Abstract

We demonstrate a new approach to high temperature sensing using femtosecond laser ablation gratings within silica suspended-core microstructured optical fibers. The simple geometry of the suspended-core fiber allows for femtosecond laser processing directly through the fiber cladding. Pure silica glass is used, allowing the sensor to be used up to temperatures as high as 1300°C while still allowing the fibre to be spliced to conventional fiber. The sensor can also be wavelength division multiplexed, with three sensors in a single fiber demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Exposed core microstructured optical fiber Bragg gratings: refractive index sensing

Stephen C. Warren-Smith and Tanya M. Monro
Opt. Express 22(2) 1480-1489 (2014)

Interferometric high temperature sensor using suspended-core optical fibers

Linh Viet Nguyen, Stephen C. Warren-Smith, Heike Ebendorff-Heidepriem, and Tanya M. Monro
Opt. Express 24(8) 8967-8977 (2016)

Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers

Stephen C. Warren-Smith, Roman Kostecki, Linh Viet Nguyen, and Tanya M. Monro
Opt. Express 22(24) 29493-29504 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, “Optical fiber sensor technologies: opportunities and-perhaps-pitfalls,” J. Lightwave Technol. 22(1), 39–50 (2004).
    [Crossref]
  2. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  3. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
    [Crossref]
  4. T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
    [Crossref]
  5. T. Elsmann, T. Habisreuther, A. Graf, M. Rothhardt, and H. Bartelt, “Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation,” Opt. Express 21(4), 4591–4597 (2013).
    [Crossref] [PubMed]
  6. V. I. Kopp and A. Z. Genack, “Chiral fibres: adding twist,” Nat. Photonics 5(8), 470–472 (2011).
    [Crossref]
  7. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
    [Crossref]
  8. D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
    [Crossref]
  9. C. R. Liao and D. N. Wang, “Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing,” Photonic Sens. 3(2), 97–101 (2013).
    [Crossref]
  10. Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
    [Crossref] [PubMed]
  11. J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in structured optical fibres,” Laser Chem. 2008, 239417 (2008).
    [Crossref]
  12. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
    [Crossref] [PubMed]
  13. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
    [Crossref]
  14. S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
    [Crossref] [PubMed]
  15. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
    [Crossref] [PubMed]
  16. Heraeus, “Thermal properties,” http://heraeus-quarzglas.com/en/quarzglas/thermalproperties/Thermal_properties.aspx (Accessed May 2015).
  17. Z. Borisova, Glassy Semiconductors (Springer US, 1981).

2015 (1)

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

2014 (3)

2013 (2)

T. Elsmann, T. Habisreuther, A. Graf, M. Rothhardt, and H. Bartelt, “Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation,” Opt. Express 21(4), 4591–4597 (2013).
[Crossref] [PubMed]

C. R. Liao and D. N. Wang, “Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing,” Photonic Sens. 3(2), 97–101 (2013).
[Crossref]

2012 (2)

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
[Crossref] [PubMed]

2011 (1)

V. I. Kopp and A. Z. Genack, “Chiral fibres: adding twist,” Nat. Photonics 5(8), 470–472 (2011).
[Crossref]

2009 (1)

2008 (2)

J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in structured optical fibres,” Laser Chem. 2008, 239417 (2008).
[Crossref]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

2004 (1)

2003 (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

1997 (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Bandyopadhyay, S.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in structured optical fibres,” Laser Chem. 2008, 239417 (2008).
[Crossref]

Barrera, D.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Bartelt, H.

Canning, J.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in structured optical fibres,” Laser Chem. 2008, 239417 (2008).
[Crossref]

Cook, K.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in structured optical fibres,” Laser Chem. 2008, 239417 (2008).
[Crossref]

Culshaw, B.

Ebendorff-Heidepriem, H.

Elsmann, T.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

T. Elsmann, T. Habisreuther, A. Graf, M. Rothhardt, and H. Bartelt, “Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation,” Opt. Express 21(4), 4591–4597 (2013).
[Crossref] [PubMed]

Finazzi, V.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Genack, A. Z.

V. I. Kopp and A. Z. Genack, “Chiral fibres: adding twist,” Nat. Photonics 5(8), 470–472 (2011).
[Crossref]

Graf, A.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

T. Elsmann, T. Habisreuther, A. Graf, M. Rothhardt, and H. Bartelt, “Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation,” Opt. Express 21(4), 4591–4597 (2013).
[Crossref] [PubMed]

Grattan, K. T. V.

Groothoff, N.

J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in structured optical fibres,” Laser Chem. 2008, 239417 (2008).
[Crossref]

Habisreuther, T.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

T. Elsmann, T. Habisreuther, A. Graf, M. Rothhardt, and H. Bartelt, “Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation,” Opt. Express 21(4), 4591–4597 (2013).
[Crossref] [PubMed]

Holdsworth, J.

J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in structured optical fibres,” Laser Chem. 2008, 239417 (2008).
[Crossref]

Kopp, V. I.

V. I. Kopp and A. Z. Genack, “Chiral fibres: adding twist,” Nat. Photonics 5(8), 470–472 (2011).
[Crossref]

Kostecki, R.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Li, Y.

Liao, C. R.

C. R. Liao and D. N. Wang, “Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing,” Photonic Sens. 3(2), 97–101 (2013).
[Crossref]

Lu, J.

Martelli, C.

J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in structured optical fibres,” Laser Chem. 2008, 239417 (2008).
[Crossref]

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
[Crossref] [PubMed]

Monro, T. M.

Nguyen, L. V.

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Pan, Z.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Pohl, A.

J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in structured optical fibres,” Laser Chem. 2008, 239417 (2008).
[Crossref]

Pruneri, V.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Rothhardt, M.

Sales, S.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Schmidt, M. A.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Stevenson, M.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in structured optical fibres,” Laser Chem. 2008, 239417 (2008).
[Crossref]

Sun, T.

Villatoro, J.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Wang, D. N.

C. R. Liao and D. N. Wang, “Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing,” Photonic Sens. 3(2), 97–101 (2013).
[Crossref]

Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
[Crossref] [PubMed]

Warren-Smith, S. C.

Willsch, R.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Yang, M.

Appl. Therm. Eng. (1)

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

IEEE Sens. J. (1)

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

J. Lightwave Technol. (1)

Laser Chem. (1)

J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in structured optical fibres,” Laser Chem. 2008, 239417 (2008).
[Crossref]

Nat. Photonics (1)

V. I. Kopp and A. Z. Genack, “Chiral fibres: adding twist,” Nat. Photonics 5(8), 470–472 (2011).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Mater. Express (1)

Photonic Sens. (1)

C. R. Liao and D. N. Wang, “Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing,” Photonic Sens. 3(2), 97–101 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Sensors (Basel Switzerland) (1)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

Sensors (Basel) (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
[Crossref] [PubMed]

Other (2)

Heraeus, “Thermal properties,” http://heraeus-quarzglas.com/en/quarzglas/thermalproperties/Thermal_properties.aspx (Accessed May 2015).

Z. Borisova, Glassy Semiconductors (Springer US, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron images (SEMs) of the suspended-core fiber with a femtosecond laser ablation grating. (a) The fiber cross section. (b, c) magnified images of (a).

Fig. 2
Fig. 2

Reflected spectra measured from the SCF Bragg grating at increasing temperatures within a silica fiber draw tower. The spectra shown are at temperatures (a) 20°C, (b) 500°C, (c) 1000°C, (d) 1200°C, (e) 1300°C, and (f) 1350°C. For temperatures of 400°C and above the temperature was recorded with a co-located B-type thermocouple.

Fig. 3
Fig. 3

Calibration curve measured using a SCF Bragg grating in a tube furnace. The shift in temperature (ΔT) and shift in wavelength (Δλ) are relative to values at room temperature. The quadratic fit was set to zero at the origin.

Fig. 4
Fig. 4

(a) Reflected spectrum from the multiplexed sensor at room temperature. *Indicates the peaks that were tracked. (b) Change in temperature recorded by the FBGs, corresponding to the peaks indicated in (a) and calibrated using the results in Fig. 3.

Metrics