Abstract

We proposed the world’s first flexible ultrathin-body single-photon avalanche diode (SPAD) as photon counting device providing a suitable solution to advanced implantable bio-compatible chronic medical monitoring, diagnostics and other applications. In this paper, we investigate the Geiger-mode performance of this flexible ultrathin-body SPAD comprehensively and we extend this work to the first flexible SPAD image sensor with in-pixel and off-pixel electronics integrated in CMOS. Experimental results show that dark count rate (DCR) by band-to-band tunneling can be reduced by optimizing multiplication doping. DCR by trap-assisted avalanche, which is believed to be originated from the trench etching process, could be further reduced, resulting in a DCR density of tens to hundreds of Hertz per micrometer square at cryogenic temperature. The influence of the trench etching process onto DCR is also proved by comparison with planar ultrathin-body SPAD structures without trench. Photon detection probability (PDP) can be achieved by wider depletion and drift regions and by carefully optimizing body thickness. PDP in frontside- (FSI) and backside-illumination (BSI) are comparable, thus making this technology suitable for both modes of illumination. Afterpulsing and crosstalk are negligible at 2µs dead time, while it has been proved, for the first time, that a CMOS SPAD pixel of this kind could work in a cryogenic environment. By appropriate choice of substrate, this technology is amenable to implantation for biocompatible photon-counting applications and wherever bended imaging sensors are essential.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device

Myung-Jae Lee, Pengfei Sun, and Edoardo Charbon
Opt. Express 23(10) 13200-13209 (2015)

A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology

Shingo Mandai, Matthew W. Fishburn, Yuki Maruyama, and Edoardo Charbon
Opt. Express 20(6) 5849-5857 (2012)

A new single-photon avalanche diode in 90nm standard CMOS technology

Mohammad Azim Karami, Marek Gersbach, Hyung-June Yoon, and Edoardo Charbon
Opt. Express 18(21) 22158-22166 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philos Trans A Math Phys Eng Sci 372(2012), 20130100 (2014).
    [Crossref] [PubMed]
  2. R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128×96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in IEEE ISSCC Dig. Tech. (IEEE, 2011), pp.410–412.
  3. A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single-photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
    [Crossref]
  4. C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340x96-pixel Time-of-Flight Depth Sensor in 0.18-µm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
    [Crossref]
  5. E. Charbon, H.-J. Yoon, and Y. Maruyama, “A Geiger mode APD fabricated in standard 65nm CMOS technology,” in IEEE International Electron Devices Meeting (IEEE, 2013), paper 27.5.1.
    [Crossref]
  6. M. S. Humayum, J. D. Weiland, G. Chader, and E. Greenbaum, Artificial Sight (Springer, 2011).
  7. T. Tokuda, M. Takahashi, K. Uejima, K. Masuda, T. Kawamura, Y. Ohta, M. Motoyama, T. Noda, K. Sasagawa, T. Okitsu, S. Takeuchi, and J. Ohta, “CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel,” Biomed. Opt. Express 5(11), 3859–3870 (2014).
    [Crossref] [PubMed]
  8. T. Noda, K. Sasagawa, T. Tokuda, H. Kanda, Y. Terasawa, H. Tashiro, T. Fujikado, and J. Ohta, “Fabrication of fork-shaped retinal stimulator integrated with CMOS Microchips for extension of viewing angle,” Sensors Mater. 26(8), 637–648 (2014).
  9. G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
    [Crossref] [PubMed]
  10. J. Yoon, S.-M. Lee, D. Kang, M. Meitl, C. Bower, and J. A. Rogers, “Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing,” Adv. Opt. Mater. 3(10), 1313–1335 (2015).
    [Crossref]
  11. D. R. Schuette, R. C. Westhoff, A. H. Loomis, D. J. Young, J. S. Ciampi, B. F. Aull, and R. K. Reich, “Hybridization process for backilluminated silicon Geiger-mode avalanche photodiode arrays,” Proc. SPIE 7681, 76810P (2010).
    [Crossref]
  12. P. Sun, B. Mimoun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body SOI single-photon avalanche diode,” in IEEE International Electron Devices Meeting (IEEE, 2013), pp. 1-4.
    [Crossref]
  13. P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).
  14. J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
    [Crossref]
  15. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
    [Crossref]
  16. P. Sun, E. Charbon, and R. Ishihara, “A flexible 32x32 SPAD image sensor with integrated microlenses,” in International Image Sensor Workshop (IISW, 2015), pp. 336–339.
  17. J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
    [Crossref] [PubMed]
  18. S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
    [Crossref]
  19. A. Spinelli, M. Ghioni, S. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34(5), 817–821 (1998).
    [Crossref]
  20. C. Y. Chang, S. S. Chiu, and L. P. Hsu, “Temperature dependence of breakdown voltage in silicon abrupt P-N junctions,” IEEE Trans. Electron. Dev. 18(6), 391–393 (1971).
    [Crossref]
  21. G. Collazuol, M. G. Bisogni, S. Marcatili, C. Piemonte, and A. Del Guerra, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instrum. Methods 628(1), 389–392 (2011).
    [Crossref]
  22. N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, and N. Zorzi, “Experimental and TCAD Study of breakdown voltage temperature behavior in n+p SiPMs,” IEEE Trans. Nucl. Sci. 58(3), 1233–1240 (2011).
    [Crossref]
  23. M.-J. Lee, P. Sun, and E. Charbon, “A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device,” Opt. Express 23(10), 13200–13209 (2015).
    [Crossref] [PubMed]
  24. I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, and S. Cova, “Operation of silicon single photon avalanche diodes at cryogenic temperature,” Rev. Sci. Instrum. 78(6), 063105 (2007).
    [Crossref] [PubMed]
  25. S. Sze and G. Gibbons, “Effect of junction curvature on breakdown voltage in semiconductors,” Solid-State Electron. 9(9), 831–845 (1966).
    [Crossref]
  26. A. Spinelli and A. L. Lacaita, “Physics and Numerical simulation of single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 44(11), 1931–1943 (1997).
    [Crossref]
  27. S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
    [Crossref] [PubMed]
  28. C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
    [Crossref]
  29. S. Nikzad, M. Hoenk, J. Hennessy, A. Jewell, A. Carver, T. Jones, S. Cheng, T. Goodsall, and C. Shapiro, “High performance silicon imaging arrays for cosmology, planetary science, and other applications,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2014), paper 10.7.1.
    [Crossref]
  30. M. W. Fishburn, “Fundamentals of CMOS single-photon avalanche diodes,” Ph.D. dissertation (Delft Univ. of Technology, 2012).

2015 (3)

J. Yoon, S.-M. Lee, D. Kang, M. Meitl, C. Bower, and J. A. Rogers, “Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing,” Adv. Opt. Mater. 3(10), 1313–1335 (2015).
[Crossref]

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

M.-J. Lee, P. Sun, and E. Charbon, “A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device,” Opt. Express 23(10), 13200–13209 (2015).
[Crossref] [PubMed]

2014 (7)

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
[Crossref] [PubMed]

P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philos Trans A Math Phys Eng Sci 372(2012), 20130100 (2014).
[Crossref] [PubMed]

T. Tokuda, M. Takahashi, K. Uejima, K. Masuda, T. Kawamura, Y. Ohta, M. Motoyama, T. Noda, K. Sasagawa, T. Okitsu, S. Takeuchi, and J. Ohta, “CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel,” Biomed. Opt. Express 5(11), 3859–3870 (2014).
[Crossref] [PubMed]

T. Noda, K. Sasagawa, T. Tokuda, H. Kanda, Y. Terasawa, H. Tashiro, T. Fujikado, and J. Ohta, “Fabrication of fork-shaped retinal stimulator integrated with CMOS Microchips for extension of viewing angle,” Sensors Mater. 26(8), 637–648 (2014).

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

2013 (1)

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340x96-pixel Time-of-Flight Depth Sensor in 0.18-µm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

2012 (1)

2011 (3)

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single-photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

G. Collazuol, M. G. Bisogni, S. Marcatili, C. Piemonte, and A. Del Guerra, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instrum. Methods 628(1), 389–392 (2011).
[Crossref]

N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, and N. Zorzi, “Experimental and TCAD Study of breakdown voltage temperature behavior in n+p SiPMs,” IEEE Trans. Nucl. Sci. 58(3), 1233–1240 (2011).
[Crossref]

2010 (2)

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

D. R. Schuette, R. C. Westhoff, A. H. Loomis, D. J. Young, J. S. Ciampi, B. F. Aull, and R. K. Reich, “Hybridization process for backilluminated silicon Geiger-mode avalanche photodiode arrays,” Proc. SPIE 7681, 76810P (2010).
[Crossref]

2007 (1)

I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, and S. Cova, “Operation of silicon single photon avalanche diodes at cryogenic temperature,” Rev. Sci. Instrum. 78(6), 063105 (2007).
[Crossref] [PubMed]

1998 (1)

A. Spinelli, M. Ghioni, S. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34(5), 817–821 (1998).
[Crossref]

1997 (1)

A. Spinelli and A. L. Lacaita, “Physics and Numerical simulation of single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 44(11), 1931–1943 (1997).
[Crossref]

1981 (1)

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

1971 (1)

C. Y. Chang, S. S. Chiu, and L. P. Hsu, “Temperature dependence of breakdown voltage in silicon abrupt P-N junctions,” IEEE Trans. Electron. Dev. 18(6), 391–393 (1971).
[Crossref]

1966 (1)

S. Sze and G. Gibbons, “Effect of junction curvature on breakdown voltage in semiconductors,” Solid-State Electron. 9(9), 831–845 (1966).
[Crossref]

Andreoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Armellini, G.

I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, and S. Cova, “Operation of silicon single photon avalanche diodes at cryogenic temperature,” Rev. Sci. Instrum. 78(6), 063105 (2007).
[Crossref] [PubMed]

Aull, B. F.

D. R. Schuette, R. C. Westhoff, A. H. Loomis, D. J. Young, J. S. Ciampi, B. F. Aull, and R. K. Reich, “Hybridization process for backilluminated silicon Geiger-mode avalanche photodiode arrays,” Proc. SPIE 7681, 76810P (2010).
[Crossref]

Bisogni, M. G.

G. Collazuol, M. G. Bisogni, S. Marcatili, C. Piemonte, and A. Del Guerra, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instrum. Methods 628(1), 389–392 (2011).
[Crossref]

Bower, C.

J. Yoon, S.-M. Lee, D. Kang, M. Meitl, C. Bower, and J. A. Rogers, “Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing,” Adv. Opt. Mater. 3(10), 1313–1335 (2015).
[Crossref]

Chang, C. Y.

C. Y. Chang, S. S. Chiu, and L. P. Hsu, “Temperature dependence of breakdown voltage in silicon abrupt P-N junctions,” IEEE Trans. Electron. Dev. 18(6), 391–393 (1971).
[Crossref]

Charbon, E.

M.-J. Lee, P. Sun, and E. Charbon, “A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device,” Opt. Express 23(10), 13200–13209 (2015).
[Crossref] [PubMed]

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
[Crossref] [PubMed]

P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philos Trans A Math Phys Eng Sci 372(2012), 20130100 (2014).
[Crossref] [PubMed]

S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
[Crossref] [PubMed]

P. Sun, E. Charbon, and R. Ishihara, “A flexible 32x32 SPAD image sensor with integrated microlenses,” in International Image Sensor Workshop (IISW, 2015), pp. 336–339.

P. Sun, B. Mimoun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body SOI single-photon avalanche diode,” in IEEE International Electron Devices Meeting (IEEE, 2013), pp. 1-4.
[Crossref]

Chiu, S. S.

C. Y. Chang, S. S. Chiu, and L. P. Hsu, “Temperature dependence of breakdown voltage in silicon abrupt P-N junctions,” IEEE Trans. Electron. Dev. 18(6), 391–393 (1971).
[Crossref]

Chung, H.-J.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Ciampi, J. S.

D. R. Schuette, R. C. Westhoff, A. H. Loomis, D. J. Young, J. S. Ciampi, B. F. Aull, and R. K. Reich, “Hybridization process for backilluminated silicon Geiger-mode avalanche photodiode arrays,” Proc. SPIE 7681, 76810P (2010).
[Crossref]

Collazuol, G.

G. Collazuol, M. G. Bisogni, S. Marcatili, C. Piemonte, and A. Del Guerra, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instrum. Methods 628(1), 389–392 (2011).
[Crossref]

Colless, J. I.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Conway Lamb, I. D.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Cova, S.

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single-photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, and S. Cova, “Operation of silicon single photon avalanche diodes at cryogenic temperature,” Rev. Sci. Instrum. 78(6), 063105 (2007).
[Crossref] [PubMed]

A. Spinelli, M. Ghioni, S. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34(5), 817–821 (1998).
[Crossref]

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Davis, L. M.

A. Spinelli, M. Ghioni, S. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34(5), 817–821 (1998).
[Crossref]

Del Guerra, A.

G. Collazuol, M. G. Bisogni, S. Marcatili, C. Piemonte, and A. Del Guerra, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instrum. Methods 628(1), 389–392 (2011).
[Crossref]

Fallahi, S.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Fishburn, M. W.

Fujikado, T.

T. Noda, K. Sasagawa, T. Tokuda, H. Kanda, Y. Terasawa, H. Tashiro, T. Fujikado, and J. Ohta, “Fabrication of fork-shaped retinal stimulator integrated with CMOS Microchips for extension of viewing angle,” Sensors Mater. 26(8), 637–648 (2014).

Gardner, G. C.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Ghioni, M.

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single-photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, and S. Cova, “Operation of silicon single photon avalanche diodes at cryogenic temperature,” Rev. Sci. Instrum. 78(6), 063105 (2007).
[Crossref] [PubMed]

A. Spinelli, M. Ghioni, S. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34(5), 817–821 (1998).
[Crossref]

Giacomini, G.

N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, and N. Zorzi, “Experimental and TCAD Study of breakdown voltage temperature behavior in n+p SiPMs,” IEEE Trans. Nucl. Sci. 58(3), 1233–1240 (2011).
[Crossref]

Gibbons, G.

S. Sze and G. Gibbons, “Effect of junction curvature on breakdown voltage in semiconductors,” Solid-State Electron. 9(9), 831–845 (1966).
[Crossref]

Gossard, A. C.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Gulinatti, A.

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single-photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, and S. Cova, “Operation of silicon single photon avalanche diodes at cryogenic temperature,” Rev. Sci. Instrum. 78(6), 063105 (2007).
[Crossref] [PubMed]

Henderson, R. K.

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128×96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in IEEE ISSCC Dig. Tech. (IEEE, 2011), pp.410–412.

Hornibrook, J. M.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Hsu, L. P.

C. Y. Chang, S. S. Chiu, and L. P. Hsu, “Temperature dependence of breakdown voltage in silicon abrupt P-N junctions,” IEEE Trans. Electron. Dev. 18(6), 391–393 (1971).
[Crossref]

Ishihara, R.

P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).

P. Sun, B. Mimoun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body SOI single-photon avalanche diode,” in IEEE International Electron Devices Meeting (IEEE, 2013), pp. 1-4.
[Crossref]

P. Sun, E. Charbon, and R. Ishihara, “A flexible 32x32 SPAD image sensor with integrated microlenses,” in International Image Sensor Workshop (IISW, 2015), pp. 336–339.

Jung, Y. H.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Kagami, M.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340x96-pixel Time-of-Flight Depth Sensor in 0.18-µm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

Kanda, H.

T. Noda, K. Sasagawa, T. Tokuda, H. Kanda, Y. Terasawa, H. Tashiro, T. Fujikado, and J. Ohta, “Fabrication of fork-shaped retinal stimulator integrated with CMOS Microchips for extension of viewing angle,” Sensors Mater. 26(8), 637–648 (2014).

Kang, D.

J. Yoon, S.-M. Lee, D. Kang, M. Meitl, C. Bower, and J. A. Rogers, “Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing,” Adv. Opt. Mater. 3(10), 1313–1335 (2015).
[Crossref]

Kato, S.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340x96-pixel Time-of-Flight Depth Sensor in 0.18-µm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

Kawamura, T.

Kim, J.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Kim, J.-S.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Kim, K.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Kim, R.-H.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Kim, S. S.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Kim, T.-I.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Kim, Y.-S.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Labanca, I.

I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, and S. Cova, “Operation of silicon single photon avalanche diodes at cryogenic temperature,” Rev. Sci. Instrum. 78(6), 063105 (2007).
[Crossref] [PubMed]

Lacaita, A. L.

A. Spinelli and A. L. Lacaita, “Physics and Numerical simulation of single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 44(11), 1931–1943 (1997).
[Crossref]

Lee, K.-M.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Lee, M.-J.

Lee, S.-M.

J. Yoon, S.-M. Lee, D. Kang, M. Meitl, C. Bower, and J. A. Rogers, “Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing,” Adv. Opt. Mater. 3(10), 1313–1335 (2015).
[Crossref]

Lim, S. A.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Liu, Y.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Longoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Loomis, A. H.

D. R. Schuette, R. C. Westhoff, A. H. Loomis, D. J. Young, J. S. Ciampi, B. F. Aull, and R. K. Reich, “Hybridization process for backilluminated silicon Geiger-mode avalanche photodiode arrays,” Proc. SPIE 7681, 76810P (2010).
[Crossref]

Lu, H.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Ma, L.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Maccagnani, P.

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single-photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

Mandai, S.

Manfra, M. J.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Marcatili, S.

G. Collazuol, M. G. Bisogni, S. Marcatili, C. Piemonte, and A. Del Guerra, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instrum. Methods 628(1), 389–392 (2011).
[Crossref]

Maruyama, Y.

Masuda, K.

Matsubara, H.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340x96-pixel Time-of-Flight Depth Sensor in 0.18-µm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

Meitl, M.

J. Yoon, S.-M. Lee, D. Kang, M. Meitl, C. Bower, and J. A. Rogers, “Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing,” Adv. Opt. Mater. 3(10), 1313–1335 (2015).
[Crossref]

Mimoun, B.

P. Sun, B. Mimoun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body SOI single-photon avalanche diode,” in IEEE International Electron Devices Meeting (IEEE, 2013), pp. 1-4.
[Crossref]

Motoyama, M.

Niclass, C.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340x96-pixel Time-of-Flight Depth Sensor in 0.18-µm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

Noda, T.

T. Noda, K. Sasagawa, T. Tokuda, H. Kanda, Y. Terasawa, H. Tashiro, T. Fujikado, and J. Ohta, “Fabrication of fork-shaped retinal stimulator integrated with CMOS Microchips for extension of viewing angle,” Sensors Mater. 26(8), 637–648 (2014).

T. Tokuda, M. Takahashi, K. Uejima, K. Masuda, T. Kawamura, Y. Ohta, M. Motoyama, T. Noda, K. Sasagawa, T. Okitsu, S. Takeuchi, and J. Ohta, “CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel,” Biomed. Opt. Express 5(11), 3859–3870 (2014).
[Crossref] [PubMed]

Ohta, J.

T. Tokuda, M. Takahashi, K. Uejima, K. Masuda, T. Kawamura, Y. Ohta, M. Motoyama, T. Noda, K. Sasagawa, T. Okitsu, S. Takeuchi, and J. Ohta, “CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel,” Biomed. Opt. Express 5(11), 3859–3870 (2014).
[Crossref] [PubMed]

T. Noda, K. Sasagawa, T. Tokuda, H. Kanda, Y. Terasawa, H. Tashiro, T. Fujikado, and J. Ohta, “Fabrication of fork-shaped retinal stimulator integrated with CMOS Microchips for extension of viewing angle,” Sensors Mater. 26(8), 637–648 (2014).

Ohta, Y.

Okitsu, T.

Park, G.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Pauka, S. J.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Pavia, J. M.

Piazza, A.

N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, and N. Zorzi, “Experimental and TCAD Study of breakdown voltage temperature behavior in n+p SiPMs,” IEEE Trans. Nucl. Sci. 58(3), 1233–1240 (2011).
[Crossref]

Piemonte, C.

N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, and N. Zorzi, “Experimental and TCAD Study of breakdown voltage temperature behavior in n+p SiPMs,” IEEE Trans. Nucl. Sci. 58(3), 1233–1240 (2011).
[Crossref]

G. Collazuol, M. G. Bisogni, S. Marcatili, C. Piemonte, and A. Del Guerra, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instrum. Methods 628(1), 389–392 (2011).
[Crossref]

Rakher, M. T.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Rech, I.

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single-photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, and S. Cova, “Operation of silicon single photon avalanche diodes at cryogenic temperature,” Rev. Sci. Instrum. 78(6), 063105 (2007).
[Crossref] [PubMed]

Reich, R. K.

D. R. Schuette, R. C. Westhoff, A. H. Loomis, D. J. Young, J. S. Ciampi, B. F. Aull, and R. K. Reich, “Hybridization process for backilluminated silicon Geiger-mode avalanche photodiode arrays,” Proc. SPIE 7681, 76810P (2010).
[Crossref]

Reilly, D. J.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Richardson, J. A.

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128×96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in IEEE ISSCC Dig. Tech. (IEEE, 2011), pp.410–412.

Rogers, J. A.

J. Yoon, S.-M. Lee, D. Kang, M. Meitl, C. Bower, and J. A. Rogers, “Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing,” Adv. Opt. Mater. 3(10), 1313–1335 (2015).
[Crossref]

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Sasagawa, K.

T. Noda, K. Sasagawa, T. Tokuda, H. Kanda, Y. Terasawa, H. Tashiro, T. Fujikado, and J. Ohta, “Fabrication of fork-shaped retinal stimulator integrated with CMOS Microchips for extension of viewing angle,” Sensors Mater. 26(8), 637–648 (2014).

T. Tokuda, M. Takahashi, K. Uejima, K. Masuda, T. Kawamura, Y. Ohta, M. Motoyama, T. Noda, K. Sasagawa, T. Okitsu, S. Takeuchi, and J. Ohta, “CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel,” Biomed. Opt. Express 5(11), 3859–3870 (2014).
[Crossref] [PubMed]

Schuette, D. R.

D. R. Schuette, R. C. Westhoff, A. H. Loomis, D. J. Young, J. S. Ciampi, B. F. Aull, and R. K. Reich, “Hybridization process for backilluminated silicon Geiger-mode avalanche photodiode arrays,” Proc. SPIE 7681, 76810P (2010).
[Crossref]

Serra, N.

N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, and N. Zorzi, “Experimental and TCAD Study of breakdown voltage temperature behavior in n+p SiPMs,” IEEE Trans. Nucl. Sci. 58(3), 1233–1240 (2011).
[Crossref]

Slattery, O.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Soga, M.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340x96-pixel Time-of-Flight Depth Sensor in 0.18-µm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

Spinelli, A.

A. Spinelli, M. Ghioni, S. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34(5), 817–821 (1998).
[Crossref]

A. Spinelli and A. L. Lacaita, “Physics and Numerical simulation of single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 44(11), 1931–1943 (1997).
[Crossref]

Srinivasan, K.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Sun, P.

M.-J. Lee, P. Sun, and E. Charbon, “A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device,” Opt. Express 23(10), 13200–13209 (2015).
[Crossref] [PubMed]

P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).

P. Sun, E. Charbon, and R. Ishihara, “A flexible 32x32 SPAD image sensor with integrated microlenses,” in International Image Sensor Workshop (IISW, 2015), pp. 336–339.

P. Sun, B. Mimoun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body SOI single-photon avalanche diode,” in IEEE International Electron Devices Meeting (IEEE, 2013), pp. 1-4.
[Crossref]

Sze, S.

S. Sze and G. Gibbons, “Effect of junction curvature on breakdown voltage in semiconductors,” Solid-State Electron. 9(9), 831–845 (1966).
[Crossref]

Takahashi, M.

Takeuchi, S.

Tang, X.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Tarolli, A.

N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, and N. Zorzi, “Experimental and TCAD Study of breakdown voltage temperature behavior in n+p SiPMs,” IEEE Trans. Nucl. Sci. 58(3), 1233–1240 (2011).
[Crossref]

Tashiro, H.

T. Noda, K. Sasagawa, T. Tokuda, H. Kanda, Y. Terasawa, H. Tashiro, T. Fujikado, and J. Ohta, “Fabrication of fork-shaped retinal stimulator integrated with CMOS Microchips for extension of viewing angle,” Sensors Mater. 26(8), 637–648 (2014).

Terasawa, Y.

T. Noda, K. Sasagawa, T. Tokuda, H. Kanda, Y. Terasawa, H. Tashiro, T. Fujikado, and J. Ohta, “Fabrication of fork-shaped retinal stimulator integrated with CMOS Microchips for extension of viewing angle,” Sensors Mater. 26(8), 637–648 (2014).

Tokuda, T.

T. Noda, K. Sasagawa, T. Tokuda, H. Kanda, Y. Terasawa, H. Tashiro, T. Fujikado, and J. Ohta, “Fabrication of fork-shaped retinal stimulator integrated with CMOS Microchips for extension of viewing angle,” Sensors Mater. 26(8), 637–648 (2014).

T. Tokuda, M. Takahashi, K. Uejima, K. Masuda, T. Kawamura, Y. Ohta, M. Motoyama, T. Noda, K. Sasagawa, T. Okitsu, S. Takeuchi, and J. Ohta, “CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel,” Biomed. Opt. Express 5(11), 3859–3870 (2014).
[Crossref] [PubMed]

Uejima, K.

Veerappan, C.

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

Walker, R. J.

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128×96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in IEEE ISSCC Dig. Tech. (IEEE, 2011), pp.410–412.

Watson, J. D.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Westhoff, R. C.

D. R. Schuette, R. C. Westhoff, A. H. Loomis, D. J. Young, J. S. Ciampi, B. F. Aull, and R. K. Reich, “Hybridization process for backilluminated silicon Geiger-mode avalanche photodiode arrays,” Proc. SPIE 7681, 76810P (2010).
[Crossref]

Wolf, M.

Yee, C.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Yeo, W.-H.

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Yoon, J.

J. Yoon, S.-M. Lee, D. Kang, M. Meitl, C. Bower, and J. A. Rogers, “Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing,” Adv. Opt. Mater. 3(10), 1313–1335 (2015).
[Crossref]

Young, D. J.

D. R. Schuette, R. C. Westhoff, A. H. Loomis, D. J. Young, J. S. Ciampi, B. F. Aull, and R. K. Reich, “Hybridization process for backilluminated silicon Geiger-mode avalanche photodiode arrays,” Proc. SPIE 7681, 76810P (2010).
[Crossref]

Zorzi, N.

N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, and N. Zorzi, “Experimental and TCAD Study of breakdown voltage temperature behavior in n+p SiPMs,” IEEE Trans. Nucl. Sci. 58(3), 1233–1240 (2011).
[Crossref]

Adv. Healthc. Mater. (1)

G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, T.-I. Kim, C. Yee, J. A. Rogers, and K.-M. Lee, “Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics,” Adv. Healthc. Mater. 3(4), 515–525 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Yoon, S.-M. Lee, D. Kang, M. Meitl, C. Bower, and J. A. Rogers, “Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing,” Adv. Opt. Mater. 3(10), 1313–1335 (2015).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

A. Spinelli, M. Ghioni, S. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34(5), 817–821 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).

IEEE J. Solid-State Circuits (1)

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340x96-pixel Time-of-Flight Depth Sensor in 0.18-µm CMOS,” IEEE J. Solid-State Circuits 48(2), 559–572 (2013).
[Crossref]

IEEE Trans. Electron. Dev. (2)

C. Y. Chang, S. S. Chiu, and L. P. Hsu, “Temperature dependence of breakdown voltage in silicon abrupt P-N junctions,” IEEE Trans. Electron. Dev. 18(6), 391–393 (1971).
[Crossref]

A. Spinelli and A. L. Lacaita, “Physics and Numerical simulation of single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 44(11), 1931–1943 (1997).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, and N. Zorzi, “Experimental and TCAD Study of breakdown voltage temperature behavior in n+p SiPMs,” IEEE Trans. Nucl. Sci. 58(3), 1233–1240 (2011).
[Crossref]

Nat. Photonics (1)

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Nucl. Instrum. Methods (1)

G. Collazuol, M. G. Bisogni, S. Marcatili, C. Piemonte, and A. Del Guerra, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instrum. Methods 628(1), 389–392 (2011).
[Crossref]

Opt. Express (3)

Philos Trans A Math Phys Eng Sci (1)

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philos Trans A Math Phys Eng Sci 372(2012), 20130100 (2014).
[Crossref] [PubMed]

Phys. Rev. Appl. (1)

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl. 3(2), 024010 (2015).
[Crossref]

Proc. SPIE (2)

D. R. Schuette, R. C. Westhoff, A. H. Loomis, D. J. Young, J. S. Ciampi, B. F. Aull, and R. K. Reich, “Hybridization process for backilluminated silicon Geiger-mode avalanche photodiode arrays,” Proc. SPIE 7681, 76810P (2010).
[Crossref]

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single-photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

Rev. Sci. Instrum. (2)

I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, and S. Cova, “Operation of silicon single photon avalanche diodes at cryogenic temperature,” Rev. Sci. Instrum. 78(6), 063105 (2007).
[Crossref] [PubMed]

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Sensors Mater. (1)

T. Noda, K. Sasagawa, T. Tokuda, H. Kanda, Y. Terasawa, H. Tashiro, T. Fujikado, and J. Ohta, “Fabrication of fork-shaped retinal stimulator integrated with CMOS Microchips for extension of viewing angle,” Sensors Mater. 26(8), 637–648 (2014).

Solid-State Electron. (1)

S. Sze and G. Gibbons, “Effect of junction curvature on breakdown voltage in semiconductors,” Solid-State Electron. 9(9), 831–845 (1966).
[Crossref]

Other (7)

S. Nikzad, M. Hoenk, J. Hennessy, A. Jewell, A. Carver, T. Jones, S. Cheng, T. Goodsall, and C. Shapiro, “High performance silicon imaging arrays for cosmology, planetary science, and other applications,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2014), paper 10.7.1.
[Crossref]

M. W. Fishburn, “Fundamentals of CMOS single-photon avalanche diodes,” Ph.D. dissertation (Delft Univ. of Technology, 2012).

P. Sun, E. Charbon, and R. Ishihara, “A flexible 32x32 SPAD image sensor with integrated microlenses,” in International Image Sensor Workshop (IISW, 2015), pp. 336–339.

P. Sun, B. Mimoun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body SOI single-photon avalanche diode,” in IEEE International Electron Devices Meeting (IEEE, 2013), pp. 1-4.
[Crossref]

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128×96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in IEEE ISSCC Dig. Tech. (IEEE, 2011), pp.410–412.

E. Charbon, H.-J. Yoon, and Y. Maruyama, “A Geiger mode APD fabricated in standard 65nm CMOS technology,” in IEEE International Electron Devices Meeting (IEEE, 2013), paper 27.5.1.
[Crossref]

M. S. Humayum, J. D. Weiland, G. Chader, and E. Greenbaum, Artificial Sight (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 (a) Cross-section of SOI ultrathin-body trench-isolated structure SPAD device; (b) Cross-section of flexible ultrathin-body trench-isolated structure SPAD integrated with quenching resistor; (c) Flexible CMOS SPAD sensor pixel schematic and SPAD cross-section.
Fig. 2
Fig. 2 (a). Pixel device fabrication flow chart. (1) Silicon epitaxy process on SOI wafer; (2) N-Well implantation and driving in; (3) CMOS transistor fabrication; (4) SPAD junction implantation; (5) trench etching process; (6) metallization; Note: Only 1st metallization is shown in this figure; (7) backside oxide deposition. (b). Flexible substrate transfer and microlens fabrication. (1) Oxide mask fabrication on backside; (2) sol-gel polymer coating and curing; (3) microlens imprinting by quartz mold; (4) substrate etching; (5) layer releasing.
Fig. 3
Fig. 3 (a) SEM microphotograph of ultrathin-body trench-isolated SPAD integrated with quenching resistor. (b) Wafer map of devices with different enrichment implantation dose in the multiplication region.
Fig. 4
Fig. 4 DCR of flexible ultrathin-body SPAD (4μm-diameter multiplication region) with different doping levels in the multiplication region.
Fig. 5
Fig. 5 Breakdown voltage of flexible ultrathin-body SPAD as a function of P enrichment dose at different temperatures.
Fig. 6
Fig. 6 DCR of flexible ultrathin-body SPAD at cryogenic temperatures. (d: diameter of multiplication region).
Fig. 7
Fig. 7 (a) SPAD structure overlaid on a total doping plot; (b) zoom-in plot of electric field with enrichment doping concentrating (dose = 3.00 × 1013cm−2)the high electric field at the multiplication region; (c) zoom-in plot of electric field with reduced enrichment doping (dose = 2.85 × 1013cm−2) causing PEB.
Fig. 8
Fig. 8 (a) PDP of flexible SPAD with different body thickness in both FSI and BSI; (b) junction cross-section in ultrathin-body (Eth = 2.5 × 105 V/cm).
Fig. 9
Fig. 9 (a) SEM top-view microphotograph of planar SPAD; (b) Cross-section of planar SPAD
Fig. 10
Fig. 10 Plot of DCR density vs. PDP in recent developments, each introducing a technological innovation or optimization with a consequent performance improvement. Note: PDP refers to FSI. (a) Increase of body thickness; (b) isolation by LOCOS; (c) isolation by trench and operation at cryogenic temperature; (d) operation at cryogenic temperature.
Fig. 11
Fig. 11 (a) SEM microphotograph of a CMOS SPAD sensor pixel; (b) photo of bent flexible SPAD pixel farm sample.
Fig. 12
Fig. 12 (a) I-V characteristics of SPAD, note: Mitutoyo lamp link fiber source (Power: 150W) (b) DC transfer curve of CMOS Inverter
Fig. 13
Fig. 13 DCR as a function of excess bias in a fully integrated CMOS buffer SPAD pixel.
Fig. 14
Fig. 14 DCR in a fully integrated CMOS buffer SPAD pixle as a function of cryogenic temperature. (Veb = 1.5V; d: diameter of multiplication region).
Fig. 15
Fig. 15 PDP of frontside- and backside-illumination comparison between devices with/without co-integrated CMOS process.
Fig. 16
Fig. 16 Timing jitter measurements of flexible CMOS SPAD sensor pixel in FSI and BSI (a) using 405nm laser (b) using 637nm laser.
Fig. 17
Fig. 17 (a) Exponentially fitted inter-arrival time histogram and detail of the histogram in the inset; (b) afterpulsing probability plot extracted from the distribution.

Tables (1)

Tables Icon

Table 1 Performance comparison between flexible SPAD, planar SPAD and pixel

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

PDP= T(λ) f λ (z)p(z)dz,
f λ (z)=μ(λ)exp(μ(λ)z),
PDP= 0 Z w T(λ) f λ (z)p(z)dz= 0 Z w T(λ)μ(λ)exp(μ(λ)z) p(z)dz,
PDP= 0 Z w T(λ) f λ ( z w z)p(z)dz= 0 Z w T(λ)μ(λ)exp(μ(λ)( z w z) )p(z)dz,

Metrics