Abstract

This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% ± 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, λ = 1.55 µm. We demonstrated photon counting on a detector with an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a system detection efficiency of 1.64% ± 0.13%. We explain the key steps that are required to improve further the coupling efficiency.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw
Opt. Express 25(22) 26792-26801 (2017)

Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency

Xiaolong Hu, Tian Zhong, James E. White, Eric A. Dauler, Faraz Najafi, Charles H. Herder, Franco N. C. Wong, and Karl K. Berggren
Opt. Lett. 34(23) 3607-3609 (2009)

A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection

Shigehito Miki, Taro Yamashita, Zhen Wang, and Hirotaka Terai
Opt. Express 22(7) 7811-7820 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Manor and S. Arnon, “Performance of an optical wireless communication system as a function of wavelength,” Appl. Opt. 42(21), 4285–4294 (2003).
    [Crossref] [PubMed]
  2. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
    [Crossref]
  3. F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient Single Photon Detection from 500 nm to 5 μm Wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
    [Crossref] [PubMed]
  4. F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  5. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
    [Crossref] [PubMed]
  6. T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
    [Crossref] [PubMed]
  7. F. Mattioli, M. Ejrnaes, A. Gaggero, A. Casaburi, R. Cristiano, S. Pagano, and R. Leoni, “Large area single photon detectors based on parallel configuration NbN nanowires,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 30(3), 031204 (2012).
  8. A. Casaburi, A. Pizzone, and R. H. Hadfield, “Large area superconducting nanowire single photon detector arrays,” Proc. Fotonica AEIT Italian Conf. Photon. Technol. (2014), pp. 1–4.
    [Crossref]
  9. T. Onaka, Y. Sugiyama, and S. Miura, “Telescope system of the infrared imaging surveyor (IRIS),” Infr. Astron. Instr. 3354, 900–904 (1998).
    [Crossref]
  10. M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
    [Crossref]
  11. K. H. Hinkle, R. Cuberly, N. Gaughan, J. Heynssens, R. Joyce, S. Ridgway, P. Schmitt, and J. E. Simmons, “Phoenix : a cryogenic high-resolution 1-5 micron infrared spectrograph,” Proc. SPIE 3354, 810–821 (1998).
    [Crossref]
  12. B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
    [Crossref]
  13. T. H. Buttgenbach and S. Member, “An improved solution for integrated array optics in quasi-optical mm and submm receivers : the hybrid antenna,” IEEE Trans. Microw. Theory Tech. 41(10), 1750–1760 (1993).
    [Crossref]
  14. A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).
  15. A. J. Kerman, E. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
    [Crossref]
  16. A. J. Kerman, E. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
    [Crossref]
  17. S. A. Self, “Focusing of spherical Gaussian beams,” Appl. Opt. 22(5), 658–661 (1983).
    [Crossref] [PubMed]
  18. T. W. J. Geist, N. Foerster, D. Hengstler, S. Kempf, E. Pavlov, C. Pies, P. Ranitzsch, S. Schäfer, V. Schultheiss and C. E. L. Gastaldo, A. Fleischmann, “Low temperature particle detectors with magnetic penetration depth thermometers.” LTD-15 Abstract (2013).
  19. J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).
  20. B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
    [Crossref]
  21. J. W. Ekin, Experimental Techniques for Low-Temperature (Oxford University Press Inc., 2006)

2015 (1)

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

2013 (4)

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref] [PubMed]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

2012 (2)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient Single Photon Detection from 500 nm to 5 μm Wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

F. Mattioli, M. Ejrnaes, A. Gaggero, A. Casaburi, R. Cristiano, S. Pagano, and R. Leoni, “Large area single photon detectors based on parallel configuration NbN nanowires,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 30(3), 031204 (2012).

2011 (1)

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

2007 (2)

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

A. J. Kerman, E. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

2006 (1)

A. J. Kerman, E. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

2003 (1)

2002 (1)

A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

1998 (2)

T. Onaka, Y. Sugiyama, and S. Miura, “Telescope system of the infrared imaging surveyor (IRIS),” Infr. Astron. Instr. 3354, 900–904 (1998).
[Crossref]

K. H. Hinkle, R. Cuberly, N. Gaughan, J. Heynssens, R. Joyce, S. Ridgway, P. Schmitt, and J. E. Simmons, “Phoenix : a cryogenic high-resolution 1-5 micron infrared spectrograph,” Proc. SPIE 3354, 810–821 (1998).
[Crossref]

1993 (1)

T. H. Buttgenbach and S. Member, “An improved solution for integrated array optics in quasi-optical mm and submm receivers : the hybrid antenna,” IEEE Trans. Microw. Theory Tech. 41(10), 1750–1760 (1993).
[Crossref]

1983 (1)

Allman, M. S.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Anant, V.

A. J. Kerman, E. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

Arnon, S.

Baek, B.

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

Bellei, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient Single Photon Detection from 500 nm to 5 μm Wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Berggren, K. K.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient Single Photon Detection from 500 nm to 5 μm Wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

A. J. Kerman, E. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

A. J. Kerman, E. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Beyer, A.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Bumble, B.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Buttgenbach, T. H.

T. H. Buttgenbach and S. Member, “An improved solution for integrated array optics in quasi-optical mm and submm receivers : the hybrid antenna,” IEEE Trans. Microw. Theory Tech. 41(10), 1750–1760 (1993).
[Crossref]

Casaburi, A.

F. Mattioli, M. Ejrnaes, A. Gaggero, A. Casaburi, R. Cristiano, S. Pagano, and R. Leoni, “Large area single photon detectors based on parallel configuration NbN nanowires,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 30(3), 031204 (2012).

A. Casaburi, A. Pizzone, and R. H. Hadfield, “Large area superconducting nanowire single photon detector arrays,” Proc. Fotonica AEIT Italian Conf. Photon. Technol. (2014), pp. 1–4.
[Crossref]

Chulkova, G.

A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Cristiano, R.

F. Mattioli, M. Ejrnaes, A. Gaggero, A. Casaburi, R. Cristiano, S. Pagano, and R. Leoni, “Large area single photon detectors based on parallel configuration NbN nanowires,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 30(3), 031204 (2012).

Cuberly, R.

K. H. Hinkle, R. Cuberly, N. Gaughan, J. Heynssens, R. Joyce, S. Ridgway, P. Schmitt, and J. E. Simmons, “Phoenix : a cryogenic high-resolution 1-5 micron infrared spectrograph,” Proc. SPIE 3354, 810–821 (1998).
[Crossref]

Dane, A. E.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient Single Photon Detection from 500 nm to 5 μm Wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Dauler, E.

A. J. Kerman, E. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

A. J. Kerman, E. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Dauler, E. A.

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref] [PubMed]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient Single Photon Detection from 500 nm to 5 μm Wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Divochiy, A.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Duggan, G. E.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Ejrnaes, M.

F. Mattioli, M. Ejrnaes, A. Gaggero, A. Casaburi, R. Cristiano, S. Pagano, and R. Leoni, “Large area single photon detectors based on parallel configuration NbN nanowires,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 30(3), 031204 (2012).

Gaggero, A.

F. Mattioli, M. Ejrnaes, A. Gaggero, A. Casaburi, R. Cristiano, S. Pagano, and R. Leoni, “Large area single photon detectors based on parallel configuration NbN nanowires,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 30(3), 031204 (2012).

Gaughan, N.

K. H. Hinkle, R. Cuberly, N. Gaughan, J. Heynssens, R. Joyce, S. Ridgway, P. Schmitt, and J. E. Simmons, “Phoenix : a cryogenic high-resolution 1-5 micron infrared spectrograph,” Proc. SPIE 3354, 810–821 (1998).
[Crossref]

Gerrits, T.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Gol, G.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Gol’tsman, G.

A. J. Kerman, E. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Gol’tsman, G. N.

A. J. Kerman, E. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Hadfield, R. H.

A. Casaburi, A. Pizzone, and R. H. Hadfield, “Large area superconducting nanowire single photon detector arrays,” Proc. Fotonica AEIT Italian Conf. Photon. Technol. (2014), pp. 1–4.
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Heynssens, J.

K. H. Hinkle, R. Cuberly, N. Gaughan, J. Heynssens, R. Joyce, S. Ridgway, P. Schmitt, and J. E. Simmons, “Phoenix : a cryogenic high-resolution 1-5 micron infrared spectrograph,” Proc. SPIE 3354, 810–821 (1998).
[Crossref]

Hinkle, K. H.

K. H. Hinkle, R. Cuberly, N. Gaughan, J. Heynssens, R. Joyce, S. Ridgway, P. Schmitt, and J. E. Simmons, “Phoenix : a cryogenic high-resolution 1-5 micron infrared spectrograph,” Proc. SPIE 3354, 810–821 (1998).
[Crossref]

Horansky, R. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Johnson, M.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Joyce, R.

K. H. Hinkle, R. Cuberly, N. Gaughan, J. Heynssens, R. Joyce, S. Ridgway, P. Schmitt, and J. E. Simmons, “Phoenix : a cryogenic high-resolution 1-5 micron infrared spectrograph,” Proc. SPIE 3354, 810–821 (1998).
[Crossref]

Jukna, A.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Kaurova, N.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Keicher, W. E.

A. J. Kerman, E. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Kerman, A. J.

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref] [PubMed]

A. J. Kerman, E. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

A. J. Kerman, E. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Kitaygorsky, J.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Komissarov, I.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Korneev, A.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).

Kumor, D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Leoni, R.

F. Mattioli, M. Ejrnaes, A. Gaggero, A. Casaburi, R. Cristiano, S. Pagano, and R. Leoni, “Large area single photon detectors based on parallel configuration NbN nanowires,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 30(3), 031204 (2012).

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Lipatov, A. P.

A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).

Lita, A. E.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

Lita, E.

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Manor, H.

Marsden, D.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Marsili, F.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient Single Photon Detection from 500 nm to 5 μm Wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Mattioli, F.

F. Mattioli, M. Ejrnaes, A. Gaggero, A. Casaburi, R. Cristiano, S. Pagano, and R. Leoni, “Large area single photon detectors based on parallel configuration NbN nanowires,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 30(3), 031204 (2012).

Mazin, B. A.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Meeker, S. R.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Member, S.

T. H. Buttgenbach and S. Member, “An improved solution for integrated array optics in quasi-optical mm and submm receivers : the hybrid antenna,” IEEE Trans. Microw. Theory Tech. 41(10), 1750–1760 (1993).
[Crossref]

Miki, S.

Milostnaya, I.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Minaeva, O.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Mirin, R.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Mirin, R. P.

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Miura, S.

T. Onaka, Y. Sugiyama, and S. Miura, “Telescope system of the infrared imaging surveyor (IRIS),” Infr. Astron. Instr. 3354, 900–904 (1998).
[Crossref]

Molnar, R. J.

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref] [PubMed]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient Single Photon Detection from 500 nm to 5 μm Wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Najafi, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient Single Photon Detection from 500 nm to 5 μm Wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Nam, S. W.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

O’Brien, K.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Okunev, O.

A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Onaka, T.

T. Onaka, Y. Sugiyama, and S. Miura, “Telescope system of the infrared imaging surveyor (IRIS),” Infr. Astron. Instr. 3354, 900–904 (1998).
[Crossref]

Pagano, S.

F. Mattioli, M. Ejrnaes, A. Gaggero, A. Casaburi, R. Cristiano, S. Pagano, and R. Leoni, “Large area single photon detectors based on parallel configuration NbN nanowires,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 30(3), 031204 (2012).

Pan, D.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Pizzone, A.

A. Casaburi, A. Pizzone, and R. H. Hadfield, “Large area superconducting nanowire single photon detector arrays,” Proc. Fotonica AEIT Italian Conf. Photon. Technol. (2014), pp. 1–4.
[Crossref]

Ridgway, S.

K. H. Hinkle, R. Cuberly, N. Gaughan, J. Heynssens, R. Joyce, S. Ridgway, P. Schmitt, and J. E. Simmons, “Phoenix : a cryogenic high-resolution 1-5 micron infrared spectrograph,” Proc. SPIE 3354, 810–821 (1998).
[Crossref]

Rosenberg, D.

Rosfjord, K. M.

A. J. Kerman, E. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

Schmitt, P.

K. H. Hinkle, R. Cuberly, N. Gaughan, J. Heynssens, R. Joyce, S. Ridgway, P. Schmitt, and J. E. Simmons, “Phoenix : a cryogenic high-resolution 1-5 micron infrared spectrograph,” Proc. SPIE 3354, 810–821 (1998).
[Crossref]

Self, S. A.

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Shaw, M. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Simmons, J. E.

K. H. Hinkle, R. Cuberly, N. Gaughan, J. Heynssens, R. Joyce, S. Ridgway, P. Schmitt, and J. E. Simmons, “Phoenix : a cryogenic high-resolution 1-5 micron infrared spectrograph,” Proc. SPIE 3354, 810–821 (1998).
[Crossref]

Slysz, W.

A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Sobolewski, R.

A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Sobolewski, R. R.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Stern, J.

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Stevens, M.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Stoughton, C.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Strader, M. J.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Sugiyama, Y.

T. Onaka, Y. Sugiyama, and S. Miura, “Telescope system of the infrared imaging surveyor (IRIS),” Infr. Astron. Instr. 3354, 900–904 (1998).
[Crossref]

Szypryt, P.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Tarkhov, M.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Terai, H.

Ulbricht, G.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

van Eyken, J. C.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verevkin, A. A.

A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).

Verma, V.

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

Verma, V. B.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Voronov, B.

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

A. J. Kerman, E. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Voronov, B. M.

A. J. Kerman, E. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

Walter, A. B.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Wang, Z.

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

Yamashita, T.

Yang, J. K. W.

A. J. Kerman, E. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

A. J. Kerman, E. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Zhang, J.

A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).

Appl. Opt. (2)

Appl. Phys. Lett. (5)

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

A. J. Kerman, E. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

A. J. Kerman, E. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

T. H. Buttgenbach and S. Member, “An improved solution for integrated array optics in quasi-optical mm and submm receivers : the hybrid antenna,” IEEE Trans. Microw. Theory Tech. 41(10), 1750–1760 (1993).
[Crossref]

IEEE Trans. on Appl. Supercon. (1)

J. Kitaygorsky, I. Komissarov, A. Jukna, D. Pan, O. Minaeva, N. Kaurova, A. Divochiy, A. Korneev, M. Tarkhov, B. Voronov, I. Milostnaya, G. Gol, and R. R. Sobolewski, “Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges,” IEEE Trans. on Appl. Supercon. 17(2), 275–278 (2007).

Infr. Astron. Instr. (1)

T. Onaka, Y. Sugiyama, and S. Miura, “Telescope system of the infrared imaging surveyor (IRIS),” Infr. Astron. Instr. 3354, 900–904 (1998).
[Crossref]

J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. (1)

F. Mattioli, M. Ejrnaes, A. Gaggero, A. Casaburi, R. Cristiano, S. Pagano, and R. Leoni, “Large area single photon detectors based on parallel configuration NbN nanowires,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 30(3), 031204 (2012).

Nano Lett. (1)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient Single Photon Detection from 500 nm to 5 μm Wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Marsili, V. B. Verma, J. Stern, S. Harrington, E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Opt. Express (2)

Proc. SPIE (2)

A. A. Verevkin, J. Zhang, W. Slysz, R. Sobolewski, A. P. Lipatov, O. Okunev, G. Chulkova, A. Korneev, and G. N. Gol’tsman, “Superconducting single-photon detectors for GHz-rate free-space quantum communications,” Proc. SPIE 4821, 447–454 (2002).

K. H. Hinkle, R. Cuberly, N. Gaughan, J. Heynssens, R. Joyce, S. Ridgway, P. Schmitt, and J. E. Simmons, “Phoenix : a cryogenic high-resolution 1-5 micron infrared spectrograph,” Proc. SPIE 3354, 810–821 (1998).
[Crossref]

Publ. Astron. Soc. Pac. (1)

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. van Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, M. Johnson, B. Bumble, K. O’Brien, and C. Stoughton, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013).
[Crossref]

Other (3)

A. Casaburi, A. Pizzone, and R. H. Hadfield, “Large area superconducting nanowire single photon detector arrays,” Proc. Fotonica AEIT Italian Conf. Photon. Technol. (2014), pp. 1–4.
[Crossref]

T. W. J. Geist, N. Foerster, D. Hengstler, S. Kempf, E. Pavlov, C. Pies, P. Ranitzsch, S. Schäfer, V. Schultheiss and C. E. L. Gastaldo, A. Fleischmann, “Low temperature particle detectors with magnetic penetration depth thermometers.” LTD-15 Abstract (2013).

J. W. Ekin, Experimental Techniques for Low-Temperature (Oxford University Press Inc., 2006)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Picture of the complete optical setup used for imaging the chip and focusing the light on the SNSPD. The SNSPD chip and Lens 3 were mounted inside the cryostat. The picture was selectively cropped. (b) Schematic of the optical setup used for chip imaging and beam focusing. The green lines represent the path of the light beam used by the imaging system. The red lines represent the path of the light beam that is focused on the detector. The polarizing beamsplitters are used only for the imaging system. For the detection efficiency characterization, we use a quarter-wave and a half-wave plate to maximize the transmission through the beamsplitters.

Fig. 2
Fig. 2

(a) Beam profile of the spot light focused by the focusing system measured with a beam profiler. The profile is fitted with a Gaussian profile to extrapolate the beam waist. (b) Image of the SNSPD detector on a 200-µm-diameter field of view taken with the optical setup. The bright dot is the beam from a λ = 635 nm laser focused on the chip. The spotlight was moved to place it on the area where an SNSPD was fabricated (inside the red circle).

Fig. 3
Fig. 3

(a) Schematic of the cryostat. The entire system is also enclosed in a stainless steel chassis. (b) CAD design of the top assembly of the cryostat. (c) CAD design of the bottom assembly of the cryostat.

Fig. 4
Fig. 4

(a) Count rate from an 8 × 7.3 µm2 area NbN SNSPD as a function of time. The signal beam was positioned at 4.6 µm from the center of the detector. (b) Fast Fourier Transform of the signal shown in (a). The peak at 1.5 Hz is at the same operating frequency of the pulse-tube. (c) Count rate from the SNSPD as a function of the distance between the beam center and the SNSPD center. (d) Oscilloscope trace of the light power reflected by the edge of a gold-coated chip. (e) Fast Fourier Transform of the signal shown in d. We were not able to identify the origin of the peak at 19 Hz. (f) Light power reflected at the edge of a gold-coated chip as a function of the beam position.

Fig. 5
Fig. 5

(a) System dark count rate (SDCR, blue squares) and photon count rate (PCR, red triangles) as a function of the bias current normalized by the switching current of the SNSPD. The SDCR is determined by measuring the count rate of the detector while the source is turned off; no other filter is applied to the optical system. The PCR is determined by measuring the count rate when the optical source is turned on and by reducing it by the SDCR. (b) System detection efficiency (SDE) and device detection efficiency (DDE) as a function of the bias current normalized by the switching current of the SNSPD. The SDE is determined as the photon count rate divided by the photon emission rate of the source.

Tables (1)

Tables Icon

Table 1 Heat Load (Qc) Budget of the Parts Connecting Stages at Different Temperatures

Metrics