Abstract

We demonstrate a simple, scalable fabrication method for producing large-area arrays of vertically stacked metallic micro-rings, embedded in a deformable polymer sheet. Unusual polarisation-dependent hotspots are found to dominate the reflection images. To understand their origin, the arrays are characterized using point-scanning optical spectroscopy and directly compared to numerical simulations. Individual ring stacks act as microlenses, while polarisation-dependent hotspots arise at the connections between neighbouring stacks, which are comprised of parabolically-arranged parallel gold nanowires. The elastomeric properties of the polymer host opens the door to active control of the optics of this photonic material, through dynamic tuning of the nanowire spacings and array geometry.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Patterning flood illumination with microlens arrays

Ming-Hsien Wu, Kateri E. Paul, and George M. Whitesides
Appl. Opt. 41(13) 2575-2585 (2002)

Tunable microdoublet lens array

Ki-Hun Jeong, Gang L. Liu, Nikolas Chronis, and Luke P. Lee
Opt. Express 12(11) 2494-2500 (2004)

Tunable window device based on micro-wrinkling of nanometric zinc-oxide thin film on elastomer

Milan Shrestha and Gih-Keong Lau
Opt. Lett. 41(19) 4433-4436 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
    [Crossref]
  2. Y.-C. Chao, C.-Y. Chen, C.-A. Lin, and J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci. 4(9), 3436 (2011).
    [Crossref]
  3. E. E. Perl, C. T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
    [Crossref]
  4. Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014(8), 1–17 (2014).
  5. F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
    [Crossref] [PubMed]
  6. A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
    [Crossref]
  7. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
    [Crossref] [PubMed]
  8. Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
    [Crossref] [PubMed]
  9. X. Zhang, S. Ye, X. Zhang, Z. Li, S. Wu, J. Zhang, T. Wang, and B. Yang, “Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(5), 933–940 (2013).
    [Crossref]
  10. Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
    [Crossref] [PubMed]
  11. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
    [Crossref]
  12. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  13. J. J. Cowan, “Holographic honeycomb microlens,” Opt. Eng. 24(5), 245796 (1985).
    [Crossref]
  14. J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
    [Crossref] [PubMed]
  15. J. F. Betz, W. W. Yu, Y. Cheng, I. M. White, and G. W. Rubloff, “Simple SERS substrates: powerful, portable, and full of potential,” Phys. Chem. Chem. Phys. 16(6), 2224–2239 (2014).
    [Crossref] [PubMed]
  16. J. W. Kemling, A. J. Qavi, R. C. Bailey, and K. S. Suslick, “Nanostructured substrates for optical sensing,” J. Phys. Chem. Lett. 2(22), 2934–2944 (2011).
    [Crossref] [PubMed]
  17. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
    [Crossref] [PubMed]
  18. L. Zhu, J. Kapraun, J. Ferrara, and C. J. Chang-Hasnain, “Flexible photonic metastructures for tunable coloration,” Optica 2(3), 255–258 (2015).
    [Crossref]
  19. K. Du, I. Wathuthanthri, Y. Liu, W. Xu, and C.-H. Choi, “Wafer-scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns,” ACS Appl. Mater. Interfaces 4(10), 5505–5514 (2012).
    [Crossref] [PubMed]
  20. M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18(5), 4356–4364 (2010).
    [Crossref] [PubMed]
  21. M. G. Millyard, F. Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100(7), 073101 (2012).
    [Crossref]
  22. Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
    [Crossref]
  23. S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
    [Crossref]
  24. A. Di Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
    [Crossref]
  25. L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
    [Crossref] [PubMed]
  26. M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography: For Photonics, Phononics and Mechanics (Wiley-VCH, 2009).
  27. E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
    [Crossref] [PubMed]
  28. R. J. Moerland, J. E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, and R. H. A. Ras, “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Mater. Horiz. 1(1), 74–80 (2014).
    [Crossref]
  29. A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng. 98, 293–296 (2012).
    [Crossref]
  30. G. Si, Q. Wang, J. Lv, L. Miao, F. Wang, and S. Peng, “Interference lithography patterned large area plasmonic nanodisks for infrared detection,” Mater. Lett. 128, 373–375 (2014).
    [Crossref]
  31. C. A. Mack, “Analytical expression for the standing wave intensity in photoresist,” Appl. Opt. 25(12), 1958 (1986).
    [Crossref] [PubMed]
  32. G. Kostovski, A. Mitchell, A. Holland, and M. Austin, “Sidewall corrugation lithography: Bulk fabrication of ordered nanowires, nanoribbons, and nanorings,” Appl. Phys. Lett. 92(22), 223109 (2008).
    [Crossref]
  33. L. J. Brooks, J. Mertens, R. W. Bowman, R. Chikkaraddy, A. Sanders, and J. J. Baumberg, Research data supporting “Polarisation-selective hotspots in metallic ring stack arrays,” https://www.repository.cam.ac.uk/handle/1810/253373 .
  34. P.-K. Wei, H.-L. Chou, and Y.-C. Chen, “Subwavelength focusing in the near field in mesoscale air-dielectric structures,” Opt. Lett. 29(5), 433–435 (2004).
    [Crossref] [PubMed]

2015 (4)

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref] [PubMed]

L. Zhu, J. Kapraun, J. Ferrara, and C. J. Chang-Hasnain, “Flexible photonic metastructures for tunable coloration,” Optica 2(3), 255–258 (2015).
[Crossref]

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

2014 (9)

R. J. Moerland, J. E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, and R. H. A. Ras, “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Mater. Horiz. 1(1), 74–80 (2014).
[Crossref]

G. Si, Q. Wang, J. Lv, L. Miao, F. Wang, and S. Peng, “Interference lithography patterned large area plasmonic nanodisks for infrared detection,” Mater. Lett. 128, 373–375 (2014).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

J. F. Betz, W. W. Yu, Y. Cheng, I. M. White, and G. W. Rubloff, “Simple SERS substrates: powerful, portable, and full of potential,” Phys. Chem. Chem. Phys. 16(6), 2224–2239 (2014).
[Crossref] [PubMed]

E. E. Perl, C. T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014(8), 1–17 (2014).

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

2013 (3)

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

X. Zhang, S. Ye, X. Zhang, Z. Li, S. Wu, J. Zhang, T. Wang, and B. Yang, “Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(5), 933–940 (2013).
[Crossref]

E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
[Crossref] [PubMed]

2012 (5)

K. Du, I. Wathuthanthri, Y. Liu, W. Xu, and C.-H. Choi, “Wafer-scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns,” ACS Appl. Mater. Interfaces 4(10), 5505–5514 (2012).
[Crossref] [PubMed]

M. G. Millyard, F. Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100(7), 073101 (2012).
[Crossref]

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng. 98, 293–296 (2012).
[Crossref]

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

2011 (5)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, and J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci. 4(9), 3436 (2011).
[Crossref]

J. W. Kemling, A. J. Qavi, R. C. Bailey, and K. S. Suslick, “Nanostructured substrates for optical sensing,” J. Phys. Chem. Lett. 2(22), 2934–2944 (2011).
[Crossref] [PubMed]

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
[Crossref]

2010 (2)

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18(5), 4356–4364 (2010).
[Crossref] [PubMed]

A. Di Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

2008 (1)

G. Kostovski, A. Mitchell, A. Holland, and M. Austin, “Sidewall corrugation lithography: Bulk fabrication of ordered nanowires, nanoribbons, and nanorings,” Appl. Phys. Lett. 92(22), 223109 (2008).
[Crossref]

2004 (1)

1986 (1)

1985 (1)

J. J. Cowan, “Holographic honeycomb microlens,” Opt. Eng. 24(5), 245796 (1985).
[Crossref]

Aksu, S.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Altug, H.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Anderson, W. A.

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Artar, A.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Austin, M.

G. Kostovski, A. Mitchell, A. Holland, and M. Austin, “Sidewall corrugation lithography: Bulk fabrication of ordered nanowires, nanoribbons, and nanorings,” Appl. Phys. Lett. 92(22), 223109 (2008).
[Crossref]

Bailey, R. C.

J. W. Kemling, A. J. Qavi, R. C. Bailey, and K. S. Suslick, “Nanostructured substrates for optical sensing,” J. Phys. Chem. Lett. 2(22), 2934–2944 (2011).
[Crossref] [PubMed]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Bauer, S.

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

Baumberg, J. J.

M. G. Millyard, F. Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100(7), 073101 (2012).
[Crossref]

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18(5), 4356–4364 (2010).
[Crossref] [PubMed]

Betz, J. F.

J. F. Betz, W. W. Yu, Y. Cheng, I. M. White, and G. W. Rubloff, “Simple SERS substrates: powerful, portable, and full of potential,” Phys. Chem. Chem. Phys. 16(6), 2224–2239 (2014).
[Crossref] [PubMed]

Bhaskaran, M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Bläsi, B.

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng. 98, 293–296 (2012).
[Crossref]

Bowers, J. E.

E. E. Perl, C. T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Carson, J. J. L.

E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

Chao, Y.-C.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, and J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci. 4(9), 3436 (2011).
[Crossref]

Chen, C.-Y.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, and J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci. 4(9), 3436 (2011).
[Crossref]

Chen, Q.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014(8), 1–17 (2014).

Chen, Y.-C.

Cheng, F.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref] [PubMed]

Cheng, Y.

J. F. Betz, W. W. Yu, Y. Cheng, I. M. White, and G. W. Rubloff, “Simple SERS substrates: powerful, portable, and full of potential,” Phys. Chem. Chem. Phys. 16(6), 2224–2239 (2014).
[Crossref] [PubMed]

Choi, C.-H.

K. Du, I. Wathuthanthri, Y. Liu, W. Xu, and C.-H. Choi, “Wafer-scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns,” ACS Appl. Mater. Interfaces 4(10), 5505–5514 (2012).
[Crossref] [PubMed]

Chou, H.-L.

Chowdhury, D. R.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Cowan, J. J.

J. J. Cowan, “Holographic honeycomb microlens,” Opt. Eng. 24(5), 245796 (1985).
[Crossref]

Denk, R.

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

Di Falco, A.

A. Di Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Dokmeci, M. R.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Doshay, S.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Du, K.

K. Du, I. Wathuthanthri, Y. Liu, W. Xu, and C.-H. Choi, “Wafer-scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns,” ACS Appl. Mater. Interfaces 4(10), 5505–5514 (2012).
[Crossref] [PubMed]

Ertorer, E.

E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
[Crossref] [PubMed]

Fan, J. A.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Fang, H.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Ferrara, J.

Friedman, D. J.

E. E. Perl, C. T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

Gao, J.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref] [PubMed]

Gao, L.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Gibbons, N.

Goh, X. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Graz, I.

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

Gu, H.

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

Gu, Z.

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

Guo, L. J.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Gutruf, P.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Haines, A.

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

Halfpap, C.

E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
[Crossref] [PubMed]

Hamilton, D. W.

E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
[Crossref] [PubMed]

Hauser, H.

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng. 98, 293–296 (2012).
[Crossref]

He, J.-H.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, and J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci. 4(9), 3436 (2011).
[Crossref]

Hellmann, G.

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

Höhn, O.

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng. 98, 293–296 (2012).
[Crossref]

Holland, A.

G. Kostovski, A. Mitchell, A. Holland, and M. Austin, “Sidewall corrugation lithography: Bulk fabrication of ordered nanowires, nanoribbons, and nanorings,” Appl. Phys. Lett. 92(22), 223109 (2008).
[Crossref]

Hollowell, A. E.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Huang, F.

M. G. Millyard, F. Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100(7), 073101 (2012).
[Crossref]

Huang, M.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Huang, Y.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Kaivola, M.

R. J. Moerland, J. E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, and R. H. A. Ras, “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Mater. Horiz. 1(1), 74–80 (2014).
[Crossref]

Kaltseis, R.

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

Kapraun, J.

Kemling, J. W.

J. W. Kemling, A. J. Qavi, R. C. Bailey, and K. S. Suslick, “Nanostructured substrates for optical sensing,” J. Phys. Chem. Lett. 2(22), 2934–2944 (2011).
[Crossref] [PubMed]

Keplinger, C.

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

Keshwah, J.

E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
[Crossref] [PubMed]

Kim, D. W.

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Kim, J.

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Kivioja, J.

M. G. Millyard, F. Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100(7), 073101 (2012).
[Crossref]

Kolle, M.

Koskela, J. E.

R. J. Moerland, J. E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, and R. H. A. Ras, “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Mater. Horiz. 1(1), 74–80 (2014).
[Crossref]

Kostovski, G.

G. Kostovski, A. Mitchell, A. Holland, and M. Austin, “Sidewall corrugation lithography: Bulk fabrication of ordered nanowires, nanoribbons, and nanorings,” Appl. Phys. Lett. 92(22), 223109 (2008).
[Crossref]

Krauss, T. F.

A. Di Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Kravchenko, A.

R. J. Moerland, J. E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, and R. H. A. Ras, “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Mater. Horiz. 1(1), 74–80 (2014).
[Crossref]

Kübler, V.

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng. 98, 293–296 (2012).
[Crossref]

Kumar, K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Kumar, M. M.

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Langbein, U.

E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
[Crossref] [PubMed]

Lee, E.

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Li, Z.

X. Zhang, S. Ye, X. Zhang, Z. Li, S. Wu, J. Zhang, T. Wang, and B. Yang, “Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(5), 933–940 (2013).
[Crossref]

Lin, C. T.

E. E. Perl, C. T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

Lin, C.-A.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, and J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci. 4(9), 3436 (2011).
[Crossref]

Litchinitser, N. M.

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Liu, Y.

K. Du, I. Wathuthanthri, Y. Liu, W. Xu, and C.-H. Choi, “Wafer-scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns,” ACS Appl. Mater. Interfaces 4(10), 5505–5514 (2012).
[Crossref] [PubMed]

Luk, T. S.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref] [PubMed]

Luo, H.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Lv, J.

G. Si, Q. Wang, J. Lv, L. Miao, F. Wang, and S. Peng, “Interference lithography patterned large area plasmonic nanodisks for infrared detection,” Mater. Lett. 128, 373–375 (2014).
[Crossref]

Mack, C. A.

McMahon, W. E.

E. E. Perl, C. T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Miao, L.

G. Si, Q. Wang, J. Lv, L. Miao, F. Wang, and S. Peng, “Interference lithography patterned large area plasmonic nanodisks for infrared detection,” Mater. Lett. 128, 373–375 (2014).
[Crossref]

Millyard, M. G.

M. G. Millyard, F. Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100(7), 073101 (2012).
[Crossref]

Mitchell, A.

G. Kostovski, A. Mitchell, A. Holland, and M. Austin, “Sidewall corrugation lithography: Bulk fabrication of ordered nanowires, nanoribbons, and nanorings,” Appl. Phys. Lett. 92(22), 223109 (2008).
[Crossref]

Mittler, S.

E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
[Crossref] [PubMed]

Moerland, R. J.

R. J. Moerland, J. E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, and R. H. A. Ras, “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Mater. Horiz. 1(1), 74–80 (2014).
[Crossref]

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

Najiminaini, M.

E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
[Crossref] [PubMed]

Nili, H.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Nordlander, P.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Park, H. H.

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Peng, S.

G. Si, Q. Wang, J. Lv, L. Miao, F. Wang, and S. Peng, “Interference lithography patterned large area plasmonic nanodisks for infrared detection,” Mater. Lett. 128, 373–375 (2014).
[Crossref]

Perl, E. E.

E. E. Perl, C. T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

Ploschner, M.

A. Di Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Priimagi, A.

R. J. Moerland, J. E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, and R. H. A. Ras, “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Mater. Horiz. 1(1), 74–80 (2014).
[Crossref]

Qavi, A. J.

J. W. Kemling, A. J. Qavi, R. C. Bailey, and K. S. Suslick, “Nanostructured substrates for optical sensing,” J. Phys. Chem. Lett. 2(22), 2934–2944 (2011).
[Crossref] [PubMed]

Qiu, C. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

Ras, R. H. A.

R. J. Moerland, J. E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, and R. H. A. Ras, “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Mater. Horiz. 1(1), 74–80 (2014).
[Crossref]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

Rogers, J. A.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Rubloff, G. W.

J. F. Betz, W. W. Yu, Y. Cheng, I. M. White, and G. W. Rubloff, “Simple SERS substrates: powerful, portable, and full of potential,” Phys. Chem. Chem. Phys. 16(6), 2224–2239 (2014).
[Crossref] [PubMed]

Saito, A.

A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
[Crossref]

Selvarasah, S.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Shah, C. M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Shah, D.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Shi, Y.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Si, G.

G. Si, Q. Wang, J. Lv, L. Miao, F. Wang, and S. Peng, “Interference lithography patterned large area plasmonic nanodisks for infrared detection,” Mater. Lett. 128, 373–375 (2014).
[Crossref]

Simberg, M.

R. J. Moerland, J. E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, and R. H. A. Ras, “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Mater. Horiz. 1(1), 74–80 (2014).
[Crossref]

Snoswell, D.

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

Song, S.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014(8), 1–17 (2014).

Spahn, P.

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

Spigone, E.

M. G. Millyard, F. Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100(7), 073101 (2012).
[Crossref]

Sriram, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Steiner, U.

Sun, J.

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Suslick, K. S.

J. W. Kemling, A. J. Qavi, R. C. Bailey, and K. S. Suslick, “Nanostructured substrates for optical sensing,” J. Phys. Chem. Lett. 2(22), 2934–2944 (2011).
[Crossref] [PubMed]

Tan, S. J.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

van der Vegte, S.

R. J. Moerland, J. E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, and R. H. A. Ras, “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Mater. Horiz. 1(1), 74–80 (2014).
[Crossref]

Vasefi, F.

E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
[Crossref] [PubMed]

Walia, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Walk, C.

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng. 98, 293–296 (2012).
[Crossref]

Wang, F.

G. Si, Q. Wang, J. Lv, L. Miao, F. Wang, and S. Peng, “Interference lithography patterned large area plasmonic nanodisks for infrared detection,” Mater. Lett. 128, 373–375 (2014).
[Crossref]

Wang, Q.

G. Si, Q. Wang, J. Lv, L. Miao, F. Wang, and S. Peng, “Interference lithography patterned large area plasmonic nanodisks for infrared detection,” Mater. Lett. 128, 373–375 (2014).
[Crossref]

Wang, T.

X. Zhang, S. Ye, X. Zhang, Z. Li, S. Wu, J. Zhang, T. Wang, and B. Yang, “Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(5), 933–940 (2013).
[Crossref]

Wang, Y. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Wathuthanthri, I.

K. Du, I. Wathuthanthri, Y. Liu, W. Xu, and C.-H. Choi, “Wafer-scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns,” ACS Appl. Mater. Interfaces 4(10), 5505–5514 (2012).
[Crossref] [PubMed]

Wei, P.-K.

Wen, L.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014(8), 1–17 (2014).

White, I. M.

J. F. Betz, W. W. Yu, Y. Cheng, I. M. White, and G. W. Rubloff, “Simple SERS substrates: powerful, portable, and full of potential,” Phys. Chem. Chem. Phys. 16(6), 2224–2239 (2014).
[Crossref] [PubMed]

White, R.

M. G. Millyard, F. Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100(7), 073101 (2012).
[Crossref]

Withayachumnankul, W.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Wolf, A. J.

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng. 98, 293–296 (2012).
[Crossref]

Wu, S.

X. Zhang, S. Ye, X. Zhang, Z. Li, S. Wu, J. Zhang, T. Wang, and B. Yang, “Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(5), 933–940 (2013).
[Crossref]

Wu, Y. K.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Xie, X.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Xie, Z.

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

Xu, S.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Xu, W.

K. Du, I. Wathuthanthri, Y. Liu, W. Xu, and C.-H. Choi, “Wafer-scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns,” ACS Appl. Mater. Interfaces 4(10), 5505–5514 (2012).
[Crossref] [PubMed]

Yang, B.

X. Zhang, S. Ye, X. Zhang, Z. Li, S. Wu, J. Zhang, T. Wang, and B. Yang, “Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(5), 933–940 (2013).
[Crossref]

Yang, J. K. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Yang, X.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref] [PubMed]

Yanik, A. A.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Ye, S.

X. Zhang, S. Ye, X. Zhang, Z. Li, S. Wu, J. Zhang, T. Wang, and B. Yang, “Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(5), 933–940 (2013).
[Crossref]

Yi, J.

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, W. W.

J. F. Betz, W. W. Yu, Y. Cheng, I. M. White, and G. W. Rubloff, “Simple SERS substrates: powerful, portable, and full of potential,” Phys. Chem. Chem. Phys. 16(6), 2224–2239 (2014).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014(8), 1–17 (2014).

Yun, J. H.

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Zeng, J.

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Zhang, C.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Zhang, H.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Zhang, J.

X. Zhang, S. Ye, X. Zhang, Z. Li, S. Wu, J. Zhang, T. Wang, and B. Yang, “Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(5), 933–940 (2013).
[Crossref]

Zhang, L.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, S. Ye, X. Zhang, Z. Li, S. Wu, J. Zhang, T. Wang, and B. Yang, “Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(5), 933–940 (2013).
[Crossref]

X. Zhang, S. Ye, X. Zhang, Z. Li, S. Wu, J. Zhang, T. Wang, and B. Yang, “Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(5), 933–940 (2013).
[Crossref]

Zhang, Y.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Zhao, Q.

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

Zhao, Y.

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

Zheng, B.

Zhu, C.

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Zhu, L.

ACS Appl. Mater. Interfaces (1)

K. Du, I. Wathuthanthri, Y. Liu, W. Xu, and C.-H. Choi, “Wafer-scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns,” ACS Appl. Mater. Interfaces 4(10), 5505–5514 (2012).
[Crossref] [PubMed]

ACS Nano (1)

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

G. Kostovski, A. Mitchell, A. Holland, and M. Austin, “Sidewall corrugation lithography: Bulk fabrication of ordered nanowires, nanoribbons, and nanorings,” Appl. Phys. Lett. 92(22), 223109 (2008).
[Crossref]

M. G. Millyard, F. Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100(7), 073101 (2012).
[Crossref]

Q. Zhao, A. Haines, D. Snoswell, C. Keplinger, R. Kaltseis, S. Bauer, I. Graz, R. Denk, P. Spahn, G. Hellmann, and J. J. Baumberg, “Electric-field-tuned color in photonic crystal elastomers,” Appl. Phys. Lett. 100(10), 101902 (2012).
[Crossref]

Appl. Phys. Rev. (1)

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Chem. Soc. Rev. (1)

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

Energy Environ. Sci. (2)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, and J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci. 4(9), 3436 (2011).
[Crossref]

IEEE J. Photovoltaics (1)

E. E. Perl, C. T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

J. Biomed. Opt. (1)

E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, J. J. L. Carson, D. W. Hamilton, and S. Mittler, “Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies,” J. Biomed. Opt. 18(3), 035002 (2013).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

X. Zhang, S. Ye, X. Zhang, Z. Li, S. Wu, J. Zhang, T. Wang, and B. Yang, “Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(5), 933–940 (2013).
[Crossref]

J. Nanomater. (1)

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014(8), 1–17 (2014).

J. Phys. Chem. Lett. (1)

J. W. Kemling, A. J. Qavi, R. C. Bailey, and K. S. Suslick, “Nanostructured substrates for optical sensing,” J. Phys. Chem. Lett. 2(22), 2934–2944 (2011).
[Crossref] [PubMed]

Mater. Horiz. (1)

R. J. Moerland, J. E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, and R. H. A. Ras, “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Mater. Horiz. 1(1), 74–80 (2014).
[Crossref]

Mater. Lett. (1)

G. Si, Q. Wang, J. Lv, L. Miao, F. Wang, and S. Peng, “Interference lithography patterned large area plasmonic nanodisks for infrared detection,” Mater. Lett. 128, 373–375 (2014).
[Crossref]

Microelectron. Eng. (1)

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng. 98, 293–296 (2012).
[Crossref]

Nano Lett. (1)

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

New J. Phys. (1)

A. Di Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Opt. Eng. (1)

J. J. Cowan, “Holographic honeycomb microlens,” Opt. Eng. 24(5), 245796 (1985).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Phys. Chem. Chem. Phys. (1)

J. F. Betz, W. W. Yu, Y. Cheng, I. M. White, and G. W. Rubloff, “Simple SERS substrates: powerful, portable, and full of potential,” Phys. Chem. Chem. Phys. 16(6), 2224–2239 (2014).
[Crossref] [PubMed]

Sci. Rep. (3)

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, “Incident light adjustable solar cell by periodic nanolens architecture,” Sci. Rep. 4, 6879 (2014).
[Crossref] [PubMed]

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
[Crossref]

Other (2)

L. J. Brooks, J. Mertens, R. W. Bowman, R. Chikkaraddy, A. Sanders, and J. J. Baumberg, Research data supporting “Polarisation-selective hotspots in metallic ring stack arrays,” https://www.repository.cam.ac.uk/handle/1810/253373 .

M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography: For Photonics, Phononics and Mechanics (Wiley-VCH, 2009).

Supplementary Material (1)

NameDescription
» Dataset 1       Research data supporting “Polarisation-selective hotspots in metallic ring stack arrays

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fabrication process. (a) Templates are patterned by 2-beam laser interference lithography, in a sequence of two orthogonal exposures (b) Exposed regions are dissolved in developer solution. (c) Top-view, and (d) side-view SEMs of the developed template structures, showing their ‘eggbox’ topography and sidewall corrugations. Insets show the total calculated intensity profile resulting from two crossed exposures. (e) Gold deposition onto corrugated templates forms the stacked metallic rings. (f) Casting into PDMS and etching of the photoresist produces a free-standing structured membrane embedded with gold rings. (g) Side-view SEM of the finished ring stack array. (h) Photograph of the flexible membrane, showing diffractive colouration under deformation.

Fig. 2
Fig. 2

Sample morphology. (a) Top-view SEM of the eggbox template structure in photoresist. One unit cell is 1.5 × 1.5 µm. (b) Top-view SEM of the finished ring stack array in PDMS. White dashed lines indicate the posts of the eggbox template, which produce square wells between the ring stacks. Yellow solid lines mark the interconnections between neighbouring stacks. (c) Side-view SEM of the ring stacks.

Fig. 3
Fig. 3

Polarisation-selective hotspots. (a) Top-view SEM of a typical sample region. Yellow outlines indicate connecting points between ring stacks. (b, c) Bright field optical microscope images of another sample region, illuminated with light polarised along x and y, respectively. Ring stacks appear green, while the connecting bridges either scatter brightly in the red (yellow solid lines), or appear dark (white dashed lines), depending on the incident polarisation.

Fig. 4
Fig. 4

Optical response of ring stack arrays, Dataset 1, Ref. [33]. (a) Average intensity map of a ring stack unit cell, tiled into a 2x2 array. The map is obtained by point-scanning spectroscopy with the optical field polarised along the x direction, sliced at a wavelength of 660 nm. Solid yellow lines indicate the active hotspots (ON configuration), while the hotspots in the OFF configuration are marked with a white dashed outline. (b) Scattering spectra of the hotspots in the ON (solid red trace) and OFF (dashed black trace) configurations. (c) Calculated intensity map at 660 nm in the focal plane of the sample, based on FDTD simulations. Solid yellow and dashed white lines mark the ON and OFF hotspots, respectively. (d) Calculated electric field intensity extracted at the hotspot locations for the ON (red) and OFF (black dashed) configurations. (e) Schematic of the modelled structure. White dashes in the top view indicate the line along which the xz cross-section is presented. The physical parameters of the model are set by the lattice constant a = 1.5 µm, the inner diameter of the uppermost ring d = 1 µm, the width of the rings w = 100 nm, and the heights of the layers h = 60 nm

Fig. 5
Fig. 5

Focussing effects, Dataset 1, Ref. [33]. (a) Schematic of the hotspot formation. Wire-like sections of the metallic rings at the interconnections support antenna resonances. Scattered light converges to focussed spots due to the geometrical arrangement of the wires. (b) Typical bright-field microscope image in the focal plane of the sample surface. White dashes indicate the line along which the xz section is plotted in (c). (d) An xz slice of the optical field for the red channel of the CCD detector. The data presents the average over several repeating units, and tiled to display two adjacent unit cells. A green dashed line indicates the position of the broadband focal spot above the ring stack, while a white dashed line marks the hotspot formed between the two stacks. (e) Calculated optical field at 660 nm in an xz slice equivalent to the experimental data. The blue/orange overlay shows the location of the physical PDMS/gold structure in the model.

Metrics