bazzocchi, “Outcome of initially only magnetic resonance mammography-detected findings with and without correlate at second-look sonography: distribution according to patient history of breast cancer and lesion size,” The Breast 17, 53–59 (2008).
[Crossref]
X. He and S. Park, “Model observers in medical imaging research,” Theranostics 3, 774–786 (2013).
[Crossref]
[PubMed]
J. H. Siewerdsen and D. A. Jaffray, “Three-dimensional NEQ transfer characteristics of volume CT using direct-and indirect-detection flat-panel imagers,” Proc. SPIE5030, 92–102 (2003).
[Crossref]
D. J. Tward, J. H. Siewerdsen, R. A. Fahrig, and A. R. Pineda, “Cascaded systems analysis of the 3D NEQ for cone-beam CT and tomosynthesis,” Proc. SPIE6913, 69131S (2008).
[Crossref]
J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE, 2009).
J. Qi, “Investigation of lesion detection in MAP reconstruction with non-Gaussian priors,” in Proc. IEEE Nucl. Sci. Symp. (IEEE, 2005), pp. 1704–1708.