Abstract

Multi-spectral imaging systems typically require the cumbersome integration of disparate filtering materials and detectors in order to operate simultaneously in multiple spectral regions. Each distinct waveband must be detected at different spatial locations on a single chip or by separate chips optimised for each band. Here, we report on a single component that optically multiplexes visible, Mid Infrared (4.5 μm) and Terahertz (126 μm) radiation thereby maximising the spectral information density. We hybridise plasmonic and metamaterial structures to form a device capable of simultaneously filtering 15 visible wavelengths and absorbing Mid Infrared and Terahertz. Our synthetic multi-spectral component could be integrated with silicon complementary metal-oxide semiconductor technology where Si photodiodes are available to detect the visible radiation and micro-bolometers available to detect the Infrared/Terahertz and render an inexpensive, mass-producible camera capable of forming coaxial visible, Infrared and Terahertz images.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters

Iain J. H. McCrindle, James Grant, Timothy D. Drysdale, and David R. S. Cumming
Opt. Express 21(16) 19142-19152 (2013)

CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications

James Grant, Mitchell Kenney, Yash D. Shah, Ivonne Escorcia-Carranza, and David R. S. Cumming
Opt. Express 26(8) 10408-10420 (2018)

Multi-band plasmonic color filters for visible-to-near-infrared image sensors

Atsutaka Miyamichi, Atsushi Ono, Hiroki Kamehama, Keiichiro Kagawa, Keita Yasutomi, and Shoji Kawahito
Opt. Express 26(19) 25178-25187 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, and M. Abidi, “Multiscale fusion of visible and thermal IR Images for illumination-invariant face recognition,” Int. J. Comput. Vis. 71(2), 215–233 (2007).
    [Crossref]
  2. A. L. Chan and S. R. Schnelle, “Fusing concurrent visible and infrared videos for improved tracking performance,” Opt. Eng. 52(1), 017004 (2013).
    [Crossref]
  3. S. Chaudhuri and K. Kotwal, Hyperspectral Image Fusion (Springer, 2013).
  4. M. Kowalski, M. Kastek, H. Polakowski, N. Palka, M. Piszczek, and M. Szustakowski, “Multispectral concealed weapon detection in visible, infrared, and terahertz,” Proc. SPIE 9102, 91020T (2014).
  5. M. Perenzoni, N. Massari, D. Stoppa, S. Pocas, B. Delplanque, J. Meilhan, F. Simoens, and W. Rabaud, “A 160x160-pixel image sensor for multispectral visible, infrared and terahertz detection,” Proceedings of ESSCIRC (2012), pp. 93–96.
  6. H. Kang, H. Jung, and H. Lee, “Independently alterable synthetic multispectral metamaterial filter based on etalon structure,” Adv. Opt. Mater. 3(6), 774–778 (2015).
    [Crossref]
  7. J. Grant, I. J. H. McCrindle, C. Li, and D. R. S. Cumming, “Multispectral metamaterial absorber,” Opt. Lett. 39(5), 1227–1230 (2014).
    [Crossref] [PubMed]
  8. I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi 212, 1–9 (2015).
  9. I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-Spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
    [Crossref]
  10. I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
    [Crossref] [PubMed]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  12. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  13. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
    [Crossref] [PubMed]
  14. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
    [Crossref]
  15. K. Walls, Q. Chen, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photonics Tech. Lett. 24(7), 602–604 (2012).
    [Crossref]
  16. Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
    [Crossref]
  17. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [Crossref] [PubMed]
  18. Y. Huo, C. C. Fesenmaier, and P. B. Catrysse, “Microlens performance limits in sub-2µm pixel CMOS image sensors,” Opt. Express 18(6), 5861–5872 (2010).
    [Crossref] [PubMed]
  19. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  20. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
    [Crossref]
  21. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
    [Crossref]
  22. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  23. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  24. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  25. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
    [Crossref] [PubMed]
  26. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  27. D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
    [Crossref] [PubMed]
  28. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  29. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref] [PubMed]
  30. J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
    [Crossref]
  31. I. E. Carranza, J. Grant, J. Gough, and D. R. S. Cumming, “Metamaterial-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 5(6), 1–10 (2015).
  32. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
    [Crossref]
  33. http://www.lumerical.com/tcad-products/fdtd/ , “Lumerical FDTD”, retrieved http://www.lumerical.com/tcad-products/fdtd/ .
  34. F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1981).
  35. E. D. Palik, Handbook of Optical Constants of Solids, Vols. I, II, III (Elsevier Science & Tech, 1985).
  36. F. Iacona, G. Ceriola, and F. La Via, “Structural properties of SiO2 films prepared by plasma-enhanced chemical vapor deposition,” Mat. Sci. Semi. Proc. 4, 43–46 (2001).
  37. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15(7), 4335–4350 (2007).
    [Crossref] [PubMed]

2015 (3)

H. Kang, H. Jung, and H. Lee, “Independently alterable synthetic multispectral metamaterial filter based on etalon structure,” Adv. Opt. Mater. 3(6), 774–778 (2015).
[Crossref]

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi 212, 1–9 (2015).

I. E. Carranza, J. Grant, J. Gough, and D. R. S. Cumming, “Metamaterial-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 5(6), 1–10 (2015).

2014 (3)

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-Spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

J. Grant, I. J. H. McCrindle, C. Li, and D. R. S. Cumming, “Multispectral metamaterial absorber,” Opt. Lett. 39(5), 1227–1230 (2014).
[Crossref] [PubMed]

M. Kowalski, M. Kastek, H. Polakowski, N. Palka, M. Piszczek, and M. Szustakowski, “Multispectral concealed weapon detection in visible, infrared, and terahertz,” Proc. SPIE 9102, 91020T (2014).

2013 (3)

A. L. Chan and S. R. Schnelle, “Fusing concurrent visible and infrared videos for improved tracking performance,” Opt. Eng. 52(1), 017004 (2013).
[Crossref]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
[Crossref] [PubMed]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

2012 (4)

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

K. Walls, Q. Chen, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photonics Tech. Lett. 24(7), 602–604 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (5)

2009 (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

2008 (1)

2007 (4)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15(7), 4335–4350 (2007).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, and M. Abidi, “Multiscale fusion of visible and thermal IR Images for illumination-invariant face recognition,” Int. J. Comput. Vis. 71(2), 215–233 (2007).
[Crossref]

2001 (1)

F. Iacona, G. Ceriola, and F. La Via, “Structural properties of SiO2 films prepared by plasma-enhanced chemical vapor deposition,” Mat. Sci. Semi. Proc. 4, 43–46 (2001).

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Abidi, B.

S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, and M. Abidi, “Multiscale fusion of visible and thermal IR Images for illumination-invariant face recognition,” Int. J. Comput. Vis. 71(2), 215–233 (2007).
[Crossref]

Abidi, M.

S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, and M. Abidi, “Multiscale fusion of visible and thermal IR Images for illumination-invariant face recognition,” Int. J. Comput. Vis. 71(2), 215–233 (2007).
[Crossref]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Boughorbel, F.

S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, and M. Abidi, “Multiscale fusion of visible and thermal IR Images for illumination-invariant face recognition,” Int. J. Comput. Vis. 71(2), 215–233 (2007).
[Crossref]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Carranza, I. E.

I. E. Carranza, J. Grant, J. Gough, and D. R. S. Cumming, “Metamaterial-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 5(6), 1–10 (2015).

Catrysse, P. B.

Ceriola, G.

F. Iacona, G. Ceriola, and F. La Via, “Structural properties of SiO2 films prepared by plasma-enhanced chemical vapor deposition,” Mat. Sci. Semi. Proc. 4, 43–46 (2001).

Chan, A. L.

A. L. Chan and S. R. Schnelle, “Fusing concurrent visible and infrared videos for improved tracking performance,” Opt. Eng. 52(1), 017004 (2013).
[Crossref]

Chen, Q.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photonics Tech. Lett. 24(7), 602–604 (2012).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

Chitnis, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Collins, S.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photonics Tech. Lett. 24(7), 602–604 (2012).
[Crossref]

Cumming, D. R. S.

I. E. Carranza, J. Grant, J. Gough, and D. R. S. Cumming, “Metamaterial-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 5(6), 1–10 (2015).

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi 212, 1–9 (2015).

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-Spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

J. Grant, I. J. H. McCrindle, C. Li, and D. R. S. Cumming, “Multispectral metamaterial absorber,” Opt. Lett. 39(5), 1227–1230 (2014).
[Crossref] [PubMed]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
[Crossref] [PubMed]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photonics Tech. Lett. 24(7), 602–604 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
[Crossref] [PubMed]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
[Crossref] [PubMed]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

Das, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Delplanque, B.

M. Perenzoni, N. Massari, D. Stoppa, S. Pocas, B. Delplanque, J. Meilhan, F. Simoens, and W. Rabaud, “A 160x160-pixel image sensor for multispectral visible, infrared and terahertz detection,” Proceedings of ESSCIRC (2012), pp. 93–96.

Drysdale, T. D.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-Spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
[Crossref] [PubMed]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photonics Tech. Lett. 24(7), 602–604 (2012).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Escorcia-Carranza, I.

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Fesenmaier, C. C.

Fujikawa, H.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Gough, J.

I. E. Carranza, J. Grant, J. Gough, and D. R. S. Cumming, “Metamaterial-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 5(6), 1–10 (2015).

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Gouveia, L. C. P.

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi 212, 1–9 (2015).

Grant, J.

I. E. Carranza, J. Grant, J. Gough, and D. R. S. Cumming, “Metamaterial-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 5(6), 1–10 (2015).

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-Spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

J. Grant, I. J. H. McCrindle, C. Li, and D. R. S. Cumming, “Multispectral metamaterial absorber,” Opt. Lett. 39(5), 1227–1230 (2014).
[Crossref] [PubMed]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
[Crossref] [PubMed]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
[Crossref] [PubMed]

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
[Crossref] [PubMed]

Grant, J. P.

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi 212, 1–9 (2015).

He, S.

Heo, J.

S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, and M. Abidi, “Multiscale fusion of visible and thermal IR Images for illumination-invariant face recognition,” Int. J. Comput. Vis. 71(2), 215–233 (2007).
[Crossref]

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Huo, Y.

Iacona, F.

F. Iacona, G. Ceriola, and F. La Via, “Structural properties of SiO2 films prepared by plasma-enhanced chemical vapor deposition,” Mat. Sci. Semi. Proc. 4, 43–46 (2001).

Ikeda, N.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Inoue, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jin, Y.

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Jung, H.

H. Kang, H. Jung, and H. Lee, “Independently alterable synthetic multispectral metamaterial filter based on etalon structure,” Adv. Opt. Mater. 3(6), 774–778 (2015).
[Crossref]

Kang, H.

H. Kang, H. Jung, and H. Lee, “Independently alterable synthetic multispectral metamaterial filter based on etalon structure,” Adv. Opt. Mater. 3(6), 774–778 (2015).
[Crossref]

Kastek, M.

M. Kowalski, M. Kastek, H. Polakowski, N. Palka, M. Piszczek, and M. Szustakowski, “Multispectral concealed weapon detection in visible, infrared, and terahertz,” Proc. SPIE 9102, 91020T (2014).

Khalid, A.

Koch, M.

Koide, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Kong, S.

S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, and M. Abidi, “Multiscale fusion of visible and thermal IR Images for illumination-invariant face recognition,” Int. J. Comput. Vis. 71(2), 215–233 (2007).
[Crossref]

Koschan, A.

S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, and M. Abidi, “Multiscale fusion of visible and thermal IR Images for illumination-invariant face recognition,” Int. J. Comput. Vis. 71(2), 215–233 (2007).
[Crossref]

Kowalski, M.

M. Kowalski, M. Kastek, H. Polakowski, N. Palka, M. Piszczek, and M. Szustakowski, “Multispectral concealed weapon detection in visible, infrared, and terahertz,” Proc. SPIE 9102, 91020T (2014).

La Via, F.

F. Iacona, G. Ceriola, and F. La Via, “Structural properties of SiO2 films prepared by plasma-enhanced chemical vapor deposition,” Mat. Sci. Semi. Proc. 4, 43–46 (2001).

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Lee, H.

H. Kang, H. Jung, and H. Lee, “Independently alterable synthetic multispectral metamaterial filter based on etalon structure,” Adv. Opt. Mater. 3(6), 774–778 (2015).
[Crossref]

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, C.

J. Grant, I. J. H. McCrindle, C. Li, and D. R. S. Cumming, “Multispectral metamaterial absorber,” Opt. Lett. 39(5), 1227–1230 (2014).
[Crossref] [PubMed]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Lok, L. B.

Ma, Y.

Massari, N.

M. Perenzoni, N. Massari, D. Stoppa, S. Pocas, B. Delplanque, J. Meilhan, F. Simoens, and W. Rabaud, “A 160x160-pixel image sensor for multispectral visible, infrared and terahertz detection,” Proceedings of ESSCIRC (2012), pp. 93–96.

McCrindle, I. J. H.

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi 212, 1–9 (2015).

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-Spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

J. Grant, I. J. H. McCrindle, C. Li, and D. R. S. Cumming, “Multispectral metamaterial absorber,” Opt. Lett. 39(5), 1227–1230 (2014).
[Crossref] [PubMed]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
[Crossref] [PubMed]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Meilhan, J.

M. Perenzoni, N. Massari, D. Stoppa, S. Pocas, B. Delplanque, J. Meilhan, F. Simoens, and W. Rabaud, “A 160x160-pixel image sensor for multispectral visible, infrared and terahertz detection,” Proceedings of ESSCIRC (2012), pp. 93–96.

Miura, A.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nomura, T.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Padilla, W. J.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Palka, N.

M. Kowalski, M. Kastek, H. Polakowski, N. Palka, M. Piszczek, and M. Szustakowski, “Multispectral concealed weapon detection in visible, infrared, and terahertz,” Proc. SPIE 9102, 91020T (2014).

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Perenzoni, M.

M. Perenzoni, N. Massari, D. Stoppa, S. Pocas, B. Delplanque, J. Meilhan, F. Simoens, and W. Rabaud, “A 160x160-pixel image sensor for multispectral visible, infrared and terahertz detection,” Proceedings of ESSCIRC (2012), pp. 93–96.

Piszczek, M.

M. Kowalski, M. Kastek, H. Polakowski, N. Palka, M. Piszczek, and M. Szustakowski, “Multispectral concealed weapon detection in visible, infrared, and terahertz,” Proc. SPIE 9102, 91020T (2014).

Pocas, S.

M. Perenzoni, N. Massari, D. Stoppa, S. Pocas, B. Delplanque, J. Meilhan, F. Simoens, and W. Rabaud, “A 160x160-pixel image sensor for multispectral visible, infrared and terahertz detection,” Proceedings of ESSCIRC (2012), pp. 93–96.

Polakowski, H.

M. Kowalski, M. Kastek, H. Polakowski, N. Palka, M. Piszczek, and M. Szustakowski, “Multispectral concealed weapon detection in visible, infrared, and terahertz,” Proc. SPIE 9102, 91020T (2014).

Pupeza, I.

Rabaud, W.

M. Perenzoni, N. Massari, D. Stoppa, S. Pocas, B. Delplanque, J. Meilhan, F. Simoens, and W. Rabaud, “A 160x160-pixel image sensor for multispectral visible, infrared and terahertz detection,” Proceedings of ESSCIRC (2012), pp. 93–96.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

Saha, S.

Saha, S. C.

Sato, K.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Schnelle, S. R.

A. L. Chan and S. R. Schnelle, “Fusing concurrent visible and infrared videos for improved tracking performance,” Opt. Eng. 52(1), 017004 (2013).
[Crossref]

Schurig, D.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Simoens, F.

M. Perenzoni, N. Massari, D. Stoppa, S. Pocas, B. Delplanque, J. Meilhan, F. Simoens, and W. Rabaud, “A 160x160-pixel image sensor for multispectral visible, infrared and terahertz detection,” Proceedings of ESSCIRC (2012), pp. 93–96.

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Sonkusale, S.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Stoppa, D.

M. Perenzoni, N. Massari, D. Stoppa, S. Pocas, B. Delplanque, J. Meilhan, F. Simoens, and W. Rabaud, “A 160x160-pixel image sensor for multispectral visible, infrared and terahertz detection,” Proceedings of ESSCIRC (2012), pp. 93–96.

Sugimoto, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Szustakowski, M.

M. Kowalski, M. Kastek, H. Polakowski, N. Palka, M. Piszczek, and M. Szustakowski, “Multispectral concealed weapon detection in visible, infrared, and terahertz,” Proc. SPIE 9102, 91020T (2014).

Tao, H.

Taylor, A. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tsuya, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Venkatesh, S.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Walls, K.

K. Walls, Q. Chen, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photonics Tech. Lett. 24(7), 602–604 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wilk, R.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Xu, W.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Ye, Y. Q.

Yi, M.

S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, and M. Abidi, “Multiscale fusion of visible and thermal IR Images for illumination-invariant face recognition,” Int. J. Comput. Vis. 71(2), 215–233 (2007).
[Crossref]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Zhang, X.

Zheng, Y.

S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, and M. Abidi, “Multiscale fusion of visible and thermal IR Images for illumination-invariant face recognition,” Int. J. Comput. Vis. 71(2), 215–233 (2007).
[Crossref]

Adv. Opt. Mater. (2)

H. Kang, H. Jung, and H. Lee, “Independently alterable synthetic multispectral metamaterial filter based on etalon structure,” Adv. Opt. Mater. 3(6), 774–778 (2015).
[Crossref]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-Spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

Appl. Phys. Lett. (1)

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

IEEE Photonics Tech. Lett. (1)

K. Walls, Q. Chen, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photonics Tech. Lett. 24(7), 602–604 (2012).
[Crossref]

IEEE Trans. Microw. Theory (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

I. E. Carranza, J. Grant, J. Gough, and D. R. S. Cumming, “Metamaterial-based terahertz imaging,” IEEE Trans. THz Sci. Technol. 5(6), 1–10 (2015).

Int. J. Comput. Vis. (1)

S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, and M. Abidi, “Multiscale fusion of visible and thermal IR Images for illumination-invariant face recognition,” Int. J. Comput. Vis. 71(2), 215–233 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Mat. Sci. Semi. Proc. (1)

F. Iacona, G. Ceriola, and F. La Via, “Structural properties of SiO2 films prepared by plasma-enhanced chemical vapor deposition,” Mat. Sci. Semi. Proc. 4, 43–46 (2001).

Nano Lett. (1)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Opt. Eng. (1)

A. L. Chan and S. R. Schnelle, “Fusing concurrent visible and infrared videos for improved tracking performance,” Opt. Eng. 52(1), 017004 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. B (2)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Phys. Rev. Lett. (3)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Phys. Status Solidi (1)

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi 212, 1–9 (2015).

Plasmonics (1)

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Proc. SPIE (1)

M. Kowalski, M. Kastek, H. Polakowski, N. Palka, M. Piszczek, and M. Szustakowski, “Multispectral concealed weapon detection in visible, infrared, and terahertz,” Proc. SPIE 9102, 91020T (2014).

Other (5)

M. Perenzoni, N. Massari, D. Stoppa, S. Pocas, B. Delplanque, J. Meilhan, F. Simoens, and W. Rabaud, “A 160x160-pixel image sensor for multispectral visible, infrared and terahertz detection,” Proceedings of ESSCIRC (2012), pp. 93–96.

S. Chaudhuri and K. Kotwal, Hyperspectral Image Fusion (Springer, 2013).

http://www.lumerical.com/tcad-products/fdtd/ , “Lumerical FDTD”, retrieved http://www.lumerical.com/tcad-products/fdtd/ .

F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1981).

E. D. Palik, Handbook of Optical Constants of Solids, Vols. I, II, III (Elsevier Science & Tech, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Illustration of the synthetic multi-spectral material capable of filtering 15 visible wavelengths and 1 NIR wavelength while also absorbing MIR and THz. (a) 3D view and (b) top down view. Note that for clarity and ease of understanding the geometries of the plasmonic filters, MIR ERRs, and THz ERR are not to scale.
Fig. 2
Fig. 2 Scanning electron micrographs of a plasmonic filter hole array and MIR ERRs and transmission microscope images of the synthetic multi-spectral material (SMM). (a)-(b) Scanning electron micrographs of a red plasmonic filter (P = 430 nm) at different magnifications. Transmission microscope images showing electric ring resonators (ERRs) above (c) a blue plasmonic filter (P = 230 nm) and (d) a red plasmonic filter (P = 410 nm). (e) SEM of the MIR ERRs. (f) Tessellated transmission microscope image of the region of the SMM covered with plasmonic filters. This type of colour swatch is commonly employed to display the colour filtering properties across the visible spectrum. The MIR and THz ERRs are not visible in the image however they result in a decrease in intensity of the plasmonic filter transmission spectra.
Fig. 3
Fig. 3 Measured spectral characteristics of the synthetic multispectral material (SMM). The transmission spectra associated with the plasmonic filters are shown in (a)-(c). The hole period, P, and hole diameters, d, as measured using a scanning electron microscope (SEM) are shown in the legend.
Fig. 4
Fig. 4 Experimental and simulated spectral characteristics of the synthetic multi-spectral material (SMM). (a) Experimentally and simulated measured absorption spectra in the 2-6 μm region for the SMM, a standalone MIR absorber and a standalone THz absorber. (b) Experimentally and simulated THz absorption spectra of the SMM compared with a standalone THz MM absorber of the same design, but without a perforated ground plane and the MIR ERRs. (c) Black line - Complete experimental spectrum from 1 THz (300 μm) to 1000 THz (300 nm) of the SMM. Red line – Simulated absorption spectrum from 1 THz (300 μm) to 140 THz (2.14 μm).
Fig. 5
Fig. 5 Electric and magnetic field distributions of the SMM at absorption peaks A, B, C, M and K. (a), (c), (e), (g) and (i) represent the electric field in the THz ERR, (b), (d), (f), (h) and (j) represent the magnitude of the magnetic field in the multi-layer structure.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ SPP = p 4 3 ( i 2 +ij+ j 2 ) ε m ε d ε m + ε d
f m = 1 LC /2
A(ω)=1R(ω)T(ω)

Metrics