Abstract

Buried multiple-quantum-well (MQW) 2D photonic crystal cavities (PhC) achieve low non-radiative recombination and high carrier confinement thus making them highly efficient emitters. In this study, we have investigated the lasing characteristics of high-β(spontaneous emission coupling factor) buried MQW photonic crystal nanocavity lasers to clarify the theoretically-predicted thresholdless operation in high-β nanolasers. The strong light and carrier confinement and low non-radiative recombination in our nanolasers have enabled us to clearly demonstrate very smooth lasing transition in terms of the light-in vs light-out curve and cavity linewidth. To clarify the thresholdless lasing behavior, we carried out a lifetime measurement and a photon correlation measurement, which also confirmed the predicted behavior. In addition, we systematically investigated the dependence of β on the detuning frequency, which was in good agreement with a numerical simulation based on the finite-difference time-domain method. This is the first convincing systematic study of nanolasers based on an MQW close to the thresholdless regime.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

12 February 2016: A correction was made to the author affiliations.


OSA Recommended Articles
Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa
Opt. Express 16(8) 5199-5205 (2008)

Photonic-crystal microcavity laser with site-controlled quantum-wire active medium

Kirill A. Atlasov, Milan Calic, Karl Fredrik Karlsson, Pascal Gallo, Alok Rudra, Benjamin Dwir, and Eli Kapon
Opt. Express 17(20) 18178-18183 (2009)

Subwavelength semiconductor lasers for dense chip-scale integration

Qing Gu, Joseph S. T. Smalley, Maziar P. Nezhad, Aleksandar Simic, Jin Hyoung Lee, Michael Katz, Olesya Bondarenko, Boris Slutsky, Amit Mizrahi, Vitaliy Lomakin, and Yeshaiahu Fainman
Adv. Opt. Photon. 6(1) 1-56 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Björk and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991).
    [Crossref]
  2. Y. Yamamoto and G. Björk, “Lasers without Inversion in Microcavities,” Jpn. J. Appl. Phys. 30(2), 2039–2041 (1991).
    [Crossref]
  3. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
    [Crossref] [PubMed]
  4. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Observation of unique photon statistics of single artificial atom laser,” Physica E 42(10), 2489–2492 (2010).
    [Crossref]
  5. I. Prieto, J. M. Llorens, L. E. Muñoz-Camúñez, A. G. Taboada, J. Canet-Ferrer, J. M. Ripalda, C. Robles, G. Muñoz-Matutano, J. P. Martínez-Pastor, and P. A. Postigo, “Near thresholdless laser operation at room temperature,” Optica 2(1), 66–69 (2015).
    [Crossref]
  6. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
    [Crossref] [PubMed]
  7. M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
    [Crossref]
  8. M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
    [Crossref]
  9. D. Kleppner, “Inhibited Spontaneous Emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
    [Crossref]
  10. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(12), 051104 (2010).
    [Crossref]
  11. S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
    [Crossref]
  12. M. Takiguchi, H. Sumikura, M. D. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal,” Appl. Phys. Lett. 103(9), 091113 (2013).
    [Crossref]
  13. J. Vuckovic, O. Painter, Y. Xu, and A. Yariv, “Finite-Difference Time-Domain Calculation of the Spontaneous Emission Coupling Factor in Optical Microcavities,” IEEE J. Quantum Electron. 35(8), 1168–1175 (1999).
    [Crossref]
  14. J. M. Gérard and B. Gayral, “Strong Purcell Effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
    [Crossref]
  15. T. Tawara, H. Kamada, Y. H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16(8), 5199–5205 (2008).
    [Crossref] [PubMed]
  16. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009).
    [Crossref] [PubMed]
  17. S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
    [Crossref] [PubMed]
  18. Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89(2), 023824 (2014).
    [Crossref]
  19. N. Takemura, J. Omachi, and M. Kuwata-Gonokam, “Fast periodic modulations in the photon correlation of single-mode vertical-cavity surface-emitting laser,” Phys. Rev. A 85(5), 053811 (2012).
    [Crossref]
  20. Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007).
    [Crossref]
  21. R. Jin, D. Boggavarapu, M. Sargent, P. Meystre, H. M. Gibbs, and G. Khitrova, “Photon-number correlations near the threshold of microcavity lasers in the weak-coupling regime,” Phys. Rev. A 49(5), 4038–4042 (1994).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89(2), 023824 (2014).
[Crossref]

2013 (2)

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

M. Takiguchi, H. Sumikura, M. D. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal,” Appl. Phys. Lett. 103(9), 091113 (2013).
[Crossref]

2012 (2)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

N. Takemura, J. Omachi, and M. Kuwata-Gonokam, “Fast periodic modulations in the photon correlation of single-mode vertical-cavity surface-emitting laser,” Phys. Rev. A 85(5), 053811 (2012).
[Crossref]

2011 (1)

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
[Crossref]

2010 (2)

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(12), 051104 (2010).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Observation of unique photon statistics of single artificial atom laser,” Physica E 42(10), 2489–2492 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (2)

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007).
[Crossref]

2006 (1)

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

1999 (2)

J. Vuckovic, O. Painter, Y. Xu, and A. Yariv, “Finite-Difference Time-Domain Calculation of the Spontaneous Emission Coupling Factor in Optical Microcavities,” IEEE J. Quantum Electron. 35(8), 1168–1175 (1999).
[Crossref]

J. M. Gérard and B. Gayral, “Strong Purcell Effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
[Crossref]

1994 (1)

R. Jin, D. Boggavarapu, M. Sargent, P. Meystre, H. M. Gibbs, and G. Khitrova, “Photon-number correlations near the threshold of microcavity lasers in the weak-coupling regime,” Phys. Rev. A 49(5), 4038–4042 (1994).
[Crossref] [PubMed]

1991 (2)

G. Björk and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991).
[Crossref]

Y. Yamamoto and G. Björk, “Lasers without Inversion in Microcavities,” Jpn. J. Appl. Phys. 30(2), 2039–2041 (1991).
[Crossref]

1981 (1)

D. Kleppner, “Inhibited Spontaneous Emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
[Crossref]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Arakawa, Y.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89(2), 023824 (2014).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Observation of unique photon statistics of single artificial atom laser,” Physica E 42(10), 2489–2492 (2010).
[Crossref]

Ates, S.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

Atlasov, K. A.

Badolato, A.

Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Birowosuto, M. D.

M. Takiguchi, H. Sumikura, M. D. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal,” Appl. Phys. Lett. 103(9), 091113 (2013).
[Crossref]

Björk, G.

G. Björk and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991).
[Crossref]

Y. Yamamoto and G. Björk, “Lasers without Inversion in Microcavities,” Jpn. J. Appl. Phys. 30(2), 2039–2041 (1991).
[Crossref]

Boggavarapu, D.

R. Jin, D. Boggavarapu, M. Sargent, P. Meystre, H. M. Gibbs, and G. Khitrova, “Photon-number correlations near the threshold of microcavity lasers in the weak-coupling regime,” Phys. Rev. A 49(5), 4038–4042 (1994).
[Crossref] [PubMed]

Bouwmeester, D.

Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Cade, N. I.

Calic, M.

Canet-Ferrer, J.

Choi, Y. S.

Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007).
[Crossref]

Choi, Y.-S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Deotare, P.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(12), 051104 (2010).
[Crossref]

Ding, D.

Dupuis, R.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(12), 051104 (2010).
[Crossref]

Dwir, B.

Fainman, Y.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Forchel, A.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

Gallo, P.

Gayral, B.

Gérard, J. M.

Gibbs, H. M.

R. Jin, D. Boggavarapu, M. Sargent, P. Meystre, H. M. Gibbs, and G. Khitrova, “Photon-number correlations near the threshold of microcavity lasers in the weak-coupling regime,” Phys. Rev. A 49(5), 4038–4042 (1994).
[Crossref] [PubMed]

Gies, C.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

Gotoh, H.

Hasebe, K.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

Hennessy, K.

Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Hofmann, C.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

Hu, E. L.

Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Huang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(12), 051104 (2010).
[Crossref]

Iwamoto, S.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89(2), 023824 (2014).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Observation of unique photon statistics of single artificial atom laser,” Physica E 42(10), 2489–2492 (2010).
[Crossref]

Jahnke, F.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

Jin, R.

R. Jin, D. Boggavarapu, M. Sargent, P. Meystre, H. M. Gibbs, and G. Khitrova, “Photon-number correlations near the threshold of microcavity lasers in the weak-coupling regime,” Phys. Rev. A 49(5), 4038–4042 (1994).
[Crossref] [PubMed]

Johnson, S. R.

Kakitsuka, T.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

Kamada, H.

Kapon, E.

Karlsson, K. F.

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Khan, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(12), 051104 (2010).
[Crossref]

Khitrova, G.

R. Jin, D. Boggavarapu, M. Sargent, P. Meystre, H. M. Gibbs, and G. Khitrova, “Photon-number correlations near the threshold of microcavity lasers in the weak-coupling regime,” Phys. Rev. A 49(5), 4038–4042 (1994).
[Crossref] [PubMed]

Kleppner, D.

D. Kleppner, “Inhibited Spontaneous Emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
[Crossref]

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Observation of unique photon statistics of single artificial atom laser,” Physica E 42(10), 2489–2492 (2010).
[Crossref]

Kuramochi, E.

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

M. Takiguchi, H. Sumikura, M. D. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal,” Appl. Phys. Lett. 103(9), 091113 (2013).
[Crossref]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
[Crossref]

T. Tawara, H. Kamada, Y. H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16(8), 5199–5205 (2008).
[Crossref] [PubMed]

Kuwata-Gonokam, M.

N. Takemura, J. Omachi, and M. Kuwata-Gonokam, “Fast periodic modulations in the photon correlation of single-mode vertical-cavity surface-emitting laser,” Phys. Rev. A 85(5), 053811 (2012).
[Crossref]

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Llorens, J. M.

Löffler, A.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Loncar, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(12), 051104 (2010).
[Crossref]

Martínez-Pastor, J. P.

Matsuo, S.

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

M. Takiguchi, H. Sumikura, M. D. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal,” Appl. Phys. Lett. 103(9), 091113 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
[Crossref]

Meystre, P.

R. Jin, D. Boggavarapu, M. Sargent, P. Meystre, H. M. Gibbs, and G. Khitrova, “Photon-number correlations near the threshold of microcavity lasers in the weak-coupling regime,” Phys. Rev. A 49(5), 4038–4042 (1994).
[Crossref] [PubMed]

Michler, P.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Muñoz-Camúñez, L. E.

Muñoz-Matutano, G.

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Observation of unique photon statistics of single artificial atom laser,” Physica E 42(10), 2489–2492 (2010).
[Crossref]

Notomi, M.

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

M. Takiguchi, H. Sumikura, M. D. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal,” Appl. Phys. Lett. 103(9), 091113 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
[Crossref]

T. Tawara, H. Kamada, Y. H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16(8), 5199–5205 (2008).
[Crossref] [PubMed]

Nozaki, K.

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
[Crossref]

Omachi, J.

N. Takemura, J. Omachi, and M. Kuwata-Gonokam, “Fast periodic modulations in the photon correlation of single-mode vertical-cavity surface-emitting laser,” Phys. Rev. A 85(5), 053811 (2012).
[Crossref]

Ota, Y.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89(2), 023824 (2014).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Observation of unique photon statistics of single artificial atom laser,” Physica E 42(10), 2489–2492 (2010).
[Crossref]

Painter, O.

J. Vuckovic, O. Painter, Y. Xu, and A. Yariv, “Finite-Difference Time-Domain Calculation of the Spontaneous Emission Coupling Factor in Optical Microcavities,” IEEE J. Quantum Electron. 35(8), 1168–1175 (1999).
[Crossref]

Petroff, P. M.

Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Postigo, P. A.

Prieto, I.

Rakher, M. T.

Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Reitzenstein, S.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

Ripalda, J. M.

Robles, C.

Rudra, A.

Ryou, J.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(12), 051104 (2010).
[Crossref]

Sargent, M.

R. Jin, D. Boggavarapu, M. Sargent, P. Meystre, H. M. Gibbs, and G. Khitrova, “Photon-number correlations near the threshold of microcavity lasers in the weak-coupling regime,” Phys. Rev. A 49(5), 4038–4042 (1994).
[Crossref] [PubMed]

Sato, T.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

M. Takiguchi, H. Sumikura, M. D. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal,” Appl. Phys. Lett. 103(9), 091113 (2013).
[Crossref]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
[Crossref]

Shinya, A.

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
[Crossref]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Sogawa, T.

Strauf, S.

Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Sumikura, H.

M. Takiguchi, H. Sumikura, M. D. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal,” Appl. Phys. Lett. 103(9), 091113 (2013).
[Crossref]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
[Crossref]

Taboada, A. G.

Takeda, K.

M. Takiguchi, H. Sumikura, M. D. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal,” Appl. Phys. Lett. 103(9), 091113 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

Takemura, N.

N. Takemura, J. Omachi, and M. Kuwata-Gonokam, “Fast periodic modulations in the photon correlation of single-mode vertical-cavity surface-emitting laser,” Phys. Rev. A 85(5), 053811 (2012).
[Crossref]

Takiguchi, M.

M. Takiguchi, H. Sumikura, M. D. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal,” Appl. Phys. Lett. 103(9), 091113 (2013).
[Crossref]

Tanabe, T.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
[Crossref]

T. Tawara, H. Kamada, Y. H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16(8), 5199–5205 (2008).
[Crossref] [PubMed]

Taniyama, H.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
[Crossref]

Tawara, T.

Ulrich, S. M.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

Vuckovic, J.

J. Vuckovic, O. Painter, Y. Xu, and A. Yariv, “Finite-Difference Time-Domain Calculation of the Spontaneous Emission Coupling Factor in Optical Microcavities,” IEEE J. Quantum Electron. 35(8), 1168–1175 (1999).
[Crossref]

Watanabe, K.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89(2), 023824 (2014).
[Crossref]

Wiersig, J.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

Xu, Y.

J. Vuckovic, O. Painter, Y. Xu, and A. Yariv, “Finite-Difference Time-Domain Calculation of the Spontaneous Emission Coupling Factor in Optical Microcavities,” IEEE J. Quantum Electron. 35(8), 1168–1175 (1999).
[Crossref]

Yamamoto, Y.

Y. Yamamoto and G. Björk, “Lasers without Inversion in Microcavities,” Jpn. J. Appl. Phys. 30(2), 2039–2041 (1991).
[Crossref]

G. Björk and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991).
[Crossref]

Yariv, A.

J. Vuckovic, O. Painter, Y. Xu, and A. Yariv, “Finite-Difference Time-Domain Calculation of the Spontaneous Emission Coupling Factor in Optical Microcavities,” IEEE J. Quantum Electron. 35(8), 1168–1175 (1999).
[Crossref]

Zhang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(12), 051104 (2010).
[Crossref]

Zhang, Y. H.

Appl. Phys. Lett. (3)

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(12), 051104 (2010).
[Crossref]

M. Takiguchi, H. Sumikura, M. D. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal,” Appl. Phys. Lett. 103(9), 091113 (2013).
[Crossref]

Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Vuckovic, O. Painter, Y. Xu, and A. Yariv, “Finite-Difference Time-Domain Calculation of the Spontaneous Emission Coupling Factor in Optical Microcavities,” IEEE J. Quantum Electron. 35(8), 1168–1175 (1999).
[Crossref]

G. Björk and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

IET Circuits Dev. Syst. (1)

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Dev. Syst. 5(2), 84–93 (2011).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

Y. Yamamoto and G. Björk, “Lasers without Inversion in Microcavities,” Jpn. J. Appl. Phys. 30(2), 2039–2041 (1991).
[Crossref]

Nature (1)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Rev. A (3)

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89(2), 023824 (2014).
[Crossref]

N. Takemura, J. Omachi, and M. Kuwata-Gonokam, “Fast periodic modulations in the photon correlation of single-mode vertical-cavity surface-emitting laser,” Phys. Rev. A 85(5), 053811 (2012).
[Crossref]

R. Jin, D. Boggavarapu, M. Sargent, P. Meystre, H. M. Gibbs, and G. Khitrova, “Photon-number correlations near the threshold of microcavity lasers in the weak-coupling regime,” Phys. Rev. A 49(5), 4038–4042 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007).
[Crossref] [PubMed]

D. Kleppner, “Inhibited Spontaneous Emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Physica E (1)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Observation of unique photon statistics of single artificial atom laser,” Physica E 42(10), 2489–2492 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of L3 photonic crystal (PhC) cavity structure. An active region is embedded inside L3 PhC cavity. (b) Schematic diagram of energy decay from calculation region. (c) Schematic of calculation condition. (d) Calculation result for magnetic field by FDTD method.

Fig. 2
Fig. 2

(a) Enlarged image of L3 photonic crystal and electric field by FDTD method. The slab thickness, air hole radius, and lattice constant are 240, 100, and 435 nm, respectively. (b) Dependence of β on excitation position for x and z-axes. (c) Dependence of β on detuning between cavity mode and emission spectrum. (d) Dependence of β on FWHM of MQW for L3 and width modulation cavity.

Fig. 3
Fig. 3

(a) Schematic of measurement setup. (b) SEM image of L3 cavity.

Fig. 4
Fig. 4

(a) Light-in versus light-out (L-L) curve for 2 nm detuning sample. (b) Lifetime, cavity wavelength shift and full width at half maximum for excitation power. (c) Photon correlation measurement for different pump powers. Red dotted line represents g (2) (0) = 1 . (d) L-L curve for 15 nm detuning sample. (f) Lifetime, cavity wavelength shift and full width at half maximum of excitation power. (g) Photon correlation measurement for different pump powers.

Fig. 5
Fig. 5

(a) Light-in versus light-out curve, fitting curve and lifetime for three different samples. (a) 1428 nm of cavity resonance. (b) 1423 nm of cavity resonance. (c) 1415 nm of cavity resonance. (d) Comparison of these devices on linear scale. (e) Summary of experimental β value for our several devices and β simulated by FDTD (Q ~2200).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β = QW F p η γ rad F p η γ rad + γ non + γ other d A QW d A
= QW S P cav d S d t d A QW S P d S d t d A ,

Metrics