Abstract

Microelectromechanical (MEMS) mirrors have extended vision capabilities onto small, low-power platforms. However, the field-of-view (FOV) of these MEMS mirrors is usually less than 90° and any increase in the MEMS mirror scanning angle has design and fabrication trade-offs in terms of power, size, speed and stability. Therefore, we need techniques to increase the scanning range while still maintaining a small form factor. In this paper we exploit our recent breakthrough that has enabled the immersion of MEMS mirrors in liquid. While allowing the MEMS to move, the liquid additionally provides a “Snell’s window” effect and enables an enlarged FOV (≈ 150°). We present an optimized MEMS mirror design and use it to demonstrate applications in extreme wide-angle structured light.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Circumferential-scanning endoscopic optical coherence tomography probe based on a circular array of six 2-axis MEMS mirrors

Site Luo, Dan Wang, Jianyu Tang, Liang Zhou, Can Duan, Donglin Wang, Hao Liu, Yu Zhu, Guoxing Li, Hui Zhao, Yuqing Wu, Xin An, Xinling Li, Yabing Liu, Li Huo, and Huikai Xie
Biomed. Opt. Express 9(5) 2104-2114 (2018)

Integrated tilt angle sensing for large displacement scanning MEMS mirrors

Yan Liu, Yongjian Feng, Xinglin Sun, Lijun Zhu, Xiang Cheng, Qiao Chen, Yabing Liu, and Huikai Xie
Opt. Express 26(20) 25736-25749 (2018)

Extreme angle, tip-tilt MEMS micromirror enabling full hemispheric, quasi-static optical coverage

C. Pollock, J. Javor, A. Stange, L. K. Barrett, and D. J. Bishop
Opt. Express 27(11) 15318-15326 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable imaging: Towards a flexible camera,” International Journal of Computer Vision 70, 7–22 (2006).
    [Crossref]
  2. S. J. Koppal, S. Yamazaki, and S. G. Narasimhan, “Exploiting dlp illumination dithering for reconstruction and photography of high-speed scenes,” International journal of computer vision 96, 125–144 (2012).
    [Crossref]
  3. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, R. G. Baraniuk, and et al., “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83 (2008).
    [Crossref]
  4. Microvision, “Picop technology,” www.microvision.com (2015).
  5. X. Zhang, R. Zhang, S. Koppal, L. Butler, X. Cheng, and H. Xie, “Mems mirrors submerged in liquid for wide-angle scanning,” in “Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on,” (IEEE, 2015), pp. 847–850.
  6. S. T. Holmstrom, U. Baran, and H. Urey, “Mems laser scanners: a review,” Microelectromechanical Systems, Journal of 23, 259–275 (2014).
    [Crossref]
  7. Velodyne, “Velodyne lidar,”, velodynelidar.com (2015).
  8. R. W. Wood, Physical optics (The Macmillan Company, 1905).
  9. S. J. Koppal, I. Gkioulekas, T. Young, H. Park, K. B. Crozier, G. L. Barrows, and T. Zickler, “Toward wide-angle microvision sensors,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 2982–2996 (2013).
    [Crossref]
  10. A. Zomet and S. K. Nayar, “Lensless imaging with a controllable aperture,” in “Computer Vision and Pattern Recognition, 2006” IEEE Computer Society Conference on,”, vol. 1 (IEEE, 2006), vol. 1, pp. 339–346.
  11. O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” JOSA A 28, 2540–2553 (2011).
    [Crossref] [PubMed]
  12. D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
    [Crossref] [PubMed]
  13. H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
    [Crossref] [PubMed]
  14. K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
    [Crossref] [PubMed]
  15. S. Hiura, A. Mohan, and R. Raskar, “Krill-eye: Superposition compound eye for wide-angle imaging via grin lenses,” in “Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on,” (IEEE, 2009), pp. 2204–2211.
  16. K. E. Petersen, “Silicon torsional scanning mirror,” IBM Journal of Research and Development 24, 631–637 (1980).
    [Crossref]
  17. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Optics letters 26, 1966–1968 (2001).
    [Crossref]
  18. H. Urey, D. W. Wine, and J. R. Lewis, “Scanner design and resolution trade-offs for miniature scanning displays,” in “Electronic Imaging’99,” (International Society for Optics and Photonics, 1999), pp. 60–68.
  19. W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” in “MOEMS-MEMS 2007 Micro and Nanofabrication,” (International Society for Optics and Photonics, 2007), pp. 64660D.
    [Crossref]
  20. A. C.-L. Hung, H. Y.-H. Lai, T.-W. Lin, S.-G. Fu, and M. S.-C. Lu, “An electrostatically driven 2d micro-scanning mirror with capacitive sensing for projection display,” Sensors and Actuators A: Physical 222, 122–129 (2015).
    [Crossref]
  21. Y. Liu, J. Xu, S. Zhong, and Y. Wu, “Large size mems scanning mirror with vertical comb drive for tunable optical filter,” Optics and Lasers in Engineering 51, 54–60 (2013).
    [Crossref]
  22. C.-D. Chen, Y.-J. Wang, and P. Chang, “A novel two-axis mems scanning mirror with a pzt actuator for laser scanning projection,” Optics express 20, 27003–27017 (2012).
    [Crossref] [PubMed]
  23. C.-H. Huang, J. Yao, L. V. Wang, and J. Zou, “A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications,” Microsystem technologies 19, 577–582 (2013).
    [Crossref]
  24. L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sensors and Actuators A: Physical 145, 371–379 (2008).
    [Crossref]
  25. K. Miyamoto, “Fish eye lens,” JOSA 54, 1060–1061 (1964).
    [Crossref]
  26. H. P. Herzig, Micro-optics: elements, systems and applications (CRC Press, 1997).
  27. R. Völkel, M. Eisner, and K. Weible, “Miniaturized imaging systems,” Microelectronic Engineering 67, 461–472 (2003).
    [Crossref]
  28. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
    [Crossref]
  29. S. D. I. optics, “Dsl221 specifications sheet,” www.sunnex.com (2015).
  30. V. Milanović, K. Castelino, and D. T. McCormick, “Highly adaptable mems-based display with wide projection angle,” in “Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on,” (IEEE, 2007), pp. 143–146.
  31. R. J. Sherman, “Polygonal scanners,” Laser Beam Scanning, pp. 63–75 (CRC Press, 1985).
  32. S. Baker and S. K. Nayar, “A theory of single-viewpoint catadioptric image formation,” International Journal of Computer Vision 35, 175–196 (1999).
    [Crossref]
  33. C. Gimkiewicz, C. Urban, E. Innerhofer, P. Ferrat, S. Neukom, G. Vanstraelen, and P. Seitz, “Ultra-miniature catadioptrical system for an omnidirectional camera,” in “Photonics Europe,” (International Society for Optics and Photonics, 2008), pp. 69920J.
    [Crossref]
  34. J.-Y. Bouguet and P. Perona, “3d photography using shadows in dual-space geometry,” International Journal of Computer Vision 35, 129–149 (1999).
    [Crossref]
  35. J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” in “Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,”, vol. 2 (IEEE, 2003), vol. 2, pp. II-359.
  36. L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: Shape recovery for dynamic scenes,” in “Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,”, vol. 2 (IEEE, 2003), vol. 2, pp. II-367.
  37. S. Pal and H. Xie, “A parametric dynamic compact thermal model of an electrothermally actuated micromirror,” Journal of Micromechanics and Microengineering 19, 065007 (2009).
    [Crossref]

2015 (1)

A. C.-L. Hung, H. Y.-H. Lai, T.-W. Lin, S.-G. Fu, and M. S.-C. Lu, “An electrostatically driven 2d micro-scanning mirror with capacitive sensing for projection display,” Sensors and Actuators A: Physical 222, 122–129 (2015).
[Crossref]

2014 (1)

S. T. Holmstrom, U. Baran, and H. Urey, “Mems laser scanners: a review,” Microelectromechanical Systems, Journal of 23, 259–275 (2014).
[Crossref]

2013 (3)

S. J. Koppal, I. Gkioulekas, T. Young, H. Park, K. B. Crozier, G. L. Barrows, and T. Zickler, “Toward wide-angle microvision sensors,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 2982–2996 (2013).
[Crossref]

Y. Liu, J. Xu, S. Zhong, and Y. Wu, “Large size mems scanning mirror with vertical comb drive for tunable optical filter,” Optics and Lasers in Engineering 51, 54–60 (2013).
[Crossref]

C.-H. Huang, J. Yao, L. V. Wang, and J. Zou, “A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications,” Microsystem technologies 19, 577–582 (2013).
[Crossref]

2012 (3)

C.-D. Chen, Y.-J. Wang, and P. Chang, “A novel two-axis mems scanning mirror with a pzt actuator for laser scanning projection,” Optics express 20, 27003–27017 (2012).
[Crossref] [PubMed]

S. J. Koppal, S. Yamazaki, and S. G. Narasimhan, “Exploiting dlp illumination dithering for reconstruction and photography of high-speed scenes,” International journal of computer vision 96, 125–144 (2012).
[Crossref]

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref] [PubMed]

2011 (1)

O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” JOSA A 28, 2540–2553 (2011).
[Crossref] [PubMed]

2009 (2)

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

S. Pal and H. Xie, “A parametric dynamic compact thermal model of an electrothermally actuated micromirror,” Journal of Micromechanics and Microengineering 19, 065007 (2009).
[Crossref]

2008 (2)

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sensors and Actuators A: Physical 145, 371–379 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, R. G. Baraniuk, and et al., “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83 (2008).
[Crossref]

2006 (2)

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[Crossref] [PubMed]

S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable imaging: Towards a flexible camera,” International Journal of Computer Vision 70, 7–22 (2006).
[Crossref]

2003 (1)

R. Völkel, M. Eisner, and K. Weible, “Miniaturized imaging systems,” Microelectronic Engineering 67, 461–472 (2003).
[Crossref]

2001 (2)

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
[Crossref]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Optics letters 26, 1966–1968 (2001).
[Crossref]

1999 (2)

S. Baker and S. K. Nayar, “A theory of single-viewpoint catadioptric image formation,” International Journal of Computer Vision 35, 175–196 (1999).
[Crossref]

J.-Y. Bouguet and P. Perona, “3d photography using shadows in dual-space geometry,” International Journal of Computer Vision 35, 129–149 (1999).
[Crossref]

1980 (1)

K. E. Petersen, “Silicon torsional scanning mirror,” IBM Journal of Research and Development 24, 631–637 (1980).
[Crossref]

1964 (1)

K. Miyamoto, “Fish eye lens,” JOSA 54, 1060–1061 (1964).
[Crossref]

Baker, S.

S. Baker and S. K. Nayar, “A theory of single-viewpoint catadioptric image formation,” International Journal of Computer Vision 35, 175–196 (1999).
[Crossref]

Baran, U.

S. T. Holmstrom, U. Baran, and H. Urey, “Mems laser scanners: a review,” Microelectromechanical Systems, Journal of 23, 259–275 (2014).
[Crossref]

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, R. G. Baraniuk, and et al., “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83 (2008).
[Crossref]

Barrows, G. L.

S. J. Koppal, I. Gkioulekas, T. Young, H. Park, K. B. Crozier, G. L. Barrows, and T. Zickler, “Toward wide-angle microvision sensors,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 2982–2996 (2013).
[Crossref]

Bouguet, J.-Y.

J.-Y. Bouguet and P. Perona, “3d photography using shadows in dual-space geometry,” International Journal of Computer Vision 35, 129–149 (1999).
[Crossref]

Boult, T. E.

S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable imaging: Towards a flexible camera,” International Journal of Computer Vision 70, 7–22 (2006).
[Crossref]

Brady, D.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref] [PubMed]

Branzoi, V.

S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable imaging: Towards a flexible camera,” International Journal of Computer Vision 70, 7–22 (2006).
[Crossref]

Brown, D.

W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” in “MOEMS-MEMS 2007 Micro and Nanofabrication,” (International Society for Optics and Photonics, 2007), pp. 64660D.
[Crossref]

Butler, L.

X. Zhang, R. Zhang, S. Koppal, L. Butler, X. Cheng, and H. Xie, “Mems mirrors submerged in liquid for wide-angle scanning,” in “Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on,” (IEEE, 2015), pp. 847–850.

Castelino, K.

V. Milanović, K. Castelino, and D. T. McCormick, “Highly adaptable mems-based display with wide projection angle,” in “Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on,” (IEEE, 2007), pp. 143–146.

Chang, P.

C.-D. Chen, Y.-J. Wang, and P. Chang, “A novel two-axis mems scanning mirror with a pzt actuator for laser scanning projection,” Optics express 20, 27003–27017 (2012).
[Crossref] [PubMed]

Chen, C.-D.

C.-D. Chen, Y.-J. Wang, and P. Chang, “A novel two-axis mems scanning mirror with a pzt actuator for laser scanning projection,” Optics express 20, 27003–27017 (2012).
[Crossref] [PubMed]

Cheng, X.

X. Zhang, R. Zhang, S. Koppal, L. Butler, X. Cheng, and H. Xie, “Mems mirrors submerged in liquid for wide-angle scanning,” in “Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on,” (IEEE, 2015), pp. 847–850.

Cossairt, O. S.

O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” JOSA A 28, 2540–2553 (2011).
[Crossref] [PubMed]

Crozier, K. B.

S. J. Koppal, I. Gkioulekas, T. Young, H. Park, K. B. Crozier, G. L. Barrows, and T. Zickler, “Toward wide-angle microvision sensors,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 2982–2996 (2013).
[Crossref]

Curless, B.

L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: Shape recovery for dynamic scenes,” in “Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,”, vol. 2 (IEEE, 2003), vol. 2, pp. II-367.

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, R. G. Baraniuk, and et al., “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83 (2008).
[Crossref]

Davis, J.

J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” in “Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,”, vol. 2 (IEEE, 2003), vol. 2, pp. II-359.

Davis, W. O.

W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” in “MOEMS-MEMS 2007 Micro and Nanofabrication,” (International Society for Optics and Photonics, 2007), pp. 64660D.
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, R. G. Baraniuk, and et al., “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83 (2008).
[Crossref]

Eisner, M.

R. Völkel, M. Eisner, and K. Weible, “Miniaturized imaging systems,” Microelectronic Engineering 67, 461–472 (2003).
[Crossref]

Fedder, G. K.

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Optics letters 26, 1966–1968 (2001).
[Crossref]

Feller, S.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref] [PubMed]

Ferrat, P.

C. Gimkiewicz, C. Urban, E. Innerhofer, P. Ferrat, S. Neukom, G. Vanstraelen, and P. Seitz, “Ultra-miniature catadioptrical system for an omnidirectional camera,” in “Photonics Europe,” (International Society for Optics and Photonics, 2008), pp. 69920J.
[Crossref]

Fu, S.-G.

A. C.-L. Hung, H. Y.-H. Lai, T.-W. Lin, S.-G. Fu, and M. S.-C. Lu, “An electrostatically driven 2d micro-scanning mirror with capacitive sensing for projection display,” Sensors and Actuators A: Physical 222, 122–129 (2015).
[Crossref]

Gehm, M.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref] [PubMed]

Gibson, G.

W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” in “MOEMS-MEMS 2007 Micro and Nanofabrication,” (International Society for Optics and Photonics, 2007), pp. 64660D.
[Crossref]

Gimkiewicz, C.

C. Gimkiewicz, C. Urban, E. Innerhofer, P. Ferrat, S. Neukom, G. Vanstraelen, and P. Seitz, “Ultra-miniature catadioptrical system for an omnidirectional camera,” in “Photonics Europe,” (International Society for Optics and Photonics, 2008), pp. 69920J.
[Crossref]

Gkioulekas, I.

S. J. Koppal, I. Gkioulekas, T. Young, H. Park, K. B. Crozier, G. L. Barrows, and T. Zickler, “Toward wide-angle microvision sensors,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 2982–2996 (2013).
[Crossref]

Golish, D.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref] [PubMed]

Ha, J. S.

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

Helsel, M.

W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” in “MOEMS-MEMS 2007 Micro and Nanofabrication,” (International Society for Optics and Photonics, 2007), pp. 64660D.
[Crossref]

Herzig, H. P.

H. P. Herzig, Micro-optics: elements, systems and applications (CRC Press, 1997).

Hiura, S.

S. Hiura, A. Mohan, and R. Raskar, “Krill-eye: Superposition compound eye for wide-angle imaging via grin lenses,” in “Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on,” (IEEE, 2009), pp. 2204–2211.

Holmstrom, S. T.

S. T. Holmstrom, U. Baran, and H. Urey, “Mems laser scanners: a review,” Microelectromechanical Systems, Journal of 23, 259–275 (2014).
[Crossref]

Huang, C.-H.

C.-H. Huang, J. Yao, L. V. Wang, and J. Zou, “A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications,” Microsystem technologies 19, 577–582 (2013).
[Crossref]

Huang, Y.

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

Hung, A. C.-L.

A. C.-L. Hung, H. Y.-H. Lai, T.-W. Lin, S.-G. Fu, and M. S.-C. Lu, “An electrostatically driven 2d micro-scanning mirror with capacitive sensing for projection display,” Sensors and Actuators A: Physical 222, 122–129 (2015).
[Crossref]

Hwang, K.-C.

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

Ichioka, Y.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
[Crossref]

Innerhofer, E.

C. Gimkiewicz, C. Urban, E. Innerhofer, P. Ferrat, S. Neukom, G. Vanstraelen, and P. Seitz, “Ultra-miniature catadioptrical system for an omnidirectional camera,” in “Photonics Europe,” (International Society for Optics and Photonics, 2008), pp. 69920J.
[Crossref]

Ishida, K.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
[Crossref]

Jeong, K.-H.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[Crossref] [PubMed]

Kelly, K. E.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, R. G. Baraniuk, and et al., “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83 (2008).
[Crossref]

Kim, D.-H.

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

Kim, J.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[Crossref] [PubMed]

Kittle, D.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref] [PubMed]

Ko, H. C.

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

Kondou, N.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
[Crossref]

Koppal, S.

X. Zhang, R. Zhang, S. Koppal, L. Butler, X. Cheng, and H. Xie, “Mems mirrors submerged in liquid for wide-angle scanning,” in “Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on,” (IEEE, 2015), pp. 847–850.

Koppal, S. J.

S. J. Koppal, I. Gkioulekas, T. Young, H. Park, K. B. Crozier, G. L. Barrows, and T. Zickler, “Toward wide-angle microvision sensors,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 2982–2996 (2013).
[Crossref]

S. J. Koppal, S. Yamazaki, and S. G. Narasimhan, “Exploiting dlp illumination dithering for reconstruction and photography of high-speed scenes,” International journal of computer vision 96, 125–144 (2012).
[Crossref]

Kumagai, T.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
[Crossref]

Lai, H. Y.-H.

A. C.-L. Hung, H. Y.-H. Lai, T.-W. Lin, S.-G. Fu, and M. S.-C. Lu, “An electrostatically driven 2d micro-scanning mirror with capacitive sensing for projection display,” Sensors and Actuators A: Physical 222, 122–129 (2015).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, R. G. Baraniuk, and et al., “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83 (2008).
[Crossref]

Lee, J. W.

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

Lee, L. P.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[Crossref] [PubMed]

Lewis, J. R.

H. Urey, D. W. Wine, and J. R. Lewis, “Scanner design and resolution trade-offs for miniature scanning displays,” in “Electronic Imaging’99,” (International Society for Optics and Photonics, 1999), pp. 60–68.

Lin, T.-W.

A. C.-L. Hung, H. Y.-H. Lai, T.-W. Lin, S.-G. Fu, and M. S.-C. Lu, “An electrostatically driven 2d micro-scanning mirror with capacitive sensing for projection display,” Sensors and Actuators A: Physical 222, 122–129 (2015).
[Crossref]

Liu, Y.

Y. Liu, J. Xu, S. Zhong, and Y. Wu, “Large size mems scanning mirror with vertical comb drive for tunable optical filter,” Optics and Lasers in Engineering 51, 54–60 (2013).
[Crossref]

Lu, M. S.-C.

A. C.-L. Hung, H. Y.-H. Lai, T.-W. Lin, S.-G. Fu, and M. S.-C. Lu, “An electrostatically driven 2d micro-scanning mirror with capacitive sensing for projection display,” Sensors and Actuators A: Physical 222, 122–129 (2015).
[Crossref]

Marks, D.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref] [PubMed]

McCormick, D. T.

V. Milanović, K. Castelino, and D. T. McCormick, “Highly adaptable mems-based display with wide projection angle,” in “Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on,” (IEEE, 2007), pp. 143–146.

Miau, D.

O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” JOSA A 28, 2540–2553 (2011).
[Crossref] [PubMed]

Milanovic, V.

V. Milanović, K. Castelino, and D. T. McCormick, “Highly adaptable mems-based display with wide projection angle,” in “Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on,” (IEEE, 2007), pp. 143–146.

Miyamoto, K.

K. Miyamoto, “Fish eye lens,” JOSA 54, 1060–1061 (1964).
[Crossref]

Miyatake, S.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
[Crossref]

Miyazaki, D.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
[Crossref]

Mohan, A.

S. Hiura, A. Mohan, and R. Raskar, “Krill-eye: Superposition compound eye for wide-angle imaging via grin lenses,” in “Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on,” (IEEE, 2009), pp. 2204–2211.

Morimoto, T.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
[Crossref]

Narasimhan, S. G.

S. J. Koppal, S. Yamazaki, and S. G. Narasimhan, “Exploiting dlp illumination dithering for reconstruction and photography of high-speed scenes,” International journal of computer vision 96, 125–144 (2012).
[Crossref]

Nayar, S. K.

O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” JOSA A 28, 2540–2553 (2011).
[Crossref] [PubMed]

S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable imaging: Towards a flexible camera,” International Journal of Computer Vision 70, 7–22 (2006).
[Crossref]

S. Baker and S. K. Nayar, “A theory of single-viewpoint catadioptric image formation,” International Journal of Computer Vision 35, 175–196 (1999).
[Crossref]

A. Zomet and S. K. Nayar, “Lensless imaging with a controllable aperture,” in “Computer Vision and Pattern Recognition, 2006” IEEE Computer Society Conference on,”, vol. 1 (IEEE, 2006), vol. 1, pp. 339–346.

Neukom, S.

C. Gimkiewicz, C. Urban, E. Innerhofer, P. Ferrat, S. Neukom, G. Vanstraelen, and P. Seitz, “Ultra-miniature catadioptrical system for an omnidirectional camera,” in “Photonics Europe,” (International Society for Optics and Photonics, 2008), pp. 69920J.
[Crossref]

Pal, S.

S. Pal and H. Xie, “A parametric dynamic compact thermal model of an electrothermally actuated micromirror,” Journal of Micromechanics and Microengineering 19, 065007 (2009).
[Crossref]

Pan, Y.

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Optics letters 26, 1966–1968 (2001).
[Crossref]

Park, H.

S. J. Koppal, I. Gkioulekas, T. Young, H. Park, K. B. Crozier, G. L. Barrows, and T. Zickler, “Toward wide-angle microvision sensors,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 2982–2996 (2013).
[Crossref]

Perona, P.

J.-Y. Bouguet and P. Perona, “3d photography using shadows in dual-space geometry,” International Journal of Computer Vision 35, 129–149 (1999).
[Crossref]

Petersen, K. E.

K. E. Petersen, “Silicon torsional scanning mirror,” IBM Journal of Research and Development 24, 631–637 (1980).
[Crossref]

Ramamoorthi, R.

J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” in “Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,”, vol. 2 (IEEE, 2003), vol. 2, pp. II-359.

Raskar, R.

S. Hiura, A. Mohan, and R. Raskar, “Krill-eye: Superposition compound eye for wide-angle imaging via grin lenses,” in “Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on,” (IEEE, 2009), pp. 2204–2211.

Rogers, J. A.

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

Rusinkiewicz, S.

J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” in “Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,”, vol. 2 (IEEE, 2003), vol. 2, pp. II-359.

Seitz, P.

C. Gimkiewicz, C. Urban, E. Innerhofer, P. Ferrat, S. Neukom, G. Vanstraelen, and P. Seitz, “Ultra-miniature catadioptrical system for an omnidirectional camera,” in “Photonics Europe,” (International Society for Optics and Photonics, 2008), pp. 69920J.
[Crossref]

Seitz, S. M.

L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: Shape recovery for dynamic scenes,” in “Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,”, vol. 2 (IEEE, 2003), vol. 2, pp. II-367.

Sherman, R. J.

R. J. Sherman, “Polygonal scanners,” Laser Beam Scanning, pp. 63–75 (CRC Press, 1985).

Shin, G.

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

Sprague, R.

W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” in “MOEMS-MEMS 2007 Micro and Nanofabrication,” (International Society for Optics and Photonics, 2007), pp. 64660D.
[Crossref]

Stack, R.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref] [PubMed]

Stoykovich, M. P.

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, R. G. Baraniuk, and et al., “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83 (2008).
[Crossref]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, R. G. Baraniuk, and et al., “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83 (2008).
[Crossref]

Tanida, J.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
[Crossref]

Urban, C.

C. Gimkiewicz, C. Urban, E. Innerhofer, P. Ferrat, S. Neukom, G. Vanstraelen, and P. Seitz, “Ultra-miniature catadioptrical system for an omnidirectional camera,” in “Photonics Europe,” (International Society for Optics and Photonics, 2008), pp. 69920J.
[Crossref]

Urey, H.

S. T. Holmstrom, U. Baran, and H. Urey, “Mems laser scanners: a review,” Microelectromechanical Systems, Journal of 23, 259–275 (2014).
[Crossref]

H. Urey, D. W. Wine, and J. R. Lewis, “Scanner design and resolution trade-offs for miniature scanning displays,” in “Electronic Imaging’99,” (International Society for Optics and Photonics, 1999), pp. 60–68.

W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” in “MOEMS-MEMS 2007 Micro and Nanofabrication,” (International Society for Optics and Photonics, 2007), pp. 64660D.
[Crossref]

Vanstraelen, G.

C. Gimkiewicz, C. Urban, E. Innerhofer, P. Ferrat, S. Neukom, G. Vanstraelen, and P. Seitz, “Ultra-miniature catadioptrical system for an omnidirectional camera,” in “Photonics Europe,” (International Society for Optics and Photonics, 2008), pp. 69920J.
[Crossref]

Vera, E.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref] [PubMed]

Völkel, R.

R. Völkel, M. Eisner, and K. Weible, “Miniaturized imaging systems,” Microelectronic Engineering 67, 461–472 (2003).
[Crossref]

Wang, L. V.

C.-H. Huang, J. Yao, L. V. Wang, and J. Zou, “A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications,” Microsystem technologies 19, 577–582 (2013).
[Crossref]

Wang, S.

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

Wang, Y.-J.

C.-D. Chen, Y.-J. Wang, and P. Chang, “A novel two-axis mems scanning mirror with a pzt actuator for laser scanning projection,” Optics express 20, 27003–27017 (2012).
[Crossref] [PubMed]

Weible, K.

R. Völkel, M. Eisner, and K. Weible, “Miniaturized imaging systems,” Microelectronic Engineering 67, 461–472 (2003).
[Crossref]

Wine, D. W.

H. Urey, D. W. Wine, and J. R. Lewis, “Scanner design and resolution trade-offs for miniature scanning displays,” in “Electronic Imaging’99,” (International Society for Optics and Photonics, 1999), pp. 60–68.

Wood, R. W.

R. W. Wood, Physical optics (The Macmillan Company, 1905).

Wu, L.

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sensors and Actuators A: Physical 145, 371–379 (2008).
[Crossref]

Wu, Y.

Y. Liu, J. Xu, S. Zhong, and Y. Wu, “Large size mems scanning mirror with vertical comb drive for tunable optical filter,” Optics and Lasers in Engineering 51, 54–60 (2013).
[Crossref]

Xie, H.

S. Pal and H. Xie, “A parametric dynamic compact thermal model of an electrothermally actuated micromirror,” Journal of Micromechanics and Microengineering 19, 065007 (2009).
[Crossref]

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sensors and Actuators A: Physical 145, 371–379 (2008).
[Crossref]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Optics letters 26, 1966–1968 (2001).
[Crossref]

X. Zhang, R. Zhang, S. Koppal, L. Butler, X. Cheng, and H. Xie, “Mems mirrors submerged in liquid for wide-angle scanning,” in “Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on,” (IEEE, 2015), pp. 847–850.

Xu, J.

Y. Liu, J. Xu, S. Zhong, and Y. Wu, “Large size mems scanning mirror with vertical comb drive for tunable optical filter,” Optics and Lasers in Engineering 51, 54–60 (2013).
[Crossref]

Yalcinkaya, A.

W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” in “MOEMS-MEMS 2007 Micro and Nanofabrication,” (International Society for Optics and Photonics, 2007), pp. 64660D.
[Crossref]

Yamada, K.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
[Crossref]

Yamazaki, S.

S. J. Koppal, S. Yamazaki, and S. G. Narasimhan, “Exploiting dlp illumination dithering for reconstruction and photography of high-speed scenes,” International journal of computer vision 96, 125–144 (2012).
[Crossref]

Yao, J.

C.-H. Huang, J. Yao, L. V. Wang, and J. Zou, “A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications,” Microsystem technologies 19, 577–582 (2013).
[Crossref]

Young, T.

S. J. Koppal, I. Gkioulekas, T. Young, H. Park, K. B. Crozier, G. L. Barrows, and T. Zickler, “Toward wide-angle microvision sensors,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 2982–2996 (2013).
[Crossref]

Zhang, L.

L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: Shape recovery for dynamic scenes,” in “Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,”, vol. 2 (IEEE, 2003), vol. 2, pp. II-367.

Zhang, R.

X. Zhang, R. Zhang, S. Koppal, L. Butler, X. Cheng, and H. Xie, “Mems mirrors submerged in liquid for wide-angle scanning,” in “Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on,” (IEEE, 2015), pp. 847–850.

Zhang, X.

X. Zhang, R. Zhang, S. Koppal, L. Butler, X. Cheng, and H. Xie, “Mems mirrors submerged in liquid for wide-angle scanning,” in “Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on,” (IEEE, 2015), pp. 847–850.

Zhong, S.

Y. Liu, J. Xu, S. Zhong, and Y. Wu, “Large size mems scanning mirror with vertical comb drive for tunable optical filter,” Optics and Lasers in Engineering 51, 54–60 (2013).
[Crossref]

Zickler, T.

S. J. Koppal, I. Gkioulekas, T. Young, H. Park, K. B. Crozier, G. L. Barrows, and T. Zickler, “Toward wide-angle microvision sensors,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 2982–2996 (2013).
[Crossref]

Zomet, A.

A. Zomet and S. K. Nayar, “Lensless imaging with a controllable aperture,” in “Computer Vision and Pattern Recognition, 2006” IEEE Computer Society Conference on,”, vol. 1 (IEEE, 2006), vol. 1, pp. 339–346.

Zou, J.

C.-H. Huang, J. Yao, L. V. Wang, and J. Zou, “A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications,” Microsystem technologies 19, 577–582 (2013).
[Crossref]

Applied optics (1)

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimental verification,” Applied optics 40, 1806–1813 (2001).
[Crossref]

IBM Journal of Research and Development (1)

K. E. Petersen, “Silicon torsional scanning mirror,” IBM Journal of Research and Development 24, 631–637 (1980).
[Crossref]

IEEE Signal Processing Magazine (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, R. G. Baraniuk, and et al., “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83 (2008).
[Crossref]

International Journal of Computer Vision (3)

S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable imaging: Towards a flexible camera,” International Journal of Computer Vision 70, 7–22 (2006).
[Crossref]

S. J. Koppal, S. Yamazaki, and S. G. Narasimhan, “Exploiting dlp illumination dithering for reconstruction and photography of high-speed scenes,” International journal of computer vision 96, 125–144 (2012).
[Crossref]

S. Baker and S. K. Nayar, “A theory of single-viewpoint catadioptric image formation,” International Journal of Computer Vision 35, 175–196 (1999).
[Crossref]

J.-Y. Bouguet and P. Perona, “3d photography using shadows in dual-space geometry,” International Journal of Computer Vision 35, 129–149 (1999).
[Crossref]

JOSA (1)

K. Miyamoto, “Fish eye lens,” JOSA 54, 1060–1061 (1964).
[Crossref]

JOSA A (1)

O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” JOSA A 28, 2540–2553 (2011).
[Crossref] [PubMed]

Journal of Micromechanics and Microengineering (1)

S. Pal and H. Xie, “A parametric dynamic compact thermal model of an electrothermally actuated micromirror,” Journal of Micromechanics and Microengineering 19, 065007 (2009).
[Crossref]

Microelectromechanical Systems, Journal of (1)

S. T. Holmstrom, U. Baran, and H. Urey, “Mems laser scanners: a review,” Microelectromechanical Systems, Journal of 23, 259–275 (2014).
[Crossref]

Microelectronic Engineering (1)

R. Völkel, M. Eisner, and K. Weible, “Miniaturized imaging systems,” Microelectronic Engineering 67, 461–472 (2003).
[Crossref]

Microsystem technologies (1)

C.-H. Huang, J. Yao, L. V. Wang, and J. Zou, “A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications,” Microsystem technologies 19, 577–582 (2013).
[Crossref]

Nature (1)

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref] [PubMed]

Optics and Lasers in Engineering (1)

Y. Liu, J. Xu, S. Zhong, and Y. Wu, “Large size mems scanning mirror with vertical comb drive for tunable optical filter,” Optics and Lasers in Engineering 51, 54–60 (2013).
[Crossref]

Optics express (1)

C.-D. Chen, Y.-J. Wang, and P. Chang, “A novel two-axis mems scanning mirror with a pzt actuator for laser scanning projection,” Optics express 20, 27003–27017 (2012).
[Crossref] [PubMed]

Optics letters (1)

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Optics letters 26, 1966–1968 (2001).
[Crossref]

Pattern Analysis and Machine Intelligence, IEEE Transactions on (1)

S. J. Koppal, I. Gkioulekas, T. Young, H. Park, K. B. Crozier, G. L. Barrows, and T. Zickler, “Toward wide-angle microvision sensors,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 2982–2996 (2013).
[Crossref]

Science (1)

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[Crossref] [PubMed]

Sensors and Actuators A: Physical (2)

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sensors and Actuators A: Physical 145, 371–379 (2008).
[Crossref]

A. C.-L. Hung, H. Y.-H. Lai, T.-W. Lin, S.-G. Fu, and M. S.-C. Lu, “An electrostatically driven 2d micro-scanning mirror with capacitive sensing for projection display,” Sensors and Actuators A: Physical 222, 122–129 (2015).
[Crossref]

Small (1)

H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, “Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,” Small 5, 2703–2709 (2009).
[Crossref] [PubMed]

Other (15)

S. Hiura, A. Mohan, and R. Raskar, “Krill-eye: Superposition compound eye for wide-angle imaging via grin lenses,” in “Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on,” (IEEE, 2009), pp. 2204–2211.

H. Urey, D. W. Wine, and J. R. Lewis, “Scanner design and resolution trade-offs for miniature scanning displays,” in “Electronic Imaging’99,” (International Society for Optics and Photonics, 1999), pp. 60–68.

W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” in “MOEMS-MEMS 2007 Micro and Nanofabrication,” (International Society for Optics and Photonics, 2007), pp. 64660D.
[Crossref]

A. Zomet and S. K. Nayar, “Lensless imaging with a controllable aperture,” in “Computer Vision and Pattern Recognition, 2006” IEEE Computer Society Conference on,”, vol. 1 (IEEE, 2006), vol. 1, pp. 339–346.

Velodyne, “Velodyne lidar,”, velodynelidar.com (2015).

R. W. Wood, Physical optics (The Macmillan Company, 1905).

Microvision, “Picop technology,” www.microvision.com (2015).

X. Zhang, R. Zhang, S. Koppal, L. Butler, X. Cheng, and H. Xie, “Mems mirrors submerged in liquid for wide-angle scanning,” in “Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on,” (IEEE, 2015), pp. 847–850.

H. P. Herzig, Micro-optics: elements, systems and applications (CRC Press, 1997).

J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” in “Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,”, vol. 2 (IEEE, 2003), vol. 2, pp. II-359.

L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: Shape recovery for dynamic scenes,” in “Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,”, vol. 2 (IEEE, 2003), vol. 2, pp. II-367.

C. Gimkiewicz, C. Urban, E. Innerhofer, P. Ferrat, S. Neukom, G. Vanstraelen, and P. Seitz, “Ultra-miniature catadioptrical system for an omnidirectional camera,” in “Photonics Europe,” (International Society for Optics and Photonics, 2008), pp. 69920J.
[Crossref]

S. D. I. optics, “Dsl221 specifications sheet,” www.sunnex.com (2015).

V. Milanović, K. Castelino, and D. T. McCormick, “Highly adaptable mems-based display with wide projection angle,” in “Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on,” (IEEE, 2007), pp. 143–146.

R. J. Sherman, “Polygonal scanners,” Laser Beam Scanning, pp. 63–75 (CRC Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 In (I) we show a ray diagram of our setup, where a MEMS mirror is immersed in liquid. We used this setup [5] to induce the well-known Snell’s window effect that allows for modulating light over a large FOV, as shown in (II). In this paper, we demonstrate, for the first time, wide-angle structured light applications using an optimized MEMS mirror that is designed for use in liquid.
Fig. 2
Fig. 2 Our MEMS device design (I) is imaged in (II). We show a photograph of the packaged MEMS device in (III). Using a laser setup similar to Fig. 1, we measured the optical angle scanned (using an optical table and graph paper) for multiple MEMS mirror positions (IV), given by the voltage applied to the MEMS device. We performed this experiment in air and then in mineral oil (n = 1.5). We were able to obtain close to 150° FOV with the use of mineral oil, due to the Snell’s window effect. In (V) we show a long exposure image of the device as it modulates the laser in three distinct directions, illustrating the wide FOV.
Fig. 3
Fig. 3 (I) shows a diagram of the setup in (II), which allows us to scan a laser line across a 150° FOV, due to the refractive effect of the mineral oil shown in (III). In (IV) a scene consisting of cardboard boxes is shown with the projected laser line stripe.
Fig. 4
Fig. 4 In (I) the cardboard scene shown in Fig. 3 is kept at a “close position” within a 92° FOV. In (II) the same scene is moved to a “far position”, and is still illuminated by our sensor at around 128° FOV. Note that our sensor has a 150° FOV and our darkroom was not big enough (at that scene depth) to demonstrate the full FOV of the device. In (II) and (IV) we use a stereo camera viewing the line striped scene to recover depths. The gray color bar shows the relative depths with respect to the rear plane. We obtained an average error of ±2 inches over the entire scene depth of 30 inches. Since each of the five boxes were fronto-parallel, we also calculated the RMS distance by fitting a plane to each box and the average such error was 0.56 inches.
Fig. 5
Fig. 5 We use the setup in Fig. 4 to reconstruct a toy doll (I). The object was placed around 50° from the viewing direction. We show the depth map (II) and a 3D reconstruction (III) that is rendered from a different viewpoint. Note that the color image was not taken from either stereo pair but from an SLR camera placed close to the stereo pair.
Fig. 6
Fig. 6 Frequency response of our scanner across air and mineral oil

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

arg min d t ( I l ( x , y , t ) I r ( x + d , y , t ) ) 2

Metrics