Abstract

We studied a novel long range hybrid tube-wedge plasmonic (LRHTWP) waveguide consisting of a high index dielectric nanotube placed above a triangular metal wedge substrate. Using comprehensive numerical simulations on guiding properties of the designed waveguide, it is found that extreme light confinement and low propagation loss are obtained due to strong coupling between dielectric nanotube mode and wedge plasmon polariton. Comparing with previous studied hybrid plasmonic waveguides, the LRHTWP waveguide has longer propagation length and tighter mode confinement. In addition, the LRHTWP waveguide is quite tolerant to practical fabrication errors such as variation of the wedge tip angle and the horizontal misalignment between the nanotube and the metal wedge. The proposed LRHTWP waveguide could have many application potentials for various high performance nanophotonic components.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement

Yusheng Bian, Zheng Zheng, Ya Liu, Jiansheng Liu, Jinsong Zhu, and Tao Zhou
Opt. Express 19(23) 22417-22422 (2011)

Hollow hybrid plasmonic waveguide for nanoscale optical confinement with long-range propagation

Tarun Sharma and Mukesh Kumar
Appl. Opt. 53(9) 1954-1957 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
    [Crossref]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  4. J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).
    [Crossref]
  5. D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  6. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
    [Crossref] [PubMed]
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  8. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength lasmonic modes,” New J. Phys. 10(10), 105018 (2008).
    [Crossref]
  9. J. Zhu and Z. Q. Li, “Physical characteristics with SPP in the metallic nanowires structure,” Sci. China 55, 1776–1780 (2012).
  10. W. Wei, X. Zhang, H. Yu, Y. Q. Huang, and X. M. Ren, “Plasmonic waveguiding properties of the gap plasmon mode with a dielectric substrate,” Photonics Nanostruct. Fundam. Appl. 11(3), 279–287 (2013).
    [Crossref]
  11. S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6(9), 8128–8135 (2012).
    [Crossref] [PubMed]
  12. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
    [Crossref] [PubMed]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [Crossref] [PubMed]
  14. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004).
    [Crossref] [PubMed]
  15. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [Crossref] [PubMed]
  16. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17(23), 21320–21325 (2009).
    [Crossref] [PubMed]
  17. V. D. Ta, R. Chen, and H. D. Sun, “Wide-range coupling between surface plasmon polariton and cylindrical dielectric waveguide mode,” Opt. Express 19(14), 13598–13603 (2011).
    [Crossref] [PubMed]
  18. Y. S. Bian and Q. H. Gong, “Nanotube based hybrid plasmon polariton waveguide for propagation loss reduction and enhanced field confinement inside the gap region at the subwavelength scale,” Photonics Nanostruct. Fundam. Appl. 12(3), 259–267 (2014).
    [Crossref]
  19. Y. Bian and Q. Gong, “Nanotube based hybrid plasmon polariton waveguide for propagation loss reduction and enhanced field confinement inside the gap region at the subwavelength scale,” New J. Phys. 10, 105018 (2008).
  20. Y. S. Bian and Q. H. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photonics Rev. 8(4), 549–561 (2014).
    [Crossref]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  22. Y. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express 19(23), 22417–22422 (2011).
    [Crossref] [PubMed]
  23. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008).
    [Crossref] [PubMed]
  24. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [Crossref] [PubMed]
  25. A. Schleunitz and H. Schift, “Fabrication of 3D nanoimprint stamps with continuous reliefs using dose-modulated electron beam lithography and thermal reflow,” J. Micromech. Microeng. 20(9), 095002 (2010).
    [Crossref]
  26. J. Shao, S. Zhang, J. Liu, B.-R. Lu, N. Taksatorn, W. Lu, and Y. Chen, “Y shape gate formation in single layer of ZEP520A using 3D electron beam lithography,” Microelectron. Eng. 143, 37–40 (2015).
    [Crossref]
  27. R. Kirchner, V. A. Guzenko, M. Rohn, E. Sonntag, M. Mühlberger, I. Bergmair, and H. Schift, “Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration,” Microelectron. Eng. 141, 107–111 (2015).
    [Crossref]
  28. J. Sha, J. J. Niu, X. Y. Ma, J. Xu, X. B. Zhang, Q. Yang, and D. Yang, “Silicon nanotubes,” Adv. Mater. 14(17), 1219–1221 (2002).
    [Crossref]
  29. D. F. Perepichka and F. Rosei, “Silicon nanotubes,” Small 2(1), 22–25 (2006).
    [Crossref] [PubMed]
  30. M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, “Silicon nanotube battery anodes,” Nano Lett. 9(11), 3844–3847 (2009).
    [Crossref] [PubMed]
  31. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]

2015 (2)

J. Shao, S. Zhang, J. Liu, B.-R. Lu, N. Taksatorn, W. Lu, and Y. Chen, “Y shape gate formation in single layer of ZEP520A using 3D electron beam lithography,” Microelectron. Eng. 143, 37–40 (2015).
[Crossref]

R. Kirchner, V. A. Guzenko, M. Rohn, E. Sonntag, M. Mühlberger, I. Bergmair, and H. Schift, “Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration,” Microelectron. Eng. 141, 107–111 (2015).
[Crossref]

2014 (3)

Y. S. Bian and Q. H. Gong, “Nanotube based hybrid plasmon polariton waveguide for propagation loss reduction and enhanced field confinement inside the gap region at the subwavelength scale,” Photonics Nanostruct. Fundam. Appl. 12(3), 259–267 (2014).
[Crossref]

Y. S. Bian and Q. H. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photonics Rev. 8(4), 549–561 (2014).
[Crossref]

J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).
[Crossref]

2013 (1)

W. Wei, X. Zhang, H. Yu, Y. Q. Huang, and X. M. Ren, “Plasmonic waveguiding properties of the gap plasmon mode with a dielectric substrate,” Photonics Nanostruct. Fundam. Appl. 11(3), 279–287 (2013).
[Crossref]

2012 (2)

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6(9), 8128–8135 (2012).
[Crossref] [PubMed]

J. Zhu and Z. Q. Li, “Physical characteristics with SPP in the metallic nanowires structure,” Sci. China 55, 1776–1780 (2012).

2011 (2)

2010 (2)

A. Schleunitz and H. Schift, “Fabrication of 3D nanoimprint stamps with continuous reliefs using dose-modulated electron beam lithography and thermal reflow,” J. Micromech. Microeng. 20(9), 095002 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

2009 (4)

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, “Silicon nanotube battery anodes,” Nano Lett. 9(11), 3844–3847 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[Crossref] [PubMed]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17(23), 21320–21325 (2009).
[Crossref] [PubMed]

2008 (4)

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength lasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Y. Bian and Q. Gong, “Nanotube based hybrid plasmon polariton waveguide for propagation loss reduction and enhanced field confinement inside the gap region at the subwavelength scale,” New J. Phys. 10, 105018 (2008).

2007 (1)

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[Crossref]

2006 (3)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

D. F. Perepichka and F. Rosei, “Silicon nanotubes,” Small 2(1), 22–25 (2006).
[Crossref] [PubMed]

2005 (2)

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

J. Sha, J. J. Niu, X. Y. Ma, J. Xu, X. B. Zhang, Q. Yang, and D. Yang, “Silicon nanotubes,” Adv. Mater. 14(17), 1219–1221 (2002).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ahn, S.

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, “Silicon nanotube battery anodes,” Nano Lett. 9(11), 3844–3847 (2009).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength lasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Bergmair, I.

R. Kirchner, V. A. Guzenko, M. Rohn, E. Sonntag, M. Mühlberger, I. Bergmair, and H. Schift, “Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration,” Microelectron. Eng. 141, 107–111 (2015).
[Crossref]

Bian, Y.

Bian, Y. S.

Y. S. Bian and Q. H. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photonics Rev. 8(4), 549–561 (2014).
[Crossref]

Y. S. Bian and Q. H. Gong, “Nanotube based hybrid plasmon polariton waveguide for propagation loss reduction and enhanced field confinement inside the gap region at the subwavelength scale,” Photonics Nanostruct. Fundam. Appl. 12(3), 259–267 (2014).
[Crossref]

Boltasseva, A.

Bozhelvonyi, S. I.

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Bozhevolnyi, S. I.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Brongersma, M. L.

Catrysse, P. B.

Chen, R.

Chen, Y.

J. Shao, S. Zhang, J. Liu, B.-R. Lu, N. Taksatorn, W. Lu, and Y. Chen, “Y shape gate formation in single layer of ZEP520A using 3D electron beam lithography,” Microelectron. Eng. 143, 37–40 (2015).
[Crossref]

Cho, J.

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, “Silicon nanotube battery anodes,” Nano Lett. 9(11), 3844–3847 (2009).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cui, Y.

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, “Silicon nanotube battery anodes,” Nano Lett. 9(11), 3844–3847 (2009).
[Crossref] [PubMed]

Dai, D.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gong, Q.

Y. Bian and Q. Gong, “Nanotube based hybrid plasmon polariton waveguide for propagation loss reduction and enhanced field confinement inside the gap region at the subwavelength scale,” New J. Phys. 10, 105018 (2008).

Gong, Q. H.

Y. S. Bian and Q. H. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photonics Rev. 8(4), 549–561 (2014).
[Crossref]

Y. S. Bian and Q. H. Gong, “Nanotube based hybrid plasmon polariton waveguide for propagation loss reduction and enhanced field confinement inside the gap region at the subwavelength scale,” Photonics Nanostruct. Fundam. Appl. 12(3), 259–267 (2014).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004).
[Crossref] [PubMed]

Guzenko, V. A.

R. Kirchner, V. A. Guzenko, M. Rohn, E. Sonntag, M. Mühlberger, I. Bergmair, and H. Schift, “Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration,” Microelectron. Eng. 141, 107–111 (2015).
[Crossref]

Han, Z.

He, S.

Huang, Y. Q.

W. Wei, X. Zhang, H. Yu, Y. Q. Huang, and X. M. Ren, “Plasmonic waveguiding properties of the gap plasmon mode with a dielectric substrate,” Photonics Nanostruct. Fundam. Appl. 11(3), 279–287 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joo, J.

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, “Silicon nanotube battery anodes,” Nano Lett. 9(11), 3844–3847 (2009).
[Crossref] [PubMed]

Kim, J.

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, “Silicon nanotube battery anodes,” Nano Lett. 9(11), 3844–3847 (2009).
[Crossref] [PubMed]

Kim, K.

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, “Silicon nanotube battery anodes,” Nano Lett. 9(11), 3844–3847 (2009).
[Crossref] [PubMed]

Kim, M. G.

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, “Silicon nanotube battery anodes,” Nano Lett. 9(11), 3844–3847 (2009).
[Crossref] [PubMed]

Kimerling, L.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[Crossref]

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[Crossref]

Kirchner, R.

R. Kirchner, V. A. Guzenko, M. Rohn, E. Sonntag, M. Mühlberger, I. Bergmair, and H. Schift, “Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration,” Microelectron. Eng. 141, 107–111 (2015).
[Crossref]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Li, Z. Q.

J. Zhu and Z. Q. Li, “Physical characteristics with SPP in the metallic nanowires structure,” Sci. China 55, 1776–1780 (2012).

Liu, J.

J. Shao, S. Zhang, J. Liu, B.-R. Lu, N. Taksatorn, W. Lu, and Y. Chen, “Y shape gate formation in single layer of ZEP520A using 3D electron beam lithography,” Microelectron. Eng. 143, 37–40 (2015).
[Crossref]

Y. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express 19(23), 22417–22422 (2011).
[Crossref] [PubMed]

Liu, L.

Liu, Y.

Lu, B.-R.

J. Shao, S. Zhang, J. Liu, B.-R. Lu, N. Taksatorn, W. Lu, and Y. Chen, “Y shape gate formation in single layer of ZEP520A using 3D electron beam lithography,” Microelectron. Eng. 143, 37–40 (2015).
[Crossref]

Lu, W.

J. Shao, S. Zhang, J. Liu, B.-R. Lu, N. Taksatorn, W. Lu, and Y. Chen, “Y shape gate formation in single layer of ZEP520A using 3D electron beam lithography,” Microelectron. Eng. 143, 37–40 (2015).
[Crossref]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Ma, X. Y.

J. Sha, J. J. Niu, X. Y. Ma, J. Xu, X. B. Zhang, Q. Yang, and D. Yang, “Silicon nanotubes,” Adv. Mater. 14(17), 1219–1221 (2002).
[Crossref]

Moreno, E.

Mühlberger, M.

R. Kirchner, V. A. Guzenko, M. Rohn, E. Sonntag, M. Mühlberger, I. Bergmair, and H. Schift, “Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration,” Microelectron. Eng. 141, 107–111 (2015).
[Crossref]

Nielsen, R. B.

Niu, J. J.

J. Sha, J. J. Niu, X. Y. Ma, J. Xu, X. B. Zhang, Q. Yang, and D. Yang, “Silicon nanotubes,” Adv. Mater. 14(17), 1219–1221 (2002).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength lasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Park, M. H.

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, “Silicon nanotube battery anodes,” Nano Lett. 9(11), 3844–3847 (2009).
[Crossref] [PubMed]

Perepichka, D. F.

D. F. Perepichka and F. Rosei, “Silicon nanotubes,” Small 2(1), 22–25 (2006).
[Crossref] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength lasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004).
[Crossref] [PubMed]

Ren, X. M.

W. Wei, X. Zhang, H. Yu, Y. Q. Huang, and X. M. Ren, “Plasmonic waveguiding properties of the gap plasmon mode with a dielectric substrate,” Photonics Nanostruct. Fundam. Appl. 11(3), 279–287 (2013).
[Crossref]

Rodrigo, S. G.

Rohn, M.

R. Kirchner, V. A. Guzenko, M. Rohn, E. Sonntag, M. Mühlberger, I. Bergmair, and H. Schift, “Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration,” Microelectron. Eng. 141, 107–111 (2015).
[Crossref]

Rosei, F.

D. F. Perepichka and F. Rosei, “Silicon nanotubes,” Small 2(1), 22–25 (2006).
[Crossref] [PubMed]

Schift, H.

R. Kirchner, V. A. Guzenko, M. Rohn, E. Sonntag, M. Mühlberger, I. Bergmair, and H. Schift, “Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration,” Microelectron. Eng. 141, 107–111 (2015).
[Crossref]

A. Schleunitz and H. Schift, “Fabrication of 3D nanoimprint stamps with continuous reliefs using dose-modulated electron beam lithography and thermal reflow,” J. Micromech. Microeng. 20(9), 095002 (2010).
[Crossref]

Schleunitz, A.

A. Schleunitz and H. Schift, “Fabrication of 3D nanoimprint stamps with continuous reliefs using dose-modulated electron beam lithography and thermal reflow,” J. Micromech. Microeng. 20(9), 095002 (2010).
[Crossref]

Selker, M. D.

Sha, J.

J. Sha, J. J. Niu, X. Y. Ma, J. Xu, X. B. Zhang, Q. Yang, and D. Yang, “Silicon nanotubes,” Adv. Mater. 14(17), 1219–1221 (2002).
[Crossref]

Shao, J.

J. Shao, S. Zhang, J. Liu, B.-R. Lu, N. Taksatorn, W. Lu, and Y. Chen, “Y shape gate formation in single layer of ZEP520A using 3D electron beam lithography,” Microelectron. Eng. 143, 37–40 (2015).
[Crossref]

Sonntag, E.

R. Kirchner, V. A. Guzenko, M. Rohn, E. Sonntag, M. Mühlberger, I. Bergmair, and H. Schift, “Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration,” Microelectron. Eng. 141, 107–111 (2015).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Sun, H. D.

Ta, V. D.

Taksatorn, N.

J. Shao, S. Zhang, J. Liu, B.-R. Lu, N. Taksatorn, W. Lu, and Y. Chen, “Y shape gate formation in single layer of ZEP520A using 3D electron beam lithography,” Microelectron. Eng. 143, 37–40 (2015).
[Crossref]

Volkov, V. S.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Wang, J.

J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).
[Crossref]

Wei, W.

W. Wei, X. Zhang, H. Yu, Y. Q. Huang, and X. M. Ren, “Plasmonic waveguiding properties of the gap plasmon mode with a dielectric substrate,” Photonics Nanostruct. Fundam. Appl. 11(3), 279–287 (2013).
[Crossref]

Xu, H.

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6(9), 8128–8135 (2012).
[Crossref] [PubMed]

Xu, J.

J. Sha, J. J. Niu, X. Y. Ma, J. Xu, X. B. Zhang, Q. Yang, and D. Yang, “Silicon nanotubes,” Adv. Mater. 14(17), 1219–1221 (2002).
[Crossref]

Yang, D.

J. Sha, J. J. Niu, X. Y. Ma, J. Xu, X. B. Zhang, Q. Yang, and D. Yang, “Silicon nanotubes,” Adv. Mater. 14(17), 1219–1221 (2002).
[Crossref]

Yang, Q.

J. Sha, J. J. Niu, X. Y. Ma, J. Xu, X. B. Zhang, Q. Yang, and D. Yang, “Silicon nanotubes,” Adv. Mater. 14(17), 1219–1221 (2002).
[Crossref]

Yu, H.

W. Wei, X. Zhang, H. Yu, Y. Q. Huang, and X. M. Ren, “Plasmonic waveguiding properties of the gap plasmon mode with a dielectric substrate,” Photonics Nanostruct. Fundam. Appl. 11(3), 279–287 (2013).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, S.

J. Shao, S. Zhang, J. Liu, B.-R. Lu, N. Taksatorn, W. Lu, and Y. Chen, “Y shape gate formation in single layer of ZEP520A using 3D electron beam lithography,” Microelectron. Eng. 143, 37–40 (2015).
[Crossref]

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6(9), 8128–8135 (2012).
[Crossref] [PubMed]

Zhang, X.

W. Wei, X. Zhang, H. Yu, Y. Q. Huang, and X. M. Ren, “Plasmonic waveguiding properties of the gap plasmon mode with a dielectric substrate,” Photonics Nanostruct. Fundam. Appl. 11(3), 279–287 (2013).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength lasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhang, X. B.

J. Sha, J. J. Niu, X. Y. Ma, J. Xu, X. B. Zhang, Q. Yang, and D. Yang, “Silicon nanotubes,” Adv. Mater. 14(17), 1219–1221 (2002).
[Crossref]

Zhao, X.

Zheng, Z.

Zhou, T.

Zhu, J.

Zia, R.

ACS Nano (1)

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6(9), 8128–8135 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

J. Sha, J. J. Niu, X. Y. Ma, J. Xu, X. B. Zhang, Q. Yang, and D. Yang, “Silicon nanotubes,” Adv. Mater. 14(17), 1219–1221 (2002).
[Crossref]

Front. Optoelectron. (1)

J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).
[Crossref]

J. Micromech. Microeng. (1)

A. Schleunitz and H. Schift, “Fabrication of 3D nanoimprint stamps with continuous reliefs using dose-modulated electron beam lithography and thermal reflow,” J. Micromech. Microeng. 20(9), 095002 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

Y. S. Bian and Q. H. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photonics Rev. 8(4), 549–561 (2014).
[Crossref]

Microelectron. Eng. (2)

J. Shao, S. Zhang, J. Liu, B.-R. Lu, N. Taksatorn, W. Lu, and Y. Chen, “Y shape gate formation in single layer of ZEP520A using 3D electron beam lithography,” Microelectron. Eng. 143, 37–40 (2015).
[Crossref]

R. Kirchner, V. A. Guzenko, M. Rohn, E. Sonntag, M. Mühlberger, I. Bergmair, and H. Schift, “Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration,” Microelectron. Eng. 141, 107–111 (2015).
[Crossref]

Nano Lett. (1)

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, “Silicon nanotube battery anodes,” Nano Lett. 9(11), 3844–3847 (2009).
[Crossref] [PubMed]

Nat. Photonics (3)

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[Crossref]

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

New J. Phys. (2)

Y. Bian and Q. Gong, “Nanotube based hybrid plasmon polariton waveguide for propagation loss reduction and enhanced field confinement inside the gap region at the subwavelength scale,” New J. Phys. 10, 105018 (2008).

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength lasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Photonics Nanostruct. Fundam. Appl. (2)

W. Wei, X. Zhang, H. Yu, Y. Q. Huang, and X. M. Ren, “Plasmonic waveguiding properties of the gap plasmon mode with a dielectric substrate,” Photonics Nanostruct. Fundam. Appl. 11(3), 279–287 (2013).
[Crossref]

Y. S. Bian and Q. H. Gong, “Nanotube based hybrid plasmon polariton waveguide for propagation loss reduction and enhanced field confinement inside the gap region at the subwavelength scale,” Photonics Nanostruct. Fundam. Appl. 12(3), 259–267 (2014).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Sci. China (1)

J. Zhu and Z. Q. Li, “Physical characteristics with SPP in the metallic nanowires structure,” Sci. China 55, 1776–1780 (2012).

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Small (1)

D. F. Perepichka and F. Rosei, “Silicon nanotubes,” Small 2(1), 22–25 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration of the proposed HWTP waveguide.
Fig. 2
Fig. 2 (a) Electric field distributions of the hybrid plasmonic mode supported by the proposed LRHWTP waveguide when R = 120 nm, r/R = 0.5, g = 5 nm, ɵ = 90 deg and rw = 10 nm; (b) The field profile along the X dashed line; (c) The field profile along the Y dashed line.
Fig. 3
Fig. 3 Electric field distributions of the hybrid plasmonic mode supported by the proposed LRHWTP waveguide: (a) R = 120 nm, g = 5 nm, r/R = 0.2, rw = 10 nm, ɵ = 60 deg; (b) R = 120 nm, g = 5 nm, r/R = 0.5, rw = 10 nm, ɵ = 60 deg; (c) R = 120 nm, g = 5 nm, r/R = 0.8, rw = 10 nm, ɵ = 60 deg; (d) R = 120 nm, g = 5 nm, r/R = 0.2, rw = 10 nm, ɵ = 90 deg; (e) R = 120 nm, g = 5 nm, r/R = 0.5, rw = 10 nm, ɵ = 90 deg; (f) R = 120 nm, g = 5 nm, r/R = 0.8, rw = 10 nm, ɵ = 90 deg; (g) R = 120 nm, g = 5 nm, r/R = 0.2, rw = 10 nm, ɵ = 120 deg; (h) R = 120 nm, g = 5 nm, r/R = 0.5, rw = 10 nm, ɵ = 120 deg; (i) R = 120 nm, g = 5 nm, r/R = 0.8, rw = 10 nm, ɵ = 120 deg.
Fig. 4
Fig. 4 Electric field distributions of the hybrid plasmonic mode supported by LRHWTP waveguide: (a) R = 60 nm, g = 5 nm, r/R = 0.5, rw = 10 nm, ɵ = 90 deg; (b) R = 120 nm, g = 5 nm, r/R = 0.5, rw = 10 nm, ɵ = 90 deg; (c) R = 180 nm, g = 5 nm, r/R = 0.5, rw = 10 nm, ɵ = 90 deg; (d) R = 60 nm, g = 10 nm, r/R = 0.5, rw = 10 nm, ɵ = 90 deg; (e) R = 120 nm, g = 10 nm, r/R = 0.5, rw = 10 nm, ɵ = 90 deg; (f) R = 180 nm, g = 10 nm, r/R = 0.5, rw = 10 nm, ɵ = 90 deg; (g) R = 60 nm, g = 15 nm, r/R = 0.5, rw = 10 nm, ɵ = 90 deg; (h) R = 120 nm, g = 15 nm, r/R = 0.5, rw = 10 nm, ɵ = 90 deg; (i) R = 180 nm, g = 15 nm, r/R = 0.5, rw = 10 nm, ɵ = 90 deg.
Fig. 5
Fig. 5 Schematic illustration of the nanotube based hybrid plasmonic waveguide(a) [18] and hybrid wedge plasmonic waveguide(b) [22].
Fig. 6
Fig. 6 Dependence of hybrid plasmonic modal properties on gap distance and radius of the dielectric cylinder for NHP waveguide, HWP waveguide and LRHTWP waveguide: (a) and (c) propagation length; (b) and (d) normalized modal area; the radius of the dielectric cylinder and the outer radius of the tube in these waveguides are the same as 120 nm. The inset pictures are electric field distributions of hybrid modes.
Fig. 7
Fig. 7 Schematic diagram of the process flow.
Fig. 8
Fig. 8 Dependence of the propagation length on (a) horizontal misalignment δx (rw = 10 nm) and (c) the metal tip curvature radius rw; dependence of the normalized modal area on (b) horizontal misalignment δx (rw = 10 nm) and (d) the metal tip curvature radius rw when R = 120 nm, g = 5 nm, r/R = 0.8

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A eff = W(r)dA max(W(r))
W(r)= 1 2 Re{ dωε(r) dω } | E(r) | 2 + 1 2 μ 0 | H(r) | 2

Metrics