Abstract

Irradiation of crystalline silicon with femtosecond laser pulses produces a variety of quasi-periodic surface structures, among which sub-wavelength ripples creation is largely studied. Here we report an experimental investigation and a theoretical interpretation focusing on the seldom considered issue of quasi-periodic, micron spaced grooves formation. We characterize the morphological evolution of the grooves generation and experimentally single out the variation of the threshold fluence for their formation with the number of pulses N, while typical ripples simultaneously produced in the irradiated area are always considered for comparison. Our experimental findings evidence a power law dependence of the threshold fluence on the number of pulses both for ripples and grooves formation, typical of an incubation behavior. The incubation factor and single pulse threshold are (0.76 ± 0.04) and (0.20 ± 0.04) J/cm2 for ripples and (0.84 ± 0.03) and (0.54 ± 0.08) J/cm2 for grooves, respectively. Surface-scattered wave theory, which allows modeling irradiation with a single pulse on a rough surface, is exploited to interpret the observed structural modification of the surface textures. A simple, empirical scaling approach is proposed associating the surface structures generated in multiple-pulse experiments with the predictions of the surface-scattered wave theory, at laser fluencies around the grooves formation threshold. This, in turn, allows proposing a physical mechanism interpreting the grooves generation as well as the coexistence and relative prominence of grooves and ripples in the irradiated area.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface structuring of rutile TiO2 (100) and (001) single crystals with femtosecond pulsed laser irradiation

Luc Museur, George D. Tsibidis, Alexandra Manousaki, Demetrios Anglos, and Andrei Kanaev
J. Opt. Soc. Am. B 35(10) 2600-2607 (2018)

Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water

Godai Miyaji, Kenzo Miyazaki, Kaifeng Zhang, Takakazu Yoshifuji, and Junya Fujita
Opt. Express 20(14) 14848-14856 (2012)

Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove

K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury
Opt. Express 23(15) 19432-19441 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
    [Crossref]
  2. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [Crossref]
  3. A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257(16), 7291–7294 (2011).
    [Crossref]
  4. H. Huang, L.-M. Yang, S. Bai, and J. Liu, “Blackening of metals using femtosecond fiber laser,” Appl. Opt. 54(2), 324–333 (2015).
    [Crossref] [PubMed]
  5. M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
    [Crossref]
  6. S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
    [Crossref]
  7. S. Moradi, S. Kamal, P. Englezos, and S. G. Hatzikiriakos, “Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity,” Nanotechnology 24(41), 415302 (2013).
    [Crossref] [PubMed]
  8. T.-H. Her, “Comprehensive Nanoscience and Technology,” in Compr. Nanosci. Technol., D. Andrews, G. Scholes, and G. Wiederrecht, Eds., (Elsevier, 2011).
  9. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
    [Crossref]
  10. T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
    [Crossref]
  11. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
    [Crossref] [PubMed]
  12. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  13. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
    [Crossref]
  14. S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
    [Crossref]
  15. J. Schwarz, P. Rambo, M. Kimmel, and B. Atherton, “Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor,” Opt. Express 20(8), 8791–8803 (2012).
    [Crossref] [PubMed]
  16. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
    [Crossref]
  17. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref] [PubMed]
  18. T. T. D. Huynh, M. Vayer, A. Sauldubois, A. Petit, and N. Semmar, “Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam,” Appl. Phys. Lett. 107(19), 193105 (2015).
    [Crossref]
  19. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  20. J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 118(3), 1119–1125 (2015).
    [Crossref]
  21. T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
    [Crossref] [PubMed]
  22. G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
    [Crossref]
  23. S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
    [Crossref]
  24. A. Talbi, A. Petit, A. Melhem, A. Stolz, C. Boulmer-Leborgne, G. Gautier, T. Defforge, and N. Semmar, “Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction,” Appl. Surf. Sci.in press.
  25. N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
    [Crossref]

2015 (4)

H. Huang, L.-M. Yang, S. Bai, and J. Liu, “Blackening of metals using femtosecond fiber laser,” Appl. Opt. 54(2), 324–333 (2015).
[Crossref] [PubMed]

T. T. D. Huynh, M. Vayer, A. Sauldubois, A. Petit, and N. Semmar, “Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam,” Appl. Phys. Lett. 107(19), 193105 (2015).
[Crossref]

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 118(3), 1119–1125 (2015).
[Crossref]

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

2014 (1)

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

2013 (4)

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

S. Moradi, S. Kamal, P. Englezos, and S. G. Hatzikiriakos, “Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity,” Nanotechnology 24(41), 415302 (2013).
[Crossref] [PubMed]

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

2012 (3)

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

J. Schwarz, P. Rambo, M. Kimmel, and B. Atherton, “Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor,” Opt. Express 20(8), 8791–8803 (2012).
[Crossref] [PubMed]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

2011 (1)

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257(16), 7291–7294 (2011).
[Crossref]

2010 (2)

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref] [PubMed]

2009 (1)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

2008 (2)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[Crossref]

2007 (1)

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
[Crossref]

2005 (1)

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

2002 (1)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

1982 (1)

Amoruso, S.

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Anoop, K. K.

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Atherton, B.

Azarm, A.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Bai, S.

Barberoglou, M.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Bonse, J.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Boulmer-Leborgne, C.

A. Talbi, A. Petit, A. Melhem, A. Stolz, C. Boulmer-Leborgne, G. Gautier, T. Defforge, and N. Semmar, “Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction,” Appl. Surf. Sci.in press.

Bruzzese, R.

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Chen, Y. P.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Cheng, Y.

Chin, S. L.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Crespo-Monteiro, N.

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Dai, Y.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 118(3), 1119–1125 (2015).
[Crossref]

Daigle, J. F.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Defforge, T.

A. Talbi, A. Petit, A. Melhem, A. Stolz, C. Boulmer-Leborgne, G. Gautier, T. Defforge, and N. Semmar, “Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction,” Appl. Surf. Sci.in press.

Delaporte, P.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[Crossref]

Derrien, T. J.-Y.

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

Destouches, N.

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Englezos, P.

S. Moradi, S. Kamal, P. Englezos, and S. G. Hatzikiriakos, “Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity,” Nanotechnology 24(41), 415302 (2013).
[Crossref] [PubMed]

Epicier, T.

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Etienne, H.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[Crossref]

Fotakis, C.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Gautier, G.

A. Talbi, A. Petit, A. Melhem, A. Stolz, C. Boulmer-Leborgne, G. Gautier, T. Defforge, and N. Semmar, “Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction,” Appl. Surf. Sci.in press.

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257(16), 7291–7294 (2011).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Halbwax, M.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[Crossref]

Hatzikiriakos, S. G.

S. Moradi, S. Kamal, P. Englezos, and S. G. Hatzikiriakos, “Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity,” Nanotechnology 24(41), 415302 (2013).
[Crossref] [PubMed]

He, S.

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Höhm, S.

Hu, M.

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Huang, H.

Huang, M.

Huber, H.

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
[Crossref]

Huynh, T. T. D.

T. T. D. Huynh, M. Vayer, A. Sauldubois, A. Petit, and N. Semmar, “Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam,” Appl. Phys. Lett. 107(19), 193105 (2015).
[Crossref]

Itina, T. E.

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

Jiang, Y.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 118(3), 1119–1125 (2015).
[Crossref]

Kamal, S.

S. Moradi, S. Kamal, P. Englezos, and S. G. Hatzikiriakos, “Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity,” Nanotechnology 24(41), 415302 (2013).
[Crossref] [PubMed]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Kimmel, M.

Kosareva, O.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Krüger, J.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Lefkir, Y.

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Li, H.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 118(3), 1119–1125 (2015).
[Crossref]

Li, R.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Lin, X.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 118(3), 1119–1125 (2015).
[Crossref]

Liu, J.

Liu, J. M.

Liu, J. S.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Liu, W. W.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Liu, Y.

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Loukakos, P. A.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Ma, G.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 118(3), 1119–1125 (2015).
[Crossref]

Marceau, C.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Martinuzzi, S.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[Crossref]

Melhem, A.

A. Talbi, A. Petit, A. Melhem, A. Stolz, C. Boulmer-Leborgne, G. Gautier, T. Defforge, and N. Semmar, “Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction,” Appl. Surf. Sci.in press.

Moradi, S.

S. Moradi, S. Kamal, P. Englezos, and S. G. Hatzikiriakos, “Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity,” Nanotechnology 24(41), 415302 (2013).
[Crossref] [PubMed]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Nivas, J. J. J.

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Panov, N.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Perichaud, I.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[Crossref]

Petit, A.

T. T. D. Huynh, M. Vayer, A. Sauldubois, A. Petit, and N. Semmar, “Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam,” Appl. Phys. Lett. 107(19), 193105 (2015).
[Crossref]

A. Talbi, A. Petit, A. Melhem, A. Stolz, C. Boulmer-Leborgne, G. Gautier, T. Defforge, and N. Semmar, “Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction,” Appl. Surf. Sci.in press.

Pigeon, F.

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Qiu, J.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 118(3), 1119–1125 (2015).
[Crossref]

Rambo, P.

Reider, G. A.

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
[Crossref]

Reynaud, S.

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Richardson, M.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Rosenfeld, A.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Sarnet, T.

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[Crossref]

Sauldubois, A.

T. T. D. Huynh, M. Vayer, A. Sauldubois, A. Petit, and N. Semmar, “Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam,” Appl. Phys. Lett. 107(19), 193105 (2015).
[Crossref]

Schwarz, J.

Seideman, T.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Semmar, N.

T. T. D. Huynh, M. Vayer, A. Sauldubois, A. Petit, and N. Semmar, “Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam,” Appl. Phys. Lett. 107(19), 193105 (2015).
[Crossref]

A. Talbi, A. Petit, A. Melhem, A. Stolz, C. Boulmer-Leborgne, G. Gautier, T. Defforge, and N. Semmar, “Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction,” Appl. Surf. Sci.in press.

Sentis, M.

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Song, J.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 118(3), 1119–1125 (2015).
[Crossref]

Stolz, A.

A. Talbi, A. Petit, A. Melhem, A. Stolz, C. Boulmer-Leborgne, G. Gautier, T. Defforge, and N. Semmar, “Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction,” Appl. Surf. Sci.in press.

Stratakis, E.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Talbi, A.

A. Talbi, A. Petit, A. Melhem, A. Stolz, C. Boulmer-Leborgne, G. Gautier, T. Defforge, and N. Semmar, “Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction,” Appl. Surf. Sci.in press.

Torregrosa, F.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[Crossref]

Torres, R.

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

Tsibidis, G. D.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Vayer, M.

T. T. D. Huynh, M. Vayer, A. Sauldubois, A. Petit, and N. Semmar, “Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam,” Appl. Phys. Lett. 107(19), 193105 (2015).
[Crossref]

Vecchione, A.

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Vervisch, V.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[Crossref]

Vitrant, G.

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Vocanson, F.

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257(16), 7291–7294 (2011).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Wang, T. J.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Wu, J.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Xu, N.

Xu, Z.

Xu, Z. Z.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Yang, L.-M.

Ye, J.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 118(3), 1119–1125 (2015).
[Crossref]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Yuan, S.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Zeng, H. P.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Zhao, F.

Zoppel, S.

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

T. T. D. Huynh, M. Vayer, A. Sauldubois, A. Petit, and N. Semmar, “Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam,” Appl. Phys. Lett. 107(19), 193105 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 118(3), 1119–1125 (2015).
[Crossref]

Appl. Surf. Sci. (2)

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257(16), 7291–7294 (2011).
[Crossref]

J. Appl. Phys. (4)

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

N. Destouches, N. Crespo-Monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Laser Photonics Rev. (1)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Laser Phys. (1)

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Nanotechnology (1)

S. Moradi, S. Kamal, P. Englezos, and S. G. Hatzikiriakos, “Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity,” Nanotechnology 24(41), 415302 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Thin Solid Films (1)

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[Crossref]

Other (2)

T.-H. Her, “Comprehensive Nanoscience and Technology,” in Compr. Nanosci. Technol., D. Andrews, G. Scholes, and G. Wiederrecht, Eds., (Elsevier, 2011).

A. Talbi, A. Petit, A. Melhem, A. Stolz, C. Boulmer-Leborgne, G. Gautier, T. Defforge, and N. Semmar, “Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction,” Appl. Surf. Sci.in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Portion of a SEM micrograph of the Si target surface after N = 100, for E0≈14 µJ (Φp≈0.8 J/cm2); (b) corresponding Gaussian spatial profile of the laser beam. The double-headed arrow indicates the incident laser pulse polarization.
Fig. 2
Fig. 2 (a) Variation of rR and rG with pulse energy E0. (b) Threshold fluence variation with the number of pulses N in the form NΦth,k(N) vs N (k = R for ripples and k = G and grooves). The lines in (a) and (b) are fits according to Eqs. (1) and (2), respectively.
Fig. 3
Fig. 3 SEM micrographs of the Si target surface at N = 100 for (a) Φp = 0.8 J/cm2 and Φp = 2.3 J/cm2. Below each image the corresponding spatial profile of the laser pulse fluence is shown. The squares mark regions characterized by different surface structures at low (AL and BL) and high (BH and CH) excitation levels. Top panels show zoomed images of the part evidence by the square with the same color in the corresponding SEM image. The double-headed arrows indicate the laser polarization.
Fig. 4
Fig. 4 (a) Spatial profile of the laser pulse fluence Φ(r) for Φp = 0.8 J/cm2; the right vertical axis shows the corresponding value of Φeff. (b) 2D-IFT maps (lower panels) and corresponding SEM images (upper panels) for conditions I, II, III. The 2D-IFT maps are normalized to the corresponding maximum intensity according to the scale shown on the right. The double-headed arrows show the laser polarization. (c) 2D map of η(κ) corresponding to condition Φeff,I. The wave vectors κx and κy are in units of 2π/λ, where λ is the laser wavelength. (d) 2D-IFT map in condition III: the regions with a value of the intensity ranging from 2/3 to 1 (corresponding to the maximum intensity value) are colored in red, while the regions with lower intensity are shown in green. (d) Sketch of ripples and grooves formation: the upper panel shows a SEM image of the transitional region from ripples to grooves registered at an acquisition angle of 20° while the lower panel is a schematic diagram showing the alternating structure of ripples and grooves.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r k 2 = 1 2 w 0 2 ln( E 0 E th,k )= 1 2 w 0 2 ln( Φ p Φ th,k )
Φ th,k ( N )= Φ th,k ( 1 ) N ξ k 1

Metrics